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Abstract—Power grids are undergoing major changes due
to rapid growth in renewable energy and improvements in
battery technology. Prompted by the increasing complexity of
power systems, decentralized IoT solutions are emerging, which
arrange local communities into transactive microgrids. The core
functionality of these solutions is to provide mechanisms for
matching producers with consumers while ensuring system safety.
However, there are multiple challenges that these solutions still
face: privacy, trust, and resilience. The privacy challenge arises
because the time series of production and consumption data
for each participant is sensitive and may be used to infer
personal information. Trust is an issue because a producer or
consumer can renege on the promised energy transfer. Providing
resilience is challenging due to the possibility of failures in the
infrastructure that is required to support these market based
solutions. In this paper, we develop a rigorous solution for
transactive microgrids that addresses all three challenges by
providing an innovative combination of MILP solvers, smart
contracts, and publish-subscribe middleware within a framework
of a novel distributed application platform, called Resilient
Information Architecture Platform for Smart Grid. Towards this
purpose, we describe the key architectural concepts, including
fault tolerance, and show the trade-off between market efficiency
and resource requirements.

Index Terms—smart grid, distributed ledger, decentralized
application, transactive energy, system resilience, blockchain,
smart contract, cyber-physical system

I. INTRODUCTION

Power grids are undergoing major changes due to the rapid
adoption of renewable energy resources, such as wind and
solar power [1], [2]. For example, 4,143 megawatts of solar
panels were installed in the third quarter of 2016 [3]. This
capacity is predicted to grow from 4% of the total global
energy production in 2015 to 29% in 2040 [4]. Simultaneously,
battery technology costs per kWh have been dropping signifi-
cantly [5], reaching grid parity [6]. These trends are enabling a
decentralized vision for the future of power-grid operations in
which local peer-to-peer energy trading within microgrids can
be used to reduce the load on distribution system operators
(DSO), leading to the development of Transactive Energy
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Systems (TES) [7]–[10]. Such mechanisms can improve sys-
tem reliability and efficiency by integrating inverter-based
renewable resources into the grid and by supplying power to
the local loads when the main grid is interrupted.

To accomplish the goal of transactive energy, individual
prosumers1 need to engage in interactions, negotiate with
each other, enter agreements, and make proactive run-time
decisions—individually and collectively—while responding to
changing demands and environmental conditions. In theory,
these interactions could happen in a centralized manner by
communicating relevant variables to a central controller, which
would compute and broadcast the “optimal” control settings
back to each individual prosumer. However, this system would
not scale well as the number of coordinating parties increases.
It would also adversely affect resilience because of increased
risks for data corruption and loss during transmission. Further,
the centralized controller would constitute a single point of
failure. On the other hand, distributed optimization solutions
might suffer from the same scalability challenges, and the
“distribution” of the optimization problem often requires the
over-simplification of objective functions, which would result
in losing the guarantees of a globally “optimal” solution. In
light of this, novel “decentralized” solutions are needed, in
which individual prosumers operate with autonomous con-
trollers that can trade on their behalf in a market, which is itself
decentralized. However, creating such decentralized solutions
is challenging due to a number of problems.

The first problem is ensuring the physical stability and
safety of the grid apparatus, which requires dynamically
balancing supply and demand without violating line capacity
constraints. The second one is a distributed systems prob-
lem, which requires ensuring that this peer-to-peer market
operates in a trustworthy manner even if some of the nodes
are malicious, compromised, or faulty. The third problem
is related to privacy. While non-transactive smart metering
systems require sharing prosumer information only with the
DSO, transactive systems need to disseminate information

1A prosumer is a home that can not only consume, but also produce surplus
energy. Homes without production will be simply called consumers.



among the participants to enable finding trade partners. The
dissemination of trading information threatens the privacy of
prosumers since it may expose their private information to
anyone in the same microgrid. Further, data collected from
energy transactions is expected to be more fine-grained than
data collected by currently deployed smart meters [11], and it
may be used to infer personal information about the market
participants. For example, a participant’s presence or absence
at their residence might be inferable from their energy future
offers (e.g., if a prosumer posts an energy selling offer, the
residents are less likely to be at home). The fourth problem
is resilience. Failures in distributed computing systems are a
fact, and hence the transactive system must be able to tolerate
failures by either mitigating faults or adapting the system to a
different configuration.

Contributions: In this paper, we describe the design and
implementation of TRANSAX, a transactive decentralized
platform built over a distributed middleware, called Resilient
Information Architecture Platform for Smart Grid (RIAPS)
[12], [13]. RIAPS isolates the hardware details from the
algorithms and provides essential mechanisms for resource
management, fault tolerance, and security. An integrated dis-
tributed ledger and smart contracts provide us with the mech-
anisms to provide consensus and trust. This is in line with
the recent trends in the research community and industry
focused on transactive energy markets [14], [15]. Although
disintermediation of trust is widely regarded as the primary
feature of blockchain-based transaction systems [16], their
use in TES is appealing also because they elegantly integrate
the ability to immutably record the ownership and transfer of
assets, with essential distributed computing services, such as
Byzantine fault-tolerant consensus on the ledger state as well
as event chronology. The ability to establish consensus on state
and timing is important in the context of TES since these
systems are envisioned to involve the participation of self-
interested parties, interacting with one another via a distributed
computing platform that executes transaction management. We
provide privacy by using a mixing service, which prevents
tracing assets being traded back to their owner, as described
in our prior work [17]2. However, unlike [17], we consider
an automated matching system that maximizes the amount of
energy traded within the local market, while satisfying safety
constraints. Finally, we describe and evaluate an extension
to the RIAPS framework that implements distributed fault
detection and mitigation mechanisms. These mechanisms are
critical for resilient operation of TRANSAX.

Outline: The outline of this paper is as follows. We explain
the problem of transactive energy systems using an example
in Section II. Then, we contextualize our contributions in
TRANSAX using related research in Section III. We describe
TRANSAX in Section IV, which is followed by an evaluation
using a case study in Section V. Finally, we conclude with
discussions in Section VI.

2Note that since the mixing implementation was discussed in [17], in this
paper we focus on other key contributions, including resilience.

II. TRANSACTIVE ENERGY PROBLEM

Consider a microgrid with a set of feeders arranged in a
radial topology.3 A feeder4 has a fixed set of nodes, each
representing a residential load or a combination of load and
distributed energy resources (DERs), such as rooftop solar
and batteries. Each node is associated with a participant
in the local peer-to-peer energy trading market. There is
a distribution system operator (DSO), that also participates
in the market and may thus use the market to incentivize
timed energy production within the microgrid to aid in grid
stabilization and promotion of related ancillary services [18].
In addition, the DSO supplies residual demand not met through
the local market. The participants settle trades in advance,
which allows them to schedule their transfer of power into the
local distribution system. Alternatively, a mechanism can be
responsible for matching the producers and consumers. There
are typically three phases in these operations: discovery of
compatible offers, matching of buying offers to selling offers
(which may have been submitted either by each prosumer
individually or by automated matching mechanisms). Once
the matching is done, the energy transactions and financial
transactions are then handled at a later time.

Example 1: Consider a community with two prosumers (P1,
P2) and one consumer (C1) on a single feeder. To make the
problem of matching energy offers tractable, lets assume that
the offers are made and matched for discrete time intervals.
These intervals quantize the whole day, and their length can
be a parameter of the problem setup. For the sake of example,
lets assume that each day is divided into 15 minute intervals.
Lets assume that P1 has the ability to transfer 10 kW into
the feeder during interval 48, which translates to 12:00pm–
12:15pm. Assume similarly that P2 can also provide 30 kW
to the feeder in interval 48, but it has battery storage. Since P2

has battery—unlike P1, who must either transfer the energy or
send the energy into the group—P2 can delay the transfer until
a future interval, e.g., interval 49. Now suppose that C1 needs
to consume 30 kW in interval 48 and 10 kW in interval 49. All
the prosumers and consumer must provide these requirements
to the market mechanism, which will then provide a matching
solution. A possible solution would be to provide all 30 kW
to C1 from P2 in interval 48. However, that will lead to the
waste of energy provided by P1. Thus, a better solution will
be to consume 10 kW from P1 in interval 48 and 20 kW from
P2 in interval 48. Then, transfer 10 kW from P2 in interval
49, which is more efficient then the first matching as it allows
more energy (summed across the intervals) to be transferred.
Note that the second solution requires the market to consider
future intervals while solving the problem, which increases
the size of the optimization problem. Further, it should be
noted that if the information about C1’s offer is made public,

3The methods developed in this paper are extensible to more general tree
topologies involving branching. We work with a radial topology to simplify
our notation.

4A feeder element in electrical distribution is a power line transferring
power from a distribution substation to distribution transformers or from
distribution transformers to the end homes.
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then one can estimate that C1 was doing heavy machine work
during interval 48 and there was substantially lower activity
during interval 49.

Based on this example, it is clear that there are five basic
requirement that must be met by any solution.
• The first requirement is the existence of an appropriate

communication and messaging architecture. The decen-
tralized platform must collect participants’ offers and
make them available to buyers and sellers, and the
market algorithm must communicate clearing prices and
buyer-seller matchings. These messages must be reliably
delivered under strict timing constraints, derived from the
deadline by which a trade must clear.

• The trading activity shall not compromise the stability
of the physical system operation. For example, capacity
constraints along any feeder should be respected. Specif-
ically, each feeder is rated for a maximal power capacity.
For example, if the feeder capacity is only 10 kW, then
C1 should not consume 30 kW.

• There are a number of parameters of the system that
should be made configurable. For example, the number
of intervals to look ahead while solving the matching
problem is one such parameter. Another parameter is
the prediction window for each prosumer. Note that
Example 1 required that the prosumers make their offers
for future intervals available.

• Information such as the amount of energy produced,
consumed, bought, or sold by any prosumer should be
available only to the Distribution System Operator. All
bids and asks as well as the matching thereof should
remain anonymous to the other participants.

• The failure of a prosumer or market agent, including
any solvers that are required to search for a matching
solution, must not compromise the system. Further, there
should be mechanisms to ensure that everyone agrees
to and conforms to the decisions made by the market
mechanism.

III. RELATED WORK

Implementing a Transaction Management Platforms (TMP)
requires a communication architecture, as well as trading
mechanisms that provide the capability to match the bids and
asks. Blockchain-based solutions have the potential to enable
large-scale energy trading based on distributed consensus sys-
tems. However, popular blockchain solutions, such as Bitcoin
[19] and Ethereum [20], suffer from design limitations that
prevent their direct application to validating energy trades.

For example, Aitzhan and Svetinovic implemented a proof-
of-concept platform for decentralized smart-grid energy trad-
ing using blockchains, but their system is based on proof-
of-work consensus, and they do not consider grid control
and stability, or scalability [21]. Additionally, there is still
the problem of privacy—all transactions in these systems are
public [22].

Most works discussing privacy look at it from the context
of smart meters. McDaniel and McLaughlin discuss privacy

concerns due to energy-usage profiling, which smart grids
could potentially enable [23]. Efthymiou and Kalogridis de-
scribe a method for securely anonymizing frequent electrical
metering data sent by a smart meter by using a third party
escrow mechanism [24]. Tan et al. study privacy in a smart
metering system from an information theoretic perspective
in the presence of energy harvesting and storage units [25].
They show that energy harvesting provides increased privacy
by diversifying the energy source, while a storage device
can be used to increase both energy efficiency and privacy.
However, transaction data from energy trading may provide
more fine-grained information than smart meter based usage
patterns [11].

Existing energy trading markets, such as the European
Energy Exchange [26] and project NOBEL in Spain, employ
the double-auction market mechanism [27], which can be
implemented to preserve participant privacy. However, typical
exchange implementations involve centralized database archi-
tectures which constitute single points of failure.

Majumder et al. present an iterative double auction trading
mechanism that preserves the participants’ privacy, in partic-
ular, it keeps their utility functions private [28]. Similarly,
Faqiry and Das present an auction mechanism for maxi-
mizing social welfare of buyers and sellers (if the supply
is small) [29]. Their approach also provides some privacy
meaning that participants do not reveal their utility functions.
By constricting the buyers’ utility functions to be convex,
the social welfare objective function is maximized when the
micro-grid controller objective function, whose goal is to
maximize the power sold, is maximized. In the later part of
the paper, they consider an approach that discards the privacy
maintained during the first phase in order to make trading
fair. In their work, there is no mechanism to check whether
the buyer can produce the power they claim they can supply,
which could result in instability. The authors also mention in
passing that their approach can be implemented as a distributed
algorithm, but this was not carried out.

In contrast, the work presented in this paper is a distributed
systems mechanism that considers the problem of a broader
definition of privacy, safety, and protection from malicious
actors as a combined problem.

IV. TRANSAX PLATFORM

Next, we describe the solution implemented by the
TRANSAX platform. Figure 1 describes the components of
this decentralized and distributed platform. An agent runs
on a computing node within the premises of each home.
In the remainder of this paper, we refer to these agents as
“prosumers” or “consumers” depending upon the context, but
they are implemented as one type of entity that can both
buy and sell energy. The solvers are nodes responsible for
identifying the feasible and optimal trades. The miners are
responsible for reaching consensus on the market solutions
using a distributed-ledger based “smart contract.” Note that
in this architecture, solvers and miners are not centralized.
All agents communicate with each other providing offers
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Fig. 1. Landscape of a Transactive Energy Systems with TRANSAX.
TSO/ISO are responsible for bulk trading. Multiple instances of smaller scale
trading platforms can co-exist at distribution and microgrid level.

and accepting the agreed upon market energy transfer sched-
ule. The anonymization mixer implements privacy-preserving
mechanisms ensuring that prosumers can remain anonymous
to each other. The anonymization module has been explained
in a previous paper and is not discussed further here [17].

First, we describe the market problem and then describe a
smart contract solution and a protocol to setup the distributed
system. Finally, we describe the distributed architecture of the
implementation of the system.

A. Market Problem

Let F denote the set of feeders. For a feeder f ∈ F , we let
Cextf denote the maximum amount of power that is allowed to
flow into or out of the feeder at any point in time. Similarly,
we let Cintf denote the maximum amount of power that is
allowed to be consumed or produced within the feeder at any
point in time.5 We assume that time is divided into intervals
of fixed length ∆, and we refer to the t-th interval simply as
time interval t. For a list of symbols used in the paper, see
Table I.

The input of the energy trading problem is the set of buying
and selling offers posted by the participants.6 For feeder f ∈
F , we let Sf and Bf denote the set of selling and buying offers
posted by participants located in that feeder, respectively.7 A
selling offer s ∈ Sf is a tuple (Es, Is, Rs), where

• Es is the amount of energy to be sold,
• Is is the set of time intervals in which the energy could

be provided,
• Rs is the reservation price, i.e., lowest unit price for

which the participant is willing to sell energy.

Similarly, a buying offer b ∈ Bf is a tuple (Eb, Ib, Rb),
where the values pertain to consuming/buying energy instead
of producing/selling, and Rb is the highest price that the
participant is willing to pay. For convenience, we also let S

5In other words, limit Cext
f is imposed on the net production and net

consumption of all prosumers in feeder f , while limit Cint
f is imposed on

the total production and total consumption.
6Participants may include both prosumers and the DSO. The DSO can

shape load and trade energy futures by participating in the energy market the
same way as prosumers do.

7If the DSO wants to participate in this energy trading market, it can be
assigned to a “dummy” feeder in the problem formulation.

TABLE I
LIST OF SYMBOLS

Symbol Description
Microgrid

F set of feeders
Cext

f maximum net power consumption or net power
production in feeder f ∈ F

Cint
f maximum total power consumption or total power

production in feeder f ∈ F
∆ length of time intervals
Tclear minimum number of time intervals between the

finalization and delivery of a trade
Offers

Sf set of selling offers from feeder f ∈ F
Bf set of buying offers from feeder f ∈ F
S, B set of all selling and buying offers, resp.
S(t), B(t) set of selling and buying offers submitted by the

end of time interval t, resp.
Es, Eb amount of energy to be sold or bought by offers

s ∈ S and b ∈ B, resp.
Is, Ib time intervals in which energy could be provided

or consumed by offers s ∈ S and b ∈ B, resp.
Rs, Rb reservation prices of offers s ∈ S and b ∈ B, resp.
M(s), M(b) set of offers that are matchable with offers s and b,

resp.
I(s, b) Is ∩ Ib

Solution
ps,b,t amount of energy that should be provided by s to

b in interval t
πs,b,t unit price for the energy provided by s to b in

interval t
Feasible(S,B) set of feasible solutions given sets of selling and

buying offers S and B
p̂s,b,t, π̂s,b,t finalized trade values

Implementation Parameters
Tpredict prediction window used by prosumers when post-

ing selling and buying offers
Tlookahead number of time intervals considered in the future

by the solver
∆̂ length of the time step used for simulating the real-

interval of length ∆

and B denote the set of all buying and selling offers (i.e., we
let S = ∪f∈FSf and B = ∪f∈FBf ).

We say that a pair of selling and buying offers s ∈ S and
b ∈ B is matchable if

Rs ≤ Rb and Is ∩ Ib 6= ∅. (1)

In other words, a pair of offers is matchable if there exists a
price that both participants would accept and a time interval in
which the seller and buyer could provide and consume energy.
For a given selling offer s ∈ S, we let the set of buying offers
that are matchable with s be denoted by M(s). Similarly, we
let the set of selling offers that are matchable with a buying
offer b be denoted by M(b). Further, we let I(s, b) = Is ∩ Ib.

A solution to the energy trading problem is a pair of vectors
(p,π), where

• ps,b,t is a non-negative amount of power that should be
provided by the seller s ∈ S and consumed by the buyer
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b ∈M(s) in time interval t ∈ I(s, b).8

• πs,b,t is the unit price for the energy provided by seller
s ∈ S to buyer b ∈M(s) in time interval t ∈ I(s, b).

A pair of vectors (p,π) is a feasible solution to the energy
trading problem if it satisfies the following constraints:

• The amount of energy sold or bought from each offer is
at most the amount of energy offered:

∀s ∈ S :
∑

b∈M(s)

∑
t∈I(s,b)

ps,b,t ·∆ ≤ Es (2)

∀b ∈ B :
∑

s∈M(b)

∑
t∈I(s,b)

ps,b,t ·∆ ≤ Eb (3)

• The amount of power flowing into or out of each feeder
is below the safety limit in all time intervals:

∀f ∈F , t :∑
s∈Sf

∑
b∈B

ps,b,t

−
∑
b∈Bf

∑
s∈S

ps,b,t

 ≤ Cextf

(4)
∀f ∈F , t :∑

s∈Sf

∑
b∈B

ps,b,t

−
∑
b∈Bf

∑
s∈S

ps,b,t

 ≥ −Cextf

(5)

• The amount of energy consumed and produced within
each feeder is below the safety limit in all time intervals:

∀f ∈ F , t :
∑
b∈Bf

∑
s∈S

ps,b,t ≤ Cintf (6)

∀f ∈ F , t :
∑
s∈Sf

∑
b∈B

ps,b,t ≤ Cintf (7)

• The unit prices are between the reservation prices of the
seller and buyer:

∀s ∈ S, b ∈M(s), t ∈ I(s, b) : Rs ≤ πs,b,t ≤ Rb (8)

The objective of the energy trading problem is to maximize
the amount of energy traded. Formally, an optimal solution to
the energy trading problem is

max
(p,π)∈ Feasible(S,B)

∑
s∈S

∑
b∈M(s)

∑
t∈I(s,b)

ps,b,t , (9)

where Feasible(S,B) is the set of feasible solutions given
selling and buying offers S and B (i.e., set of solutions
satisfying Equations (2) to (8) with S and B).

8We require the both the seller and buyer to produce a constant level of
power during the time interval.

1) Linear-Programming Solution:: We can solve the basic
energy trading problem efficiently by formulating it as a linear
program. First, create real-valued variables ps,b,t and πs,b,t
for each s ∈ S, b ∈ M(s), t ∈ I(s, b). Then, the following
reformulation of the matching problem is a linear program:

max
p,π

∑
s∈S

∑
b∈M(s)

∑
t∈I(s,b)

ps,b,t (10)

subject to Equations (2) to (8) and

p ≥ 0 and π ≥ 0. (11)

2) Trade Finalization: Equation (9) formulates the problem
considering a single “snapshot” of all offers across all time
intervals. However, in practice, prosumers may submit new
offers at any time, resulting in continuously evolving sets of
offers. Consequently, optimal solutions to Equation (9) may
have to be found repeatedly as new offers are submitted,
resulting in a series of evolving solutions. This presents a
problem since prosumers need to know in advance what the
“final” solution for a certain time interval is in order to be
able to actually schedule energy production or consumption
for that interval. Further, preventing “last-minute” changes can
be crucial for safety and stability since it allows the DSO
to prepare for satisfying energy demand that cannot be met
locally.

As the set of submitted offers grows, the optimal solution
to the energy trading problem may change, and the optimal
value of each ps,b,t may vary. While each change can increase
the amount of energy traded, the trade values ps,b,t and
πs,b,t need to be finalized at some point in time. At the very
latest, values for interval t need to be finalized by the end of
interval t − 1; otherwise, participants would have no chance
of actually delivering the trade. We now extend the energy
trading problem to consider a growing set of offers and a
time constraint for finalizing trades. Our approach finalizes
a minimum set of trades in each interval, which maximizes
efficiency while providing safety.

We assume that all trades for time interval t (i.e., all
values ps,b,t and πs,b,t) must be finalized by the end of
time interval t − Tclear, where Tclear is a positive integer
constant, which is set by the operator. In practice, the value
of Tclear must be chosen taking into account both physical
constraints (e.g., how long it takes to turn on a generator) and
communication delay (e.g., some participants might learn of
a trade with delay due to network disruptions).

We let p̂s,b,t and π̂s,b,t denote the finalized trade values, and
we let B(t) and S(t) denote the set of buying and selling offers
that participants have submitted by the end of time interval t.
Then, the system takes the following steps at the end of each
time interval t:

• Find an optimal solution (p∗,π∗) to the extended energy
trading problem:

max
(p,π)∈ Feasible(S(t),B(t))

∑
s∈S(t)

∑
b∈M(s)

∑
τ∈I(s,b)

ps,b,τ (12)
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subject to

∀ τ < t+ Tclear : ps,b,τ = p̂s,b,τ (13)
πs,b,τ = π̂s,b,τ (14)

• Finalize trade values for time interval t+Tclear based on
the optimal solution (p∗,π∗):

p̂s,b,t+Tclear
:= p∗s,b,t+Tclear

(15)

π̂s,b,t+Tclear
:= π∗s,b,t+Tclear

(16)

The problem in Equation (12) can also be reformulated as a
linear program similarly, by considering S(t), B(t), p̂, π̂, and
the additional constraints.

B. Market Solver

The role of the market solver is to periodically solve the
linear program mentioned above as the offers stream in.
To address the trustworthiness challenge, we implement a
blockchain based solution as discussed previously. However,
since computation is relatively expensive on blockchain-based
distributed platforms, solving the energy trading problem using
a blockchain-based smart contract would not be scalable in
practice. In light of this, we adopt a hybrid implementation
approach, which we introduced in earlier [30], to transactive
energy systems. The hybrid approach combines the trustwor-
thiness of blockchain-based smart contracts with the efficiency
of more traditional computational platforms. The key idea of
our hybrid approach is to (1) use a high-performance computer
to solve the computationally expensive linear program off-
blockchain9 and then (2) use a smart contract to record the
solution on the blockchain.

1) Blockchain-based Smart Contract: We implemented a
smart contract10 that verifies the feasibility of each solution
(p,π) submitted by an off-blockchain solver. If the solution is
feasible, then the contract computes the value of the objective
function and compares it to the objective value of previously
submitted solutions. The contract always keeps track of the
best feasible solution submitted so far, which we call the
candidate solution. At the end of each time interval t, the
contract finalizes the trade values for interval t+Tclear based
on the candidate solution.11

This simple functionality achieves a high level of security
and reliability. Firstly, it is clear that an adversary cannot
force the contract to finalize trades based on an unsafe (i.e.,
infeasible) solution since such a solution would be rejected.
Similarly, an adversary cannot force the contract to choose
an inferior solution instead of a superior one. In sum, the
only action available to the adversary is proposing a superior
feasible solution, which would actually improve energy trading
in the microgrid.

The contract is also reliable and can tolerate temporary
disruptions in the solver or the communication network. Notice

9We use CPLEX [31] as the MILP solver engine in TRANSAX.
10Source code is available upon request.
11If no solution has been submitted to the contract so far, which might be

the case right after the trading system has been launched, p = 0 may be used
as a candidate solution.

that any solution (p,π) that is feasible for sets S and B is
also feasible for supersets S ′ ⊇ S and B′ ⊇ B. As the sets
of offers can only grow over time, the contract can use a
candidate solution submitted during time interval t to finalize
trades in any subsequent time interval τ > t. In fact, without
receiving new solutions, the difference between the amount of
finalized trades and the optimum will increase only gradually:
since the earlier candidate solution can specify trades for any
future time interval, the difference is only due to the offers that
have been posted since the solution was found and submitted.

2) Solver: We complement the smart contract with an
efficient linear programming solver, which can be run off-
blockchain, on any capable computer (or multiple computers
for reliability). The solver is run periodically to find a solution
to the energy trading problem based on the latest set of offers
posted. Once a solution is found by the solver, it is submitted
to the smart contract in a blockchain transaction. Note that if
new offers have been posted since the solver started working
on the solution, the contract will still consider the solution to
be feasible. This is again due to any feasible solution for sets
S and B also being feasible for supersets S ′ ⊇ S and B′ ⊇ B.

From the perspective of the solver, being able to submit
multiple solutions to the contract for the same problem has
many advantages. For example, it allows the linear program-
ming solver to be run as an anytime algorithm. Further, we can
allow multiple—potentially untrusted—entities to try to solve
the problem and submit solutions, since the smart contract
will always choose the best feasible one. This is especially
important in microgrids where a trusted third party is not
guaranteed to always be present. In such settings, prosumers
can be allowed to volunteer and provide solutions to the energy
trading problem.12 Thereby, we enable finding solutions in an
efficient and very flexible manner, while reaping the benefits
of smart contracts, such as auditability and trustworthiness.

3) Solver Lookahead Window: Since the energy trading
problem (i.e., Equation (12)) can be formulated as a linear
program, we can solve it efficiently, that is, in polynomial
time. However, as the number of offers and the time intervals
that they span increases, the number of variables {ps,b,t}
may grow prohibitively high, which makes solving the trading
problem very challenging in practice. A key observation that
helps us tackle this challenge is that even though consumers
and prosumers may post offers whose latest intervals are in
the far future (i.e., for an offer s, the latest interval may be
max Is � t, where t is the current interval), a solver only
needs to consider a few intervals ahead of the finalization
deadline. Indeed, we have observed that considering intervals
in the far future has little effect on the optimal solution for
the interval that is to be finalized next.

12Of course, each prosumer will try to submit a solution that favors the
prosumer. However, the submitted solution still needs to be superior with
respect to the optimization objective, which roughly corresponds to social
utility. Hence, each prosumer is incentivized to improve social utility by
submitting a superior solutions that favors the prosumer. We leave the analysis
of these incentives for future work.
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Consequently, for practical solvers, we introduce a looka-
head window Tlookahead ≥ Tclear that limits the intervals that
need to be considered effectively: for any t̂ > t+ Tlookahead,
we set ps,b,t̂ = 0, where t is the current interval. By “pruning”
the set of fee variables, we can significantly improve the
performance of the solver with negligible effect on solution
quality. Figure 3 shows the memory usage of the solver (in
time interval t = 80) and the energy traded, while varying the
lookahead-window length Tlookahead.

Similar to memory, the lookahead parameter also impacts
the CPU utilization of the solver. Thus, as a practical matter,
we implemented a hierarchical controller to automatically
adjust the lookahead window in TRANSAX solvers using re-
source limit callbacks, which we will describe in Section IV-D.
The top-level controller sets the maximum lookahead value
based on the available memory. The low-level controller sets
the lookahead to a value between Tclear and the upper bound.
The asynchronous architecture of TRANSAX enables multiple
solvers to operate simultaneously and compete in providing a
better matching solution, while obeying the limits imposed
by available resources. This ensures that the solvers can be
run on edge computing nodes in a community where other
applications might also be co-hosted.

4) Other Parameters: In addition to the lookahead window
Tlookahead, our implementation can also be configured with
parameters that control the prosumers and the speed of the
simulation. The solver operates as a periodic process, waiting
on information from the smart contract about all the offers
that have been posted. In our implementation, the prosumers
also operate periodically, submitting their offers and bids to
the smart contract in every interval. In a given interval, our
prosumer implementation provides offers for up to Tpredict
intervals in the future (including the current interval), where
Tpredict is a parameter of the prosumer. We require that
Tpredict > 1 because we need at least one interval prediction
for trading energy futures. Finally, during our experiments, we
may speed up the simulation by letting the real-time length
of the time interval be ∆̂ < ∆, but keeping the theoretical
length of the interval at ∆. Note that ∆̂ is the amount of real
time passed in the simulation before proceeding to the next
interval. This allows us to speed up the experiments without
compromising our results since running the system slower
would be easier.

C. TRANSAX Protocol

As illustrated in Figure 2, when a participant (i.e., pro-
sumer, consumer, or solver) receives the address of the smart
contract, they submit a transaction to register themselves in
the blockchain. After some time, the transaction is mined and
triggers an event (e.g., ProsumerRegistered) notifying
the participant that it can begin posting offers. When the
participants contact the DSO, the response contains time
information allowing the participants to determine the earli-
est interval for which the blockchain is accepting bids and
solutions. Any bid or solutions that contains an end time after
that interval is ignored. The interval returned by the DSO

register

DSODSO ProsumerProsumer
Smart Contract/

Blockchain

Smart Contract/

Blockchain
SolverSolverConsumerConsumer

Contract Address

SellingOfferPosted SellingOfferPosted

TradeAdded TradeAdded

postBuyingOffer

Contract Address

BuyingOfferPosted BuyingOfferPosted

TradeAdded

Solve

submitSolution

postSellingOffer

finalize

SolutionCreated

TradeFinalized

Finalized

TradeFinalized TradeFinalized

loop

[interval]

loop

[interval]

loop

[interval]

loop

[interval]

register

Connect

query_contract_address

Contract Address

loop

[interval]

loop

[interval]

loop

[interval]

loop

[interval]

ConnectConnect

query_contract_addressquery_contract_address

Fig. 2. Interaction diagram of TRANSAX components.

Fig. 3. Memory consumption and Energy traded during a single interval of
the simulation (interval 80) for various values of Tlookahead.

is some number of intervals ahead of the current interval of
the microgrid, since the power schedule must be determined
before the time of actuation. The length of an interval in the
case studies described here is 1 minute. For live deployments,
the value can be configured by the system integrator. At the
start of each interval, prosumers submit relevant bids to the
blockchain. After trades have been added to the blockchain,
the solver receives the OfferPosted event and will attempt
to find a valid matching between bids and requests. The solver
has a solving interval and attempts to find a better solution
during each one. This continues until the DSO submits a
finalize transaction to the blockchain, which triggers a
TradeFinalized event. This event causes the solver to
update its interval and begin working to find a solution for the
next interval. The prosumers also receive this event informing
them of the power they are expected to produce/consume
during that interval when it arrives. Two concepts explained
below are critical to this protocol

1) Offers: The middleware platform on which TRANSAX
is build (described in next section) solves the problem of
time synchronization, enabling all agents to correctly know
the current interval and current time. Thus, the solvers
and prosumers do not need to synchronize independently
and can keep track of offers and intervals. The distributed
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ledger acts as a shared database and provides a notifica-
tion log of events (e.g., submission of a new offer). In
TRANSAX, these offers are sent as a structure of fol-
lowing form {PROSUMER ID, START INTERVAL, END
INTERVAL, ENERGY QUANTITY}. Agents and solvers lis-
ten for these events and perform actions based on them.

2) Trade Finalization: Finalization of an interval means
that the smart contract will not accept any more changes to the
solution for that interval. Prosumers are notified of finalized
trades using TradeFinalized events, which communicate
matches as structures of the following form {BUY OFFER
ID, SELL OFFER ID, INTERVAL, POWER}. This en-
ables prosumers to act according to the solution of the energy
trading problem since they know the identifiers of their offers
and can filter on finalized trades. Note that even though we
do not discuss penalizing prosumers who do not conform to
the solution, it is straightforward to do this since the DSO
can associate prosumers with their anonymous identifiers,
and all offers and trades are permanently recorded on the
ledger. Finally, the DSO can combine the recorded trades with
actual power consumption and production values measured
by electricity meters in order to bill prosumers (e.g., every
month).

D. TRANSAX Implementation and Resilience

TRANSAX is implemented as an application in the Re-
silient Information Architecture Platform for Smart Grid (RI-
APS) [13]. A RIAPS system is a collection of computing
nodes, which are connected to power system sensors and
actuators over a variety of interfaces, e.g. Modbus/UART, etc.
Each RIAPS computing node executes a collection of platform
services which run with the highest privileges on the system.
These services are for discovering the other components in the
distributed system (riaps_disco), for remotely deploying
application (riaps_deplo) and for providing the computing
nodes with a synchronized time [32], which is critical for the
correct operation of TRANSAX. Control nodes are responsible
for installing and removing distributed applications on these
nodes. Each RIAPS application is a collection of actors, which
are assembled from reusable components.

1) Fault Model: We extended RIAPS with additional ca-
pabilities to monitor and mitigate failures across three layers:
physical and device level, platform services level, and appli-
cation level. Typically, physical electrical-system architectures
are designed with N − 1 criterion, i.e., they have redundancy
to tolerate the failure of any single physical device. Fault man-
agement at services level is implemented by the combination
of a distributed hash table, which maintains information about
all actors, and Zero MQ Zyre [33], an open-source frame-
work for proximity-based peer-to-peer applications. Further,
we extended RIAPS to provide resource management. These
features are important to ensure that TRANSAX actors can
work on remote nodes within the limits of available resources.
These limits are enforced via the use of the cgroups interface,
watchdogs, and custom zeroMQ pair connections in RIAPS.
To support application-specific failure mitigation, RIAPS pro-

TABLE II
CALLBACK HANDLERS IMPLEMENTED IN RIAPS FOR PROVIDING
APPLICATION SPECIFIC MITIGATION ACTIONS. THESE HANDLERS

RESPOND TO FAILURES AT THREE LEVELS: APPLICATION CODE, RIAPS
SERVICES AND PHYSICAL DEVICES.

Source Handler Event
App handleCPULimit App CPU usage exceeds threshold
App handleMemLimit App Memory usage exceeds threshold
App handleSpcLimit App Disk usage exceeds threshold
App handleNetLimit App Network usage exceeds threshold
Phy handleNICStateChange RIAPS node network status has changed
App, service, Phy handlePeerStateChange Clean ingress/egress to network of peer
App, service handleDeadline App function duration exceeds threshold

Fig. 4. Total energy production capacity (green), and energy demand (red)
for each interval, as well as the total energy traded in each interval (blue)
while subject to constraints. Cext = 2MW, Cint = 2.5MW.

vides callbacks (see Table II), which can be implemented
by the component developers, in this case the TRANSAX
components. For example, we used the handleCPULimit to
implement the controller for the lookahead window described
in Section IV-B3.

2) Mining Considerations: In the current implementation
of TRANSAX, we use a private Ethereum network as the
distributed ledger. To speed up the consensus protocol, we
reduce the the difficulty of the cryptographic puzzle solved
for proof-of-work consensus. For larger systems, the proof-
of-work consensus may be replaced by, e.g., proof-of-stake,
for scalability.

V. CASE STUDY

We consider a collection of load traces recorded from a
microgrid in Germany, containing 102 homes (5 producers, 97
consumers) across 11 feeders. We show the nominal execution
of the system as well as its resilience capabilities by illustrating
execution under resource constraints and actor failures.

1) Nominal Evaluation: At this scale (102 prosumers), the
current implementation was able to match offers during each
simulation interval with Tlookahead = 5. The system-wide
trading results can be seen in Figure 4. Each bar is a 15 minute
interval. A green bar is the sum of all energy selling offers
during that interval. A red bar is the sum of all energy buying
offers during that interval. The blue bars are overlayed on the
green bars, showing the total energy traded during that interval.

Early in the simulation, the buying offers exceed the selling
offers. Then, as solar generation increases, the selling offers
exceed the buying offers. The excess may be stored in batteries
for use in future intervals, which increases the complexity of
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TABLE III
SOLVING TIMES AS PROBLEM COMPLEXITY INCREASES

Real Time Simulation Time Variables Constraints Solving Time
10:52am 10:00am 2910 750 0.891s
11:00am 12:00am 6984 762 1.612s
11:04am 1:00pm 17751 778 4.35s

Fig. 5. Time taken by the solver to finish each time it runs. The solver runs
every 5 seconds.

the MILP problem since offers can be matched across multiple
intervals. Figure 5 shows evidence of this fact as we see an
increase in solver time when selling offers exceed buying
offers, around 11:00am. The increasing solver time is the result
of increasing problem complexity, which is correlated with
the number of variables and constraints in a problem. Some
intervals and the corresponding numbers of variables and solve
times are shown in Table III. Again, we see that as the selling
offers exceed the buying offers, complexity increases, which
results in increased solve time. These results provide insight
into how the solver scales.

The scalability of TRANSAX is limited by the number of
transactions that the distributed ledger supports, as well as the
complexity of the MILP problem determined by the number
of constraints and variables. Additionally, TRANSAX is able
to scale by reducing the number offers in a particular interval
by suggesting that solvers reduce their lookahead window.

The number of trades that are made in a day depends on
the system parameters. In two experiments, we modulated
the power flow constraints Cext and Cint. The result of this
can be seen in Table IV. In both cases, the total buying and
selling offers remained constant, only the amount of power that
was permitted to flow was changed. Changing the constraints
increased the power traded by 1.4MW, thus reducing unused
energy by 31%. In light of this, the efficiency of the platform
is primarily dependent on the offers that prosumers make and
the system constraints.

2) Resource Limit Evaluation: In this section, we show
resource-limit monitoring and mitigation for disk usage and
CPU usage. In Figure 6, we set the disk storage limit
for the prosumer to 50 MB. When the limit is reached,
handleSpcLimit is triggered (see Table II), which forces the
prosumer to rotate the logs.

To show the effect of the CPU resource constraint, we

TABLE IV
MONETARY IMPACT OF TRADES SUBJECT TO CONSTRAINTS Cext AND
Cint , GIVEN $0.12/KWH, AND TOTAL PRODUCTION AND DEMAND FOR

ENERGY OF ∼4.5MW AND ∼8.3MW, RESPECTIVELY.

Cext, Cint Traded Unused Energy Unmet Demand
20kW, 25kW 2.288MW 50% ($270.73) 73% ($722.90)
2MW, 2.5MW 3.668MW 19% ($105.18) 56% ($557.35)

Fig. 6. The application disk usage grows from 48MB to the disk limit of
50MB, at which point the handler fires and allows the application to take
corrective actions.

refer back to Section IV-B3. The actions of the top-level
controller can be seen in Figure 7 as the yellow dots. When
the solver consumes more than 30% 13 of the CPU, the top-
level controller reduces the maximum value that the low-level
controller may set. We see that over time, the maximum value
decreases and the lookahead value (green dots) stays below
the maximum. The low-level controller sets the value of the
lookahead window, and its influence is shown by the green
dots. The low-level controller is implemented as a proportional
controller which monitors the solve time and has a solve-time
set point of 0.5 seconds. This value was chosen for testing
purposes only. The memory controller (not pictured) uses the
same high-level control (when the threshold is crossed, it
reduces the upper bound) and the same low level control.

Figure 3 demonstrates how TRANSAX can adapt to varia-
tion in the problem complexity. It shows the trade-off between
resource consumption (memory) and trading efficiency during
interval 80 (8:00pm) as the lookahead window varies. Trading
efficiency stops increasing with a lookahead of 30, since
interval 50 (12:30pm) is when selling offers become larger
than buying offers, and thus the interval in which prediction
becomes beneficial.

3) Failure Evaluation: Since TRANSAX is decentralized,
there may be any number of solvers communicating asyn-
chronously with the smart contract, being notified of trades and
posting potential solutions. Thus, if any given solver fails, the
system will continue unimpeded as long as other solvers are
operational. The event handlePeerStateChange has been
implemented in the platform, and it is triggered when a node
in the network fails or if it is disconnected for any reason. All
the peers in the network may receive this message and take
actions as appropriate. For example, in the transactive energy

13These instances can be seen in the % CPU Utilization plot of Figure 7.
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Fig. 7. handleCPULimit reduces the maximum lookahead when the CPU
limit is crossed.

case, if a node goes down, it may be unable to provide the
energy it was supposed to, and so its trades should be removed.
During the testing of the fault-tolerance features, node failure
was detected on average in 0.14 seconds. The peers (other
actors in the TRANSAX application) were notified that the
node has recovered 1.88 seconds after the failure, and the
node was able to fully reactivate in 6.52 seconds on average.

VI. CONCLUSIONS AND DISCUSSIONS

We described a decentralized platform for implementing
energy exchange mechanisms in a microgrid setting. Our
solution enables prosumers to trade energy without threatening
their privacy or the safety of the system. Our hybrid solver
approach, which combines a smart-contract based validator
with an external optimizer, enables the platform to clear offers
securely and efficiently.

In addition to the assurances provided by the distributed
ledger, the resilience features provide necessary robust-
ness for TRANSAX. For example, handleDeadline can
be used to adjust Tlookahead in order to adapt to varying
complexity when there are strict timing requirements, and
handlePeerStateChange can be used to monitor the health
of neighboring prosumers, and if they become disconnected,
their trades can be removed from the smart contract.
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