
A Platform-Independent Component QoS Modeling
Language for Distributed Real-time and Embedded

Systems

Sumant Tambe?1, Akshay Dabholkar1, Amogh Kavimandan1, Aniruddha Gokhale1,
and Sherif Abdelwahed1

Vanderbilt University, Department of EECS, Nashville, TN
{sutambe,aky,amoghk,gokhale,sherif}@dre.vanderbilt.edu

Abstract. Distributed Real-time and embedded (DRE) systems require multiple,
simultaneous quality of service (QoS) properties, such as predictability, reliabil-
ity and security for their correct operation. With increasing focus on composing
DRE systems from components, it becomes necessary for system designers to en-
sure that the system composition and its QoS configurations are functionally and
systemically compatible. Different dimensions of QoS, however, tend to conflict
with each other requiring design-time QoS tradeoff analysis. This paper describes
a model-driven engineering (MDE) approach to model and analyze the validity
of the DRE system QoS properties. First, we describe the Component QoS Mod-
eling Language (CQML), which enables visual separation of concerns in QoS
modeling while internally maintaining a unified view of the system. Second, we
illustrate how well-defined formalisms of system behavior defined in CQML can
be leveraged to conduct QoS tradeoff analysis, such as Real-time schedulability
analysis which is described.
Keywords: MDE, DSMLs, QoS modeling and analysis, Fault-Tolerance, Real-
Time, Security, Schedulability.

1 Introduction

As the software architectures for large scale, distributed Real-time and embedded (DRE)
systems found in domains, such as avionics mission computing, medical systems or
electric power grid, move away from traditional stovepiped, closed architectures to
more composable, open architectures, system developers are often faced with the daunt-
ing challenge of provisioning and validating the different quality of service (QoS) prop-
erties of the system. These challenges arise since multiple QoS properties, such as pre-
dictable latencies, reliability, availability and security, often mutually conflict with each
other in unpredictable ways making it hard to analyze the system for correctness. With-
out a proper formal tool support, however, DRE system developers have to depend on

ad hoc techniques to provision and validate the system’s QoS requirements, which leads
to long iterative development cycles that are both expensive and void of a mathematical
proof of system correctness.

? Contact author

This research was supported in part by a Raytheon IRAD grant

gokhale
Note
Accepted set by gokhale

gokhale
Note
MigrationConfirmed set by gokhale



The traditional stovepiped approaches to system development, although inflexible
and inextensible, have successfully demonstrated the use of formal tools and techniques
to verify and validate different system properties although on a smaller scale and for
well defined, closed architectures. It is desirable therefore for research and develop-
ment in transitioning and scaling these formal tools and techniques to the new style of
developing DRE systems based on composition. Model-driven Engineering (MDE) [?]
provides a promising solution to realize these objectives since it provides scalable and
intuitive abstractions to system development while also decoupling different stages of
system development from each other, such as modeling of the system from the analysis
of the system properties.

This paper describes in detail the Component Quality Modeling Language (CQML)
MDE framework, which comprises the CQML domain-specific modeling language
(DSML) [?,?] and a set of generative programming mechanisms [?] that enables the
seamless integration of system analysis tools. CQML assumes that the DRE systems
of interest use component-based software development processes including the use
of component middleware technologies like CORBA Component Model or Enterprise
Java Beans. In the context of our CQML MDE solution, therefore, we leverage our ear-
lier R&D on the Platform Independent Component Modeling Language (PICML) [?]
to model the DRE system compositions using the component assemblies provided by
the PICML DSML.

CQML superimposes QoS modeling abstractions on DSMLs, such as PICML, by
providing intuitive modeling abstractions to model different DRE system QoS proper-
ties including real-time, fault-tolerance and security requirements of the DRE system
at different levels of granularity including component level, component port level and
component assembly level. The hallmark of CQML is its ability to provide a clean
visual separation for modeling different QoS properties yet maintain an underlying uni-
fied framework. The unified framework is used to check for QoS conflicts and tradeoffs
using built in constraints as well as via rigorous QoS tradeoff analysis using different
back end analysis tools.

The remainder of this paper is organized as follows: Section 2 describes a motivat-
ing DRE system we use to describe CQML features; Section 3 describes the features
of CQML elaborating on the modeling language that provides a visual separation of
concerns in QoS modeling while unifying these internally; Section 4 uses an example
schedulability analysis technique to demonstrate how to perform QoS tradeoff analy-
sis in CQML; Section 5 describes related research; and Section 6 describes concluding
remarks outlining lessons learned and future work.

2 Motivating use of MDE Approach to Specify and Analyze QoS
Requirements

This section uses a DRE system case study to elucidate the need for higher levels of
abstraction than those provided by third generation programming languages or declar-
ative mechanisms like XML for specifying and analyzing the multiple QoS properties
of DRE systems. We focus on a Robot Assembly case study, which we developed in
conjunction with colleagues at Lockheed Martin. Using this DRE system’s QoS prop-



erties we highlight the desired characteristics of a MDE tool like CQML described in
this paper.

2.1 Robot Assembly Case Study

The Robot Assembly consists of a production assembly line that is used in the manu-
facturing of various goods (e.g., wrist watches). A number of hardware and software
modules interact with each other in the production cycle. Humans interact with the
modules of the assembly in order to (1) specify and/or change a particular watch order,
and (2) monitor the production of watches and intervene in case of assembly malfunc-
tioning (e.g., creation of watches that fail product quality tests, owing to mechanical
or software faults in one of the assembly modules) or emergency (e.g., fire, intrusion
alarm).

Figure 1 shows the overall Robot Assembly structure, and interactions between
various (hardware and software) assembly modules. The Robot Assembly software
modules are the ManagementWorkInstruction (MWI), the HumanMachine-
Interface (HMI), the PalletConveyerManager(PCM), the RobotMana-
ger(RM), the WatchSettingManager(WSM), and the ClockHandler(CH).
MWI and HMI components expose interfaces for the hardware units (e.g., radio, order
validation switches) such that human assembly operators and/or maintainers can inter-
act with the Robot Assembly. On the other hand, PCM, RM and WSM components interact
with pallet moving and assembly line tools and robot arm, respectively.

ManagementWork
Instruction

WatchSettingM
anager

PalletConveyer
Manager

HumanMachin
eInterface

RobotManager

Conveyer 
Power 

Switching Unit

Conveyer Drive 
System

Pallet Present

Assembly Area 
Intrusion

Robot Arm

Radio

Alarm

Order Validation
Switch

Robot In Work 
Area

`

Control Station

Pallet Release 
Switch

Legend
Hardware Interfaces
Component Interactions

Clock Handler

Fig. 1: Robot Assembly Model

A human operator uses the radio unit to specify a work order for a new watch, which
is conveyed to the WSM. Based on the watch settings the robot control is loaded with the
right software. WSM then indicates to the PCM to move the pallet to the position, for



which different types of responses can be generated. The WSM then indicates to the RM to
process the pallet. The CH component provides accurate timing control. Communication
between the components uses events.

This system demonstrates both real-time and fault-tolerance requirements. For ex-
ample, both the PCM and RM are required to respond to events from WSM in real-time.
Similarly the RM software must be made fault tolerant to provide high availability.

2.2 QoS Design Challenges in Robot Assembly

A DRE system, such as the Robot Assembly, can be developed using contemporary
component middleware platforms. For example, we have used the Component Inte-
grated ACE ORB (CIAO) [?] QoS-enabled component middleware to compose the sys-
tem from individual components. Although component middleware provides the mech-
anisms to compose and deploy component-based systems, it does not provide the means
to reason about the system correctness nor does it provide intuitive means to specify
multiple QoS properties. We elaborate on the QoS design challenges below.
Challenge 1. Expressing QoS design intent. Contemporary QoS-enabled component
middleware typically adopt XML as the means to declaratively specify QoS properties
for DRE systems. Although such a capability ensures that the DRE system and its QoS
design can evolve and change independently, specifying and modifying the QoS speci-
fication itself is a tedious and error-prone activity. The key problem with the abstraction
level at which the metadata-based QoS specification operates is its lack of expressive
power to convey the intent of the QoS designer.

Ideally, the system designers should be able to describe the system’s intended QoS
characteristics using higher level intuitive, abstractions from which the QoS configura-
tion options pertaining to the underlying component middleware can be automatically
generated. Successive changes to the intended system QoS characteristics are done at
the higher level of abstraction only. This philosophy is not unlike the concept of domain
workbench from intentional programming [?].
Challenge 2. Modeling crosscutting QoS concerns. As mentioned earlier, DRE sys-
tems such as the one shown in the Figure 1 often have simultaneous QoS requirements.
For example, Timeliness, Dependability, Security can be considered to be QoS con-
cerns that determine various QoS configuration options for a DRE system developed
using component-based technologies.

The multiple different QoS aspects often affect each other in complex and unintu-
itive ways leading to the configurations of middleware determined by each property to
crosscut and conflict with each other. Tradeoffs have to be made in the quality levels
of different QoS aspects to satisfy the overall QoS requirements of the system. DRE
developers are domain experts who lack a through understanding of such middleware-
level crosscutting effects due to different QoS aspects. Without a capability to reason
about these crosscutting impacts, the QoS design becomes difficult to develop and and
more importantly evolve, as the system evolves.

For example, in our case study, one of the requirements on RM component is that it
should have fault-tolerance capability to ensure continuous production on the assembly
line. One way to satisfy such a requirement is to replicate the component and synchro-



nize the replicas. However, this extra actions could potentially adversely impact the
real-time schedulability of the system violating the system deadlines.
Challenge 3. Need for design-time tradeoff analysis of QoS. The potential solutions
to the above two challenges would necessarily create a tension between them because
the goals are naturally conflicting. QoS intents are bound to conflict with each other at
certain sufficiently high levels of quality. Therefore, a tradeoff analysis is necessary to
balance the forces between them. Such a tradeoff analysis requires the high level design
intents to be integrated to produce a coherent set of middleware QoS configuration
metadata to deploy the system.

If the dependencies of configuration options of different QoS characteristics are
not resolved at design time, the potential mis-configurations may go undetected till
much later in the system development cycle. Depending upon the DRE system under
consideration, identifying the cause of such failures and correcting the failures may be
prohibitively expensive or infeasible. Design time analysis of QoS aspect dependencies
helps prevent costly and difficult to debug failures at later stages.

3 The CQML MDE Approach for QoS Specification and Analysis

In this section, we describe the design of the Component QoS Modeling Language
(CQML), a domain specific modeling language (DSML) that allows DRE system de-
velopers to express QoS design intent at different levels of granularity using intuitive
visual representations. CQML has been developed using the Generic Modeling Envi-
ronment (GME) [?] toolkit. CQML is platform-independent since its modeling capa-
bilities can be used to specify QoS designs for systems that have been developed using
any component-based technologies, such as CORBA Component Model (CCM) and
Enterprise Java Beans (EJB).

3.1 Underlying Assumptions for CQML

Our focus is on DRE systems composed of components that are interconnected in the
form of workflows. We assume that a component can either be a single indivisible unit
of functionality or a collection of components assembled together as a reusable and
deployable unit. Since it is aimed specifically at modeling non-functional characteristics
(i.e., QoS characteristics) of DRE systems, the design of CQML requires an underlying
modeling language that allows the construction and manipulation of component models
in a graphical environment. We refer to such underlying component modeling languages
as system composition modeling languages, which includes the Platform Independent
Component Modeling Language (PICML) [?] developed by our group in prior research.

An intuitive and natural way of associating QoS characteristics to the components
modeled in a system composition language is to overlay the QoS characteristics on the
system structure. Such an approach improves comprehension of the system as a whole
along with its QoS characteristics. When modeling the QoS characteristics, the structure
of the underlying system should be available only as a reference to the QoS modeler so
as not to allow modifications to the underlying system structure and topology.



To facilitate modeling and comprehension of the impact of multiple QoS charac-
teristics for component-based DRE systems, we have developed the Component QoS
Modeling Language (CQML) that can enhance any component-based system compo-
sition modeling language . CQML leverages the system structure modeling capability
from the underlying system composition modeling language. CQML therefore requires
the underlying language to expose a minimal set of structural capabilities summarized
below.

• Component. The composition language should treat the concept of a component
as a first class entity. A component embodies a reusable unit of functionality (either
as a monolithic entity or a reusable assembly) that can be deployed independent of
other components in the system.

• Connection. The system workflow comprising inter-operating components is cap-
tured by connections in component-based systems. The structuring language should
therefore treat a connection as a first class entity.

• Port. A port is an application-level communication endpoint abstraction exposed
by a component to establish one or more connections with other components.

• Component Assembly. As noted earlier we require a reusable component assem-
bly to be treated as a first class entity. Having such a feature in the language im-
proves scalability of the models constructed using that language. An assembly com-
ponent is an important concept since QoS can be associated with a group of com-
ponents.

3.2 CQML Modeling Capabilities

Based on the above minimal characterization of the underlying component composition
language, CQML builds an extensible QoS modeling layer over it. CQML has an ability
to associate QoS characteristics to one or more of the foundational building blocks of
the underlying system composition language. CQML categorizes them into four basic
abstract types: Component-QoS, Connection-QoS, Port-QoS, and Assembly-QoS. The
above four abstract types constitute the generic QoS modeling framework in CQML.
A broad spectrum of QoS aspects that are relevant to the domain of DRE systems fall
under one or more of the above categories. CQML also allows a particular QoS to par-
ticipate in more than one category. In the following, we describe each type of category
in detail and show how different concrete QoS aspects can simultaneously belong to
more that one of them.

Extensible Design of CQML CQML can be extended with new concrete QoS model-
ing capabilities by inheriting from a basic set of abstract QoS types. To enhance CQML
with a concrete QoS characteristic, a language designer has to enhance the meta-model
of CQML at one or more well-defined points of extension represented by four basic ab-
stract QoS types. The concrete QoS elements simply derive from the abstract QoS ele-
ments defined in CQML depending upon the category to which they belong. A language
designer who wants to add a new type of concrete QoS element to CQML has to decide
the category to which the new QoS model belongs. By doing so the concrete modeling



Fig. 2: Simplified UML class diagram of the meta-model of CQML.

entities inherit the abstract syntax, static semantics, relationships, and integrity con-
straints of the abstract QoS entities defined in the meta-model. These entities constitute
the generic QoS modeling framework of CQML. Although designing a new language
construct–in this case a new QoS characteristic–is an extremely thoughtful process, a
significant portion of design decisions are already taken for the language designer in
the generic QoS modeling framework of CQML. The reuse promoted by CQML design
and its generic QoS entities thus lends itself to easier DRE systems-specific modeling
enhancements. It prevents reinvention of previously designed artifacts for every new
QoS characteristic that is added.

QoS Modeling Extensions in CQML We now describe how CQML enables QoS
modeling for the four foundational building blocks provided by the underlying system
composition modeling language using our extensible design. Figure 3 illustrates how
the structural model of the case study described in a earlier section, the Robot Assem-
bly, can be associated with multiple QoS aspect models. The remainder of this section
describes the details of the CQML concrete QoS Modeling capabilities.

Component-QoS modeling. In component-based systems, service providers often ad-
vertise their functionality with a Service Level Agreement (SLA) that describes addi-
tional guarantees provided by the service in terms of some concrete QoS characteristics.
For example, the Robot Manager (RM) component from our case study shown in
Figure 3 has a dependability aspect. CQML allows a modeler to capture the depend-
ability aspect of the system through its concrete notation called Fail Over Unit (FOU)
described next.

A FailOverUnit (FOU) is used to capture the dependability aspect of one or
more components. A FOU is a concrete component-QoS that enables control over the
granularity of protected system components, such as a monolithic or assembly compo-
nent. A FOU captures different fault-tolerance attributes, such as the degree of replica-
tion of a component and heart beat interval, and allows automatic source code genera-



Fig. 3: Multiple QoS aspect representation in the Robot Assembly

tion for the fault monitoring infrastructure. Such infrastructure typically comprises of
fault monitors that depend upon a periodic heart-beat beacon and is described in [?] in
detail.

Likewise, the components in the Robot Assembly guarantee timeliness properties
and therefore, they have Real-time configurations associated with them. As shown in
Figure 3, CQML allows modeling of Real-time configurations of components as an-
other example of a component related QoS. The RealTimeConfiguration model
in CQML allows modeling of a deadlines for the tasks in a component as well as rela-
tive priorities among them. This information is further used in the QoS analysis, such
as schedulability analysis of the system. FOU and RealTimeConfiguration are concrete
examples of extensions to the generic component QoS modeling capabilities of CQML.
Component-QoS abstract element in the meta-model of CQML provides an extension
point for potentially many component related QoS such as FOU and Real-time Config-
uration.

Connection-QoS Modeling. Components communicate with each other using logical
connections which enable the modeling of system workflows. Quite often, connections
themselves have some QoS aspects beyond simply being logical place-holders for phys-
ical data transportation links. CQML allows connection QoS aspects to be modeled.
NetQoS and SecurityQoS are concrete examples of connection related QoS in CQML.

The NetQoS element captures network level bidirectional bandwidth requirements
of the remote procedure calls. Moveover, it categorizes the network traffic represented



by connections in disparate traffic classes such as Multi-Media (MM), High-Reliability
(HR), High-Priority (HP), and Best-Effort (BE). Such connection level information can
be leveraged in the Robot Assembly to guarantee bounded network latencies between
the WSM and the PCM components to provide network level QoS. Connections might
as well have security related QoS attributes associated with them. For example, the
type of encryption and key length used for the communication between HMI and WSM
components determine quality of protection in our case study. SecurityQoS captures the
security aspect of connections.

NetQoS and SecurityQoS are extensions to the generic connection QoS modeling
capabilities of CQML. Similar to the Component-QoS abstract element, the Connection-
QoS abstract element provides an extension point for potentially many connection-
related QoS.

Port-QoS modeling. A Port allows components to expose their functionality to other
components and provides an end-point for connections between components. There-
fore, CQML allows ports of a component to be annotated with one or more port related
QoS aspects. Several different quality of service aspects can be associated with a port.
For example, a port can be annotated with SecurityQoS attributes.

Ports often are the points of control for implementing the security concerns in terms
of caller credentials. For example, as shown in Figure 3, the Port-SecurityQoS associ-
ated with a port of the WSM component dictates the necessary security credentials of a
human actor, who uses the HMI component to invoke the operations. Moreover, quality
of protection parameters such as key-length and encryption algorithms provide different
strategies of implementing security QoS at port level.

Thus, SecurityQoS is a concrete example of an extension to the generic port QoS
and connection QoS modeling capabilities of CQML simultaneously. The abstract syn-
tax and the relationships of multiple abstract QoS elements can be combined together
in a single concrete QoS element. Similar to the Component-QoS and Connection-QoS,
the Port-QoS abstract element provides an extension point for potentially many port
related QoS.

Component Assembly-QoS Modeling. Component assembly allows aggregation of
one or more components and/or assemblies. Component assemblies enable hierarchical
structuring of the component-based system. Certain types of QoS that we have shown
associated with a monolithic component can also be associated with an assembly. For
example, a FOU can be associated with a component assembly rendering entire assem-
bly as a protected unit of functionality. Thus, a FOU not only inherits relationships
defined for the generic Component-QoS but also that of the Assembly-QoS. In simi-
lar fashion multiple other component assembly QoS characteristics can be defined in
CQML with ease by leveraging the extension points provided for a language designer.

In summary, the modeling front-end provided by CQML captures the QoS design
intent at a higher level of abstraction, which is in many ways similar to the concept of
domain workbench mentioned in the Challenge 1. The design of CQML helps us resolve
the first challenge: expressing QoS design intent. Extensible QoS modeling capabilities
of CQML can be leveraged to develop a suite of generator tools that are helpful in vari-
ous stages of DRE system development for example, configuration options checking [?]



and deployment metadata generation [?]. In this paper we show how design time analy-
sis can be performed to establish system’s properties at design time in the face multiple
simultaneous QoS.

3.3 Reusability of Model Interpretation in CQML

Building a concrete syntax for a domain specific modeling language is only half the
story. A language designer has to develop a language parser/interpreter that visits the
elements in a well-formed model efficiently. Substantial efforts are necessary to build
such a parser manually and more so for every new QoS element added to the QoS
modeling language. For CQML, no reinvention of parsing functionality is necessary
because all the concrete QoS entities are extensions of one of the four basic abstract
QoS elements defined in the language. As the static semantics, relationships and in-
tegrity constraints designed in the generic QoS model remain unchanged, irrespective
of the number of concrete QoS elements in the language, reuse of the model parsing
functionality becomes possible. It should be noted that parsing of individual concrete
QoS elements has to be done by the language designer as it cannot be generalized. This
leads to substantial savings in production time for language processing tools and the
development becomes less error prone.

For the schedulability analysis, we have developed a new model interpreter called
RTAnalysis interpreter that generates metadata for a backend schedulability analysis
tool. We also have a FaultTolerance interpreter [?] that auto-generates component-based
fault-tolerance monitoring infrastructure from a CQML model that has dependability
requirements modeled in it. We have developed a SecurityQoS interpreter that generates
middleware configuration metadata such as security policies, user permissions, secure
protocols/methods to be used between components. We combine the capabilities of
these individual model interpreters using an integration framework called the EventBus
Framework. The details of the framework are described in the next section.

3.4 Unifying QoS Characteristics via CQML’s EventBus Framework

Section 3.2 described the design and implementation of the modeling front end of
CQML, which provides an extensible modeling environment for QoS modeling by
cleanly separating the modeling of different QoS aspects. The QoS unifying feature
in CQML is provided by the EventBus Framework illustrated in Figure 4 that allows
different QoS interpreters to communicate. Although CQML separates the modeling of
different QoS aspects, the EventBus Framework plays a central role in weaving together
the cross-cutting concerns between different QoS aspects.

Our solution approach selects one QoS aspect as a primary dimension, for e.g. real-
time QoS, and interweaves it with other secondary dimensions such as fault-tolerance
and security which in turn may imply ramifications on effectiveness of the primary one.
Thus, the framework will enable the RTAnalysis interpreter to respond to the additions
injected into the system QoS model by the FaultTolerance interpreter and SecurityQoS
interpreter. We now describe how CQML unifies the QoS characteristics and enables
QoS tradeoff analysis to deal with their conflicting nature.



Fig. 4: The architecture of the EventBus
framework

Communication between QoS Inter-
preters. The EventBus framework is
an instance of the anonymous publish-
subscribe architecture that allows the
members of the EventBus, which are
the model interpreters, to receive and re-
spond to the events generated by other
interpreters. Interpreters that generate
events must express their intent to do
so to the framework. Similarly, the in-
terpreters interested in receiving events
generated by other interpreters also have
to register their interest to receive the
events.

Several different categories of events
are supported by the EventBus. For example, when the FaultTolerance interpreter and
the RTAnalysis interpreter are plugged-in to the EventBus, the FaultTolerance inter-
preter generates a periodic computation event corresponds to the insertion of the collo-
cated HeartBeat (HB) components that generate a periodic heart-beat beacon to enable
timely fault detection. This periodic heart-beat beacon is a topic of interest to the RT-
Analysis interpreter since this becomes as additional computation and communication
task that must be accounted for in system schedulability.

The RTAnalysis interpreter is notified by the EventBus about the additions that other
interpreters–in this case the FaultTolerance interpreter–are making. The RTAnalysis in-
terpreter in turn responds to the events by querying the FaultTolerance interpreter for
the nature of computational behavior that is being added in one or more components.
For example, the RTAnalysis interpreter requires the behavior information of the newly
inserted functionality to generate schedulability related metadata for a specific back-end
analysis tool.

Generality of the EventBus Architecture. The architecture of the EventBus is gen-
eral enough to support event-based communication between multiple QoS interpreters.
For example, one of the side effects of dependability provisioning is the overhead of
periodic state synchronization in certain classes of dependable systems. Specifically,
our cases study uses semi-active replication for the RM component and the replicas are
updated with the latest state information from the primary periodically. This state infor-
mation is critical and may also need to be encrypted by the security policy adopted by
the security QoS modeler. Therefore, the FaultTolerance interpreter generates an event
representing an periodic communication owing to the requirement that periodic state
synchronization will happen at runtime between the primary and the replicas.

The SecurityQoS interpreter responds to the periodic communication event and in-
corporates the increase in time required due to the overhead of encryption/decryption of
the marshalled state. Finally, it generates periodic computation event that corresponds to
the periodic, secure state synchronization activity. The RTAnalysis interpreter responds
to the periodic computation event as it did in the fault-tolerance case and generates nec-



essary information for an analysis tool. Thus the plug-in architecture of the EventBus
allows multiple QoS interpreters to participate in QoS trade-off analysis and thus helps
resolve the second and the third challenge mentioned earlier in the paper.

4 Analysis Capabilities using CQML

In this section we describe how CQML can be used to analyze the QoS characteris-
tics models and how trade-offs can be made. We use the Robot Assembly case study
described in Section 2 to illustrate how CQML weaves in multiple QoS aspects and
generates metadata that are used by a back-end real-time schedulability analysis tool.
As explained in Section 3.4, we chose the real-time QoS aspect as the primary aspect
and weave the effects of other QoS aspects on it for analysis.

We have currently integrated with the Times [?] schedulability and model check-
ing functionality through the RTAnalysis interpreter. In order to correctly determine
the schedulability of the system it is important to convey the behavioral semantics of
the system components. We leverage the behavior modeling capability provided by an
input/output automata-based language called Component Behavioral Modeling Lan-
guage [?]. We use it to produce high-fidelity mapping of component behavior into timed
automata–the underlying formalism used by the Times tool. Alternatively, the behavior
could be fed into the interpreter through other formalisms, such as UML state charts
and/or activity diagrams.

The RTAnalysis interpreter obtains the data necessary for schedulability analysis
from both: CQML’s RealTimeConfiguration model and the behavior model of com-
ponents. It requires the task priorities, execution times, task behavior types (periodic,
sporadic or controlled), and deadline to generate input for the Times tool, from which
the latter derives worst-case response times (WCRTs). We depend on the modeler to
provide the above mentioned information.

Schedulability of Robot Assembly under Multiple QoS Requirements. In order
to improve the fault detection rate, an increase in the heart-beat frequency, might have
an adverse effect on the schedulability of the critical path. The reason being, with the
increase in the fault-monitoring frequency, there is a corresponding increase in the num-
ber of instances of the corresponding periodic tasks to be scheduled within the deadline.

The RTAnalysis responds to the periodic computation events and produces an up-
dated timed automata of the system behavior as shown in Figure 5. The behavioral
semantics map to new process automata containing new tasks and states for the RM
component. Likewise, while weaving the security QoS aspect in HMI and WSM com-
ponents, the additional CPU overhead of encryption/decryption must be incorporated
at the port level boundaries of above components. The RTAnalysis interpreter adds an
encryption task right before leaving the HMI automaton and a decryption task right after
entering the WSM automaton.

Figure 5 shows a simplified schematic of the timed automata generated by the RT-
Analysis interpreter for the Robot Assembly case study that weaves in fault monitoring
overhead, state synchronization overhead, and encryption/decryption overhead while
performing the schedulability analysis.



Fig. 5: Effects of multi-QoS interweaving in Robot Assembly

This new model can be analyzed by the Times tool to determine whether the system
is still schedulable i.e., meets its real-time deadlines. Thus the interpreter automates
the process of determining the effect on system schedulability due to interweaving of
other QoS aspects such as fault-tolerance and security. The results from the analysis can
be used to fine tune the system’s QoS aspect configuration, for example, the heart-beat
beacon frequency and/or key length and impart some predictability to the schedulability
of the system.

5 Related Work

In this section we discuss the existing work on QoS modeling of component based
middleware systems and compare it with CQML and its design-time QoS trade-off
analysis capabilities.

The idea of capturing various QoS properties as part of design process of a system
is promoted in QML [?]. Using QML, developers can define contracts on components
at design time. Various QoS options can be clearly separated using QoS categories,
which themselves are user defined. QML is used to capture user requirements that are
translated into corresponding network and system parameters. A QoS metamodel is
described in [?] that builds on QML. The authors also discuss in detail the extensions
to CCM needed to support the QoS models developed.

AgFlow [?] and AMPol-Q [?] discuss composition-based QoS specification and
middleware adaptation. A quality model is defined in AgFlow middleware platform. It



describes service selection algorithms based on local optimization and global planning,
to be used by a composite service application. Being platform-independent, CQML
modeling abstractions can be used in conjunction with AgFlow and AMPol-Q. The
QoS tradeoff analysis capabilities of CQML can then be directly used by these tools for
calculation of exact criteria values during the service selection process.

Q-RAM [?] is a QoS-based resource allocation model and a QoS management
framework that tries to optimize the resource allocation to satisfy various QoS di-
mensions such as timeliness, reliability, cryptographic security and other application-
specific quality requirements. It is a OS kernel level approach but CQML takes a more
higher-level design time approach to unified QoS interweaving and analysis.

CQML differs from the above specification tools in the following ways: (1) These
tools are platform-specific, whereas CQML focuses on capturing platform-independent
QoS configurations, (2) These tools require modifications to the underlying middleware
stack like extending the Interface Definition Language (IDL). In contrast, CQML does
not necessitate changes to the underlying middleware itself, but configures the under-
lying middleware by generating correct platform-specific configurations through model
checking, trade-off analysis and interpretation, (3) Though some of the above men-
tioned techniques define generic quality criteria, they don’t allow pluggability of dif-
ferent underlying system structuring languages like CQML does. (4) Moreover, these
DSMLs do not provide extensible QoS unification and trade-off analysis capabilities
like CQML’s EventBus framework and the RTAnalysis interpreter.

6 Concluding Remarks

Distributed Real-time and embedded systems require multiple and simultaneous qual-
ity of service (QoS) requirements. Specifying and analyzing the combined effects of
these QoS dimensions is a hard problem. This paper described a model-driven engi-
neering (MDE) approach to addressing these challenges. We described the Component
QoS Modeling Language (CQML), which is a domain-specific modeling language that
provides a visual separation of concerns for QoS modeling, but uses an underlying
publish-subscribe mechanism to integrate the different dimensions of QoS. We evalu-
ated the capabilities of CQML using a RobotAssembly case study and showcased the
impact of multiple QoS aspects on the schedulability of the overall system.

There are several lessons to be learnt from this work. Separating system’s QoS
design aspects using higher level abstractions contradicts with the fact that multiple QoS
concerns often affect each other in complex ways and therefore, complete isolation from
each other is extremely difficult to achieve, if not impossible. Sophisticated tool support
and integration capabilities can help raise the bar for modeling languages that capture
the QoS design intent. Although model scalability is a selling point of the MDE-based
approach like ours, analysis of large, generated formal models is often computationally
impractical. Formal model generation technique adopted by our solution should be used
judiciously and optimizations should be performed where applicable.


	A Platform-Independent Component QoS Modeling Language for Distributed Real-time and Embedded Systems
	Sumant Tambe (Department of EECS, Vanderbilt University)



