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Abstract

Online fault diagnosis is critical for detect-
ing and mitigating adverse events that arise
in complex systems such as aircraft, auto-
mobiles, and industrial processes. A typi-
cal fault diagnosis system consists of a ref-
erence model that mathematically links di-
agnostic monitors providing partial evidence
to potential fault hypotheses. A reasoning
algorithm operated on this model uses a set-
covering scheme to establish likely fault can-
didates and their rankings. However, incom-
pleteness in the reference model and simpli-
fying assumptions affect the accuracy of the
reasoning algorithms. In this paper, we de-
scribe a Tree Augmented Näıve Bayes Classi-
fier (TAN) approach to systematically extend
a reference model structure using data from
system operations. We compare the perfor-
mance of the TAN models against a typi-
cal reference model, and demonstrate that
the TAN improves classification accuracy by
finding new causal links among the system
monitors.

1 Introduction

Aircraft are complex systems containing several inter-
acting components and subsystems such as propulsion,
electrical, flight management, avionics, and bleed sub-
systems. Smooth and integrated operation of these
subsystems is essential to keep the aircraft operating
safely. However, any operating system degrades over
time and monitoring the system online for detecting
the onset of unfavorable conditions and intrinsic faults
is essential for increasing aviation safety.

The current state of online fault diagnosis is focused on
installing a variety of sensors onboard an aircraft along
with reasoning software to automatically interpret the

evidence generated to explore the presence of faults.
One such state-of-the-art system is the Aircraft Di-
agnostic and Maintenance System (ADMS) (Spitzer,
2007) that is used on the Boeing B777. The ADMS
uses an expert-derived fault propagation model, called
the system reference model that captures the interac-
tions between aircraft components under various op-
erating modes. Generation of this reference model is
a manual process and often the step results in incom-
pleteness and inaccuracies in the development and de-
ployment of an ADMS.

Some of the incompleteness and inaccuracies can
be overcome as the engineering teams acquire addi-
tional knowledge from an operating fleet, and generate
heuristics rather than a systematic upgrade to the orig-
inal reference model. In other words, a gap exists for
systematic upgrades and increments to the reference
model even though vast amount of operational data is
collected by operating airlines. Closing this gap using
advances in data mining methods is the focus of this
paper. We describe a specific data mining approach for
augmenting an existing aircraft engine reference model
as an alternative to ad hoc approaches. We demon-
strate the effectiveness of our work on data generated
from a realistic aircraft engine simulator.

Statistical analysis and designing classifiers for discov-
ering knowledge from real-world data has been stud-
ied extensively. For example, Witten (Witten &
Frank, 1999) describes several data mining approaches
for producing black box models. Unfortunately, such
models are very difficult to verify, making them al-
most impossible to certify for airworthiness. Further,
the lack of transparency in these models makes it dif-
ficult to append this new knowledge to existing ADMS
reference models. For practical purposes, data min-
ing approaches for aircraft reference models have to
“build upon” existing model structures rather than
create something new, which will incur considerable
engineering overhead cost.

The proposed approach to combing data mining with



fault models is somewhat unique. The data mining
does not start from a clean slate, but builds up from
an existing ADMS reference model structure. In sec-
tion 2, we describe a typical reference model struc-
ture along with the reasoning algorithm (called the
W-algorithm). Next, we systematically enumerate the
missing or partially correct information in this state-
of-the-art reference model. These gaps formalize the
data mining problem described in Section 3. We dis-
cuss the use of Tree-Augmented Näıve Bayes Networks
(TANs) as a data driven modeling structure for di-
agnosis with causal probabilistic models in section 4.
The data mining approach is illustrated using data
from a high fidelity simulator. Section 5 discusses the
CMAPS-S simulator and the data selection task for
our experiments. Section 6 describes the experimental
results using the CMAPS-S data set, with a compar-
ison of a Näıve Bayes classifier that replicates a sys-
tem reference model against a TAN classifier model
derived from a learning algorithm. Metrics are defined
for evaluating classifier performance, and a number of
different experiments are run to examine the addition
of evidence to these models. Section 7 presents a sum-
mary of our approach, and outlines our directions for
future work for diagnostic and prognostic reasoning
using the data mining algorithms.

2 Reference Models and Reasoning

Model-based strategies for diagnosing large, complex,
real-world systems rely on domain experts to craft
the reference models used for monitoring and isolating
faults. The complexity of the system makes it almost
impossible to create complete physics-based models
with reasonable resources. A more pragmatic solution
is to rely on expert-generated cause-effect models. In
simple terms, the reference model of the system be-
ing monitored can be represented as a bipartite graph
consisting of two types of nodes: failure modes and
evidence. The set F defines all distinct failure modes
defined for the system under consideration. A failure
mode fmi ∈ F may be present or absent in the sys-
tem. This is defined as the state of the failure mode.
In the primary model, we allow only binary (occur-
ring or not-occurring) states for the failure mode. We
use the following shorthand notations regarding these
assertions.

fmi = 0 ⇔The failure mode is not present
fmi = 1 ⇔The failure mode is present

(1)

Every failure mode has an a priori probability of oc-
curring in the system. This probability is denoted by
P (fmi = 1). A failure mode fmk can occur (or not

occur) independently of another failure mode fmj oc-
curring, that is, P (fmk = 1|fmj = 1) = P (fmk = 1).

To isolate and disambiguate failure modes, the model
also defines an entity called “evidence”. The jth evi-
dence is denoted by ej and the set E denotes all dis-
tinct monitors defined for the system under consid-
eration. The diagnostic monitor associated with the
ith evidence can either indict or exonerate a subset of
failure modes called its ambiguity group. The monitor
mi can take three mutually exclusive values allowing
a monitor to express indicting or exonerating or un-
known support for the failure modes in its ambiguity
group. The notations are described in equation (2).

mi = 0 ⇔ Exonerating evidence
mi = 1 ⇔ Indicting evidence

mi = −1 ⇔ Unknown evidence
(2)

Ideally, we want a monitor associated with evidence
ei to fire only when the failure modes in its ambiguity
group are occurring. Given the fact that the ith fail-
ure mode is occurring in the system, dji denotes the
probability that there will be a monitor providing an
indicting evidence under this condition.

dji = P (mj = 1|fmi = 1), (3)

dji is called the detection probability of failure mode
monitor fmj with respect to the ith evidence. A mon-
itor may fire when there is no failure mode present in
the system. False alarm probability is the probability
that an indicting monitor is present when there are no
failure modes occurring in the system. That is,

εi = P (mi = 1|fmj = 0,∀fmj ∈ F ) (4)

A reference model describes the relation between fail-
ure modes and monitors. The reference model is a 6-
tuple defined as: [E,F, D, Pr, ε ] ,where: E is evidence
set, F is failure mode set, D is detection probabilities,
Pr is a priori probability of failure modes, ε is false
alarm rate for monitors.

Figure 1 illustrates an example reference model graph-
ically, with fault modes (hypotheses) as nodes on the
left, and diagnostic monitors (DM) on the right. Each
link has an associated detection probability, i.e., con-
ditional probability P (mj = 1|fmi = 1). In addition,
fault nodes on the right contain the a priori probabil-
ity of fault occurrence, i.e., P (fmi). Probabilities on
the DM nodes indicate the likelihood that a particu-
lar monitor would indicate a fault in a nominal system,
which as defined above is εi. Bayesian methods are em-
ployed to combine the evidence provided by multiple
monitors to estimate the most likely fault candidates.



Figure 1: Example Reference Model

The reasoner algorithm (called the W-algorithm) com-
bines an abductive reasoning algorithm with a forward
propagation algorithm to generate and rank possible
failure modes. This algorithm operates in two steps:
(1) Abductive reasoning step: Associated with each
DM is an ambiguity set, AG = {fm1, fm2, · · · fmk}.
This step assumes that the firing of the DM implies
at least one of the faults in the ambiguity set has oc-
curred; and (2) Forward reasoning step: For each fmi

belonging to the AG, we extract other DMs that sup-
port fmi. We call this set the supporting DMs, or
the monitors of interest, i.e., S − DMi for fmi. As
these additional monitors fire, fmi without that mon-
itor in S −DMi are removed from the AG. Over time
as the monitors fire, AG reduces in size, and ideally, to
a single fmi. Additional details about the reasoning
algorithm is described in (Honeywell, 2010).

The reasoning algorithm generates multiple single
fault hypotheses, each hypothesis asserting the oc-
currence of exactly one failure mode in the system.
The basic probability update rules assume indepen-
dence of monitor firing events. In other words,
P (mj ,mk|fmi) = P (mj |fmi) P (mk|fmi) for all mon-
itors mj and mk. The two independence assumptions
on: (1) Fault modes, and (2) monitors implies that
the reasoning algorithm treats the reference model as
a set of Näıve Bayes classifiers. The direct correspon-
dence between the reference model for diagnosis and
the simple Bayesian structure provides opportunities
to use a class of generative Bayesian model algorithms
to build these model structures from data and enhance
the existing structures produced by a domain expert.

This reasoning algorithm assumes the DMs used in the

reference model are strictly binary. The DMs are often
derived by applying a threshold to other real valued
features known as condition indicators(CIs). These
CIs are built as functions of sensors to provide more in-
formation about the health of the system. The thresh-
olds applied to create DMs are selected by a domain
expert. Data collected from these systems more of-
ten contain raw sensors and the CIs rather than the
DMs. This creates an issue when trying to examine
structures built with data and comparing them to the
expert crafted models. Our approach utilizes the idea
of the abstracted CIs when constructing models from
data. Models built with data and containing CIs or
other select sensors are only missing the thresholding,
and as such, when the the probabilities are calculated,
a Näıve Bayesian model is in essence approximating
the reasoning algorithm above. No fault modes are re-
moved from consideration, but the probabilistic rank-
ing of all failure modes will render many with a prob-
ability at or near 0. The inference used in Bayesian
networks is calculated in the context of discretized val-
ues (Conditional Probability Tables). Any necessary
discretization of these values is providing a threshold-
ing that acts similar to the reasoning algorithm on an
expert model. We believe these similarities are enough
to warrant comparisons in the analysis of our results.
We utilize this similarity in computation of learned
models and their metrics for evaluation.

3 The Data Mining Problem

The reasoning algorithm may not reduce the ambiguity
group to a single fault element. For example, all of
the evidence (i.e., DMs) required to isolate the single



fault may not fire, leaving the size of the ambiguity
set to be greater than 1. In this case, the reference
model is incomplete. This gap can be addressed by
employing heuristic rules or systematically discovering
new diagnostic monitors from vast amount of historical
data.

A second source of error arises from the “independence
assumptions”. The assumption of independence be-
tween (1) different pieces of evidence and (2) differ-
ent fault modes may lead to certain hypotheses be-
ing assigned higher likelihood than the evidence truly
implies. This assumption is made primarily because,
causality (or correlation) between evidence in the sys-
tem is not easily discernible while the system is be-
ing designed and assembled. Furthermore, deriving
conditional probability tables with joint probabilities
such as when nodes have multiple parents is a diffi-
cult task for human experts, and can be derived from
data. Therefore, the knowledge required to overcome
the simplifying (but erroneous) assumptions of inde-
pendence are best derived by analyzing data from an
operating fleet.

As implied above, the reference model that does not
make the simplifying independence assumptions can
be interpreted as a Noisy-OR classifier, which is a
simplified form of a standard Bayes Network. A num-
ber of Machine Learning techniques for building Bayes
networks from data have been reported in the litera-
ture (Friedman, Geiger, & Goldszmidt, 1997) We have
studied a number of these approaches in the frame-
work of diagnostic and prognostic reasoning. Among
the important considerations have been the notion of
independence among the monitors that support the di-
agnostic reasoning. Our choice for a Bayesian model
and for the data mining algorithms that build these
models has been guided by:

1. The data mining algorithms should be designed
to provide information that supplements existing
expert-generated reference models. It is very im-
portant that the experts be able to interpret the
results of the data mining algorithms, and char-
acterize them as:

(a) new relations between monitors and fault
hypotheses that will improve the reference
model;

(b) additional monitors (both simple and ad-
vanced) that help differentiate and provide
support for specific diagnostic hypotheses;

(c) refinements to the conditional probability
values between hypotheses and monitors.

2. The computational complexity of the data min-
ing algorithms should be manageable, so that

they can be used as exploratory analysis tools
by the domain experts. We envision a successive
refinement process, where the expert requests a
sequence of experimental runs, each built from
their observations and interpretations from pre-
vious results generated by the algorithms. They
can interpret the causal relations between faults
and monitors, and discover the dependence among
the monitors for different fault situations. The ex-
pert may also consider different analysis scenarios
to estimate methods for increasing the accuracy
(while reducing false positives) in the diagnostic
reasoner.

After considering these factors and staying within
the Bayes net paradigm, we selected Tree Augmented
Näıve Bayes(TAN), a model that could address the
factors in a reasonable fashion, as well as challenge
the independence assumption in limited ways.

4 Data Mining with Tree Augmented
Näıve Bayes Networks

The choice of the data driven techniques to apply to a
particular class of problems is very much a function of
the nature of the data and the problem(s) to be solved
using the data. For example, using data we can sys-
tematically test and relax the independence assump-
tions employed in the reference model, especially if it
is useful for diagnosis. There are several interesting
alternatives, but one that fits well with our reference
model structure is the Tree Augmented Näıve Bayes
(TAN) Method (Friedman et al., 1997). The TAN
structure is a simple extension of the Näıve Bayes net-
work. Like Näıve Bayes, the root node is the class
node, corresponding to one or more fault modes, is
causally connected to every evidence (monitor) node.
In addition, the TAN structure relaxes the assump-
tion of independence between the evidence nodes, and
allows most evidence nodes to have a second parent,
which can be a related evidence node. This maintains
the directed acyclic graph requirements and produces
a tree that captures relationships among the monitors.
Generation of this structure is not as computationally
expensive as a general Bayesian network.

An example TAN structure is illustrated in Figure 2.
The class node is the fault hypothesis under consider-
ation. The other nodes represent supporting evidence
for the particular fault hypotheses. In this structure,
the only node connected to the class node, is the root
observational node. Dependencies among the moni-
tors are captured as additional causal links in the TAN
structure.

The TAN Structure can be generated in several dif-



Figure 2: Example TAN Structure

ferent ways that includes (1) a greedy search with the
constraint that illegal edges (i.e., a node having more
than one parent from the evidence nodes) are disal-
lowed (Cohen, Goldszmidt, Kelly, Symons, & Chase,
2004); and (2) a Minimum Weighted Spanning Tree
(MWST) approach that builds a minimum spanning
tree to capture the dependencies among monitors, and
then connects the class (fault mode) to all of the mon-
itor nodes (Friedman et al., 1997). In either case, a
decision has to be made about the monitor node to
use as the observational root node in the derived tree
structure. The derived TAN structure is static, i.e., it
does not include explicit temporal information through
causality.

A standard algorithm (e.g., Kruskal’s algo-
rithm (Kruskal, 1956)) is applied to generate
the MWST. The edge weights of the MWST struc-
ture are a log likelihood function, e.g., Bayesian
value (Chickering, Heckerman, & Meek, 1997) or
the Bayesian Information Criterion (BIC) (Schwarz,
1978). The Bayesian likelihood metric is preferred for
discrete data, wheras the BIC measure works better
for continuous distributions. The algorithm we use
calculates the BIC value for every pair of evidence
nodes (note that directionality matters, therefore,
for nodes A and B, two BIC values are computed
from A to B and B to A). The values are stored in a
matrix, which facilitates the application of Kruskal’s
algorithm to generate the MWST.

The MWST version of this algorithm is implemented
in the data mining toolkit called Weka (Hall, Eibe,
Holmes, Reutemann, & Witten, 2009) It does not han-
dle continuous features, and instead uses a discretiza-
tion algorithm to bin each of the features into sets
that best discriminate among classes. This produces
better classifiers, but it may create very fine splits for

features that result in excessive binning(thus building
very large conditional probability tables).

5 The CMPAS-S Data

The CMAPS-S data set is generated from a simulator
developed at NASA’s Glenn Space Center (Frederick,
DeCastro, & Litt, 2007). The engine simulator takes
into account the wear and tear on a turbine engine
over multiple flights, and it can produce data for a
number of sensors for climb, cruise, and descent modes
of operation. The simulator parameters can be set to
run in nominal and faulty modes of operation.

As a first step, we select appropriate sensor measure-
ments as features and transform them into a sequence
of values for the data mining task. Since the reference
model structure and the reasoner do not directly in-
clude temporal information, the data is separated into
the different modes of operation. For this study, all
of the data for fault analysis was extracted from the
cruise mode of operation. In this mode, most sensor
values remain steady, except for measurement noise.
Therefore, for this study each flight was represented
as a datapoint consisting of a vector of sensor values,
and the entire dataset was made up of n data points
corresponding to n flights.

Table 1 shows the different features in the CMAPS-S
data set. Some features are marked as a “condition in-
dicator”(CI), which is a term for complex features that
can be used to indicate when an engine is experiencing
abnormal behavior. A threshold on these values would
produce the health indicator (also called a diagnostic
monitor, DM) that a reference model would relate to
a fault mode.

The reference model as defined above is in terms of
DMs which in this data would be HIs. Since the data
contains only the CIs for the engine and an expert
crafted reference model was unavailable, we used a
Näıve Bayes structure based on CIs as the ”base” refer-
ence model. This represents an approximation, but the
approximation is a good one. As mentioned, experts
avoid complex relationships in these models (such as
between monitors and faults) they often implicitly as-
sume independence. We find a close approximation of
this as a Naive Bayes classifier.

The rest of the features extracted from the data rep-
resent the sensors, and thus, features that would most
likely be available in data from other complex systems
of this nature. These features are selectively added
to determine if the reasoner can generate more accu-
rate results with the added information and the refined
structures that the learning algorithm generates.

The CMAPS-S data was generated in a way that the



Sensor Notes
Altitude R, unit is feet
Mach Number R, the unit is Mach
Throttle Angle R, measured in degrees
Fuel Flow R, measure in percent
Stall Margin of
HPC

CI

Stall Margin of
LPC

CI

Stall Margin of Fan CI
Temp. of High
Pressure Turbine

R, measured in Centi-
grade

Temp. of the Fan
Inlet

R, measured in centigrade

Temp. of the Low
Pressure Turbine

R, measured in centigrade

Pressure of Fan In-
let

R, measured in PSI

Phys. Fan Speed R, measured in RPM
Phys. Core Speed R, measured in RPM

Table 1: Sensor values and Monitors (Conditional In-
dicators) for the CMAPS-S Engine Data

fault(s) and their time of introduction was known, so
it was easy to assign nominal and faulty labels for each
data stream. The CMAP-S data models three faults:
(1) a fan fault (Fan), (2) a High Pressure Compressor
fault (HPC), and (3) a High Pressure Turbine fault
(HPT). The reference model for the three faults could
be constructed in different ways. For example, one
could construct three different models – each model
defining a classifier that differentiated a fault condi-
tion from nominal behavior. Another possibility was
to treat the model building as a multi class learning
problem. The result would be a single classifier struc-
ture that distinguished between four hypotheses that
included the three faults and nominal operations. This
structure as the model would likely produce insights on
how to differentiate between several faults hypothesis.
Given that we were adopting an exploratory frame-
work to study the effectiveness of different classifier
models, it made sense to compare between different
classifier structures and analyze the discriminating evi-
dence provided by each model. Furthermore, the avail-
ability of the CMAPS-S simulator facilitated this ap-
proach, since in real situations it may be hard to col-
lect sufficient amounts of fault data to build robust
classifiers that include multiple fault hypotheses.

6 Experiments

To initially evaluate the ability of the data mining
techniques to improve over the Näıve Bayes based ref-

erence models, we have conducted and evaluated a set
of experiments using the data from the CMAPS-S en-
gine system to establish whether the TAN-based model
produces a better diagnostic classifier than a reference
model that is implemented as a Näıve Bayes Classifier.
Our experiments compare the performance results of
the Näıve Bayes versus the TAN models.

In the CMAPS-S data, we utilize two feature sets.
The first experiment uses the feature set defined as
the baseline reference model(only CIs), and extracts
a classifier structure by running our machine learning
algorithms. The next experiment adds additional sen-
sors to the baseline that are not conditional indicators,
to see if using these sensors can improve diagnostic ac-
curacy while reducing false alarms.

A systematic study of the performance of the algo-
rithms requires running of n-Fold Cross Validation
experiments. Dividing the data into n equally sized
and distinct sets of samples, each with the balance of
classes maintained as in the original set allows for the
creation of n − 1 training sets with the last set be-
ing held out as the test set. This is done n times,
and the metrics generated are then averaged over each
of the n runs. This experimental style helps test the
robustness of the classifier and keeps the metrics from
being overly optimistic or pessimistic depending on the
random construction of one hold out set. The exper-
iments include: (1) derivation of models for the in-
dividual faults, and (2) derivation of a model for the
multi-fault case. The metrics reported in Tables 2 and
3 are the average of 10-Fold Cross Validation runs.

6.1 Experimental Results

The data generated for the experimental study in-
cluded the three faults discussed previously, and the
analysis was conducted in the cruise mode with the air-
craft flying at an altitude of 35,000 feet. The data min-
ing algorithms were run to derive individual models
for the three single fault modes, as well as a combined
model with all three faults. Tables 2 and 3, summarize
our experimental results in terms of the accuracy met-
rics, i.e., overall accuracy (Acc), false positives (FP),
and false negatives (FN).

6.1.1 Experiment 1

The Näıve Bayes model with only the CIs represents
the reference model for analysis of core engine anoma-
lies. The TAN structure with additional causal rela-
tions results in a model with better accuracy. The
results in Tables 2 and 3 demonstrate that the TAN
Structure for the FAN Fault and the multi-fault clas-
sifier have higher accuracy. Their superior perfor-
mance shows that even with a small number of fea-



Fan HPC HPT All Three
Acc FP FN Acc FP FN Acc FP FN Acc FP FN

Näıve Bayes Network 67.9 15.4 36.7 71.4 0 35.3 94.2 0 9.3 82.1 15.5 19.6
TAN 99.4 0.4 0.7 80.8 36.7 0 94.7 8.9 2.9 97.4 1.1 3.8

Table 2: Cruise Mode: Model with Only Conditional Indicators

Fan HPC HPT All Three
Acc FP FN Acc FP FN Acc FP FN Acc FP FN

Näıve Bayes Network 68.8 12.5 49.5 72.9 0 56.7 93.8 3.6 9.9 84.9 1.1 23.2
TAN 99.8 0 0.4 87.96 23.0 0 96.6 5.4 0.5 98.0 0.8 0.7

Table 3: Cruise Model: Model with Conditional Indicators + Sensor Measurements

tures(3), introduction of two new causal links, the re-
sults improved considerably(67.9% to 99.4% for the
Fan and 82.1% to 97.4% for multi-fault). Figure 3
shows the representative TAN used in the multi-fault
scenario(the NB Model on the right is for compari-
son). The CI corresponding to stall margin for the
Low Pressure Compressor provided the best discrim-
inating evidence between different faults when only
conditioned by the class variable. For the single fault
classifiers, the Fan and HPC TANs outperformed the
Näıve Bayes, but the HPT classifier provided minimal
improvement. The HPT Classifier seems to require a
simple classifier and both models achieved over 90%
accuracy. The classifiers for the HPC fault were the
lowest performing set. Although the TAN did better
than the NB classifier by over 8%, this would indicate
that the reference model for the engine may not be
able to detect and isolate this fault, particularly from
cruise data.

Figure 3: NB Model on the left and the TAN Model
on the right for the Multi-Fault Scenario with Only CI

6.1.2 Experiment 2

For the second set of experiments, we consider the ad-
ditional sensors. From Table 3, there is an improve-
ment in the accuracy numbers for all of the TAN mod-
els. This is highlighted by the HPC fault scenario,

which was problematic in first experiment, but the ac-
curacy increased significantly. This improved the False
Positive rate, while not increasing the corresponding
false negative metric. This additional information im-
proved it significantly over its Näıve Bayes counterpart
as well as the models in the first experiment. This im-
provement without a negative cost to the error rates
is true for the TAN models across all scenarios. As
interesting observation is that the additional informa-
tion seems to have had a small negative impact in a
few cases of the Näıve Bayes models. In summary, the
additional information provided an advantage to the
TANs , which were able to generate additional causal
relations and information to improve diagnostic accu-
racy.

Figure 4 displays the TAN model structure generated
for the HPC scenario. This TAN model with addi-
tional features has an accuracy metric of 88% as com-
pared to the original TAN model that produced an
accuracy of 80.8%. The Näıve Bayes Model using the
additional sensors improved to 72.9%, from the origi-
nal Näıve Bayes model at 71.4%. The accuracy results
clearly indicate: (1) additional sensor information in-
creases diagnostic accuracy and (2) Switching from a
Näıve Bayes to a TAN model improves diagnostic ac-
curacy.

This improvement can be examined visually in Figure
4, where in place of the three CIs, the Mach Number
sensor becomes the observational root node. The new
causal structure, captured in Figure 4 shows the Fuel
Flow sensor as a parent to two of the CIs. Network
structures such as the one for the HPC fault explic-
itly illustrate how additional sensor information can
be included to enhance the accuracy of the reference
model. In general, the new causal relations suggested
can be examined by a domain expert who in turn can
construct new and improved indicators to use in a ref-
erence model. The results generated by these data
driven models can provide numbers on how the new in-



Figure 4: TAN Model for HPC Scenario with Conditional Indicators and Extra Sensors

formation can improve the accuracy of the diagnoser,
and how it may impact the error rates.

7 Conclusions and Future Work

The results on experiments conducted with the
CMAPS-S data illustrate the promise of the method-
ology and process we have been developing. To fur-
ther validate our work, we have identified a number
of directions and tasks we need to pursue as we move
forward in this project.

• The Näıve Bayes Classifier is an approximation to
the expert built reference models. We would like
to perform a more thorough experiment and use
actual models constructed by domain experts.

• Simulation systems, such as CMAPS-S study par-
ticular systems, like the core engine functions
in greater detail than any information that can
be derived from sensors and monitors in current
aircraft configurations. We are looking to de-
velop methods by which detailed simulation data
may be combined with actual aircraft flight data
to carry on extensive analyses of diagnostic and
prognostic events and their propagation through
the aircraft system.
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