
VISUAL SPECIFICATION OF MODEL INTERPRETERS

By

Jianfeng Wang

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May 2000

Nashville, Tennessee

Approved: Date:

_________________________________________________ __________________

_________________________________________________ __________________



ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Gabor Karsai for his support and guidance

in this research over the past years. I would also like to thank Dr. Michael Moore for all

of his helps and supports. Other members of the Institute for Software Integrated System

have also been supportive: Dr. Janos Sztipanovits, Dr. Greg Nordstrom, and Dr. Akos

Ledeczi.

Thanks to my family (my Mom, Dad, Jianqing and Honghong), they has given me

a great deal of support throughout all the last years. Without their support this would not

have been possible. Thanks most of all to my wife, Xiaoting. She has always provided

much encouragement and supports to help me go through these years.



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Model Integrated Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Modeling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
MetaModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

MultiGraph Architecture (MGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Modeling Concepts in MGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Graphical Modeling Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Model Interpreters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Compiler Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Compiler Background  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Attribute Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Specifying Model Interpreters with AGs . . . . . . . . . . . . . . . . . . . . . . . . . 21

Adaptive Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Introduction to Adaptive Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Demeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Propagation Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

III. APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Model Structure Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Behavior Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Interpreter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Traversal specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Transportation Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Action Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Code Generation: Implementation of the Behavior Specification . . . . . . . . . . .49
Class Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Strategy (Traversal/Visitor Classes) Definition . . . . . . . . . . . . . . . . . . . . 55
CInterpreter Class Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Visual C++ Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



IV. EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

V. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71



LIST OF FIGURES

Figure     Page

1. The Multigraph Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Phases of a Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. A Syntax Tree Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4. Conceptual View of Attribute Grammar . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . 19

5. UML Model of the ACME Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6. UML Diagram of the ACME with Only Inheritance and Aggregation . . . . . . . . . . . . 34

7. ACME MetaInterpreter Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

8. The Attributes of the AcmeMetaInterpreter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9. The Attribute of the WriteAcme Operation Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10. “from” System “to” PropertyAtom “through” Component. . . . . . . . . . . . . . . . . . . . 44

11. “from” System “to” PropertyAtom “byPass” Component. . . . . . . . . . . . . . . . . . . . .44

12. The Attributes of the “space” Transportation Atom . . . . . . . . . . . . . . . . . . . . . . . . . .46

13. Attributes of the “Component” Reference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

14. The Class Definition of the “System” Class Atom in ACME Metamodel . . . . . . . . .51

15. The Class Definition of the “PortsAndRolesConns” Class Atom . . . . . . . . . . . . . . . 52

16. The Inheritance Relationship in the ACME UML Metamodel. . . . . . . . . . . . . . . . . .52

17. The Class Definitions of the “Role” and “SrcRole” and “DstRole” Classes . . . . . . . 53

18. The Implementation of the “WriteAcme” Member Function of the “CSystemBuilder”

Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



19. The Traversal and Visitor Class Definition for the “WriteAcme” Operation of the

“ACMEMetaInterpreter” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

20. A Typical Implementation of a Traverse and Visit Function . . . . . . . . . . . . . . . . . . .58

21. UML Model of the ORMS Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

22. An Example Model of the ORMS Electrical Utility Network . . . . . . . . . . . . . . . . . . 63

23.The ORMSBuilder Interpreter Model of ORMS Metamodeling Environment . . . . . .64

24. Attributes of “Terminal” Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

25. Action Specification of the Component Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

26. Action Specification for Load Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68



CHAPTER I

INTRODUCTION

Complex computer-based systems (CBSs) are characterized by their tight

integration of information processing and the physical environment of the systems. It is

the correct and efficient representation and interaction of the software portion with its

physical context that guarantee the correct functionality and efficient performance of the

CBSs. Most software and hardware systems, or CBSs, are experiencing rapid and

continuous evolution in their full lifecycle. Thus, it is extremely important and necessary

for us to have a way to construct software and manage its associations with its physical

context so software systems can be evolved and maintained easily when their physical

context changes.

An emerging technology that accomplishes this and has been accepted and proven

to be an efficient and effective method is Model Integrated Computing (MIC) [15]. MIC

has introduced model-based computing techniques into software engineering. Model-

based computing can facilitate management of complex software systems and enable

easy system modification and generation. Graphical models are used to specify the

system. Model-based analysis can be performed while the system is still in the design

stages. By using model-based computing techniques, designers can create domain-

specific models to present the software, its physical context, and their relationships. Then

specific tools are used to analyze the models and to generate the application program

based on the models. Once the environment or physical context of the software changes,

the models can be recreated or modified in the DSME, and application programs can be



regenerated. This facilitates the evolution of the application, supports system

maintenance, and therefore reduces the costs during the entire lifecycle of the system.

One approach to MIC is model-integrated program synthesis (MIPS). In MIPS,

models are created that capture various aspects of a domain-specific system. Model

interpreters are used to translate these models for use in the system’s execution

environment. When changes in the overall system require new application programs, the

models are updated to reflect these changes, and the applications are regenerated

automatically from the models [1].

In MIC, it is the model interpreter that translates the domain-specific models into

application program. Currently model interpreters are written for every domain-specific

modeling environment. The interpreter encapsulates the information available in the

domain-specific modeling environment, and understands the models and their

relationships. Then particular translations are made to transfer the information in the

domain-specific modeling environment into outputs (the application program,

configurations for the system or anything desired). Writing an interpreter is not a trivial

task. The programmer needs to understand the models in the domain-specific modeling

environment, every detail of the output, and the relationships between the domain-

specific modeling environment and the output. Most of the time, the models in a domain-

specific modeling environment are very complex and hard to understand for people who

have little or no experience on writing model interpreters. While the inputs of the

interpreters are known (models in the domain-specific modeling environment), the output

of the interpreters may vary depending on the different systems and requirements. The

model interpretation process is similar to the back-end of compilers in some sense. They



always need to traverse the model structure, capture the relationships between the models

and the attributes of the models, and transform this information into the desired outputs

(machine code, in the case of compilers). Although, it is not easy and obvious to know

how this process can be implemented, it is possible and desired to have a way to specify

the similar behaviors of the model interpreters and automate the repetitive programming

tasks in writing large, uninteresting portions of the model interpreter.

The Multi-Graph Architecture (MGA), being developed at the Institute for

Software Integrated Systems at Vanderbilt University, is a toolkit for creating domain-

specific MIPS environments (DSME). MGA provides a means to quickly and accurately

evolve domain-specific applications. It has been successfully used in several application

areas.

The MGA includes a metamodeling environment, which allows modeling of the

domain-specific modeling environment by creating a model that describes a particular

domain-specific MIPS environment (DSME) [1]. This is referred to as a metamodel. A

metamodel specifies both the syntactic and semantic behavior of a DSME, then is used to

synthesize the DSME itself. This allows the entire design environment to be evolved

when the system requirements change. Both the domain-specific application and the

DSME can evolve easily and efficiently over the full lifecycle of the system. However,

the metamodeling environment of the MGA does not provide a way to model domain-

specific model interpreters. When the system requirements change, the DSME will be

updated to reflect the changes of the requirements. The domain-specific model

interpreters must be recreated or modified by hand. Updating the existing interpreters is

expensive and difficult work. A way to provide the ability for MGA to create a set of



model interpretation specifications in the metamodeling environment, and automatically

generate the model interpreters is important and necessary.

My thesis is to develop and create a visual specification method and environment

for modeling MGA interpreters, and integrate it into the MGA metamodeling

environment, then to synthesize the domain-specific model interpreters automatically.

This will allow complete domain-specific modeling environments to evolve during the

system full lifecycle, and therefore will reduce the cost and risk of large-scale computer

based system development.

This thesis begins by briefly discussing model integrated computing, model

integrated program synthesis, and the MultiGraph Archticture developed by ISIS at

Vanderbilt University. Then, two possible approaches specifying the model interpreter in

MGA are discussed. Finally, an approach specifying the domain-specific model

interpreters is presented and integrated into the existing metamodeling environment of

the MGA.



CHAPTER II

BACKGROUND

Model Integrated Computing

The basic ideas and concepts of Model Integrated Computing are introduced in

this section.

Modeling Techniques

Historically, various methods and technologies have been attempted to minimize

the impacts of increasing complexity of software systems and computer technology used

in industry. Engineers must manage the complexity that results from evolving system

requirements, system content, or system context. The potential cost of system

modifications to evolve and maintain software systems can be extremely large, according

to the scale of the system. Even a small change or modification in one area may cause

unexpected impact on others. Also modifying existing system may involve unforeseen

risks due to unrealized mistakes of the designer. To avoid this, systems must be designed

to evolve, and to manage changes and complexity of the system in a way to minimize the

risks and cost involved during the evolution of the system [1].

Domain specific modeling concepts have been introduced into software

engineering to manage the complexity of evolving software systems. System

requirements exist in a context (domain). In order to support the requirements, the

requirements must be analyzed and understood, and appropriate knowledge about the

requirements and the domain must be captured. Models are the complete abstractions of

systems or contexts (domains) [2]. They capture the structural and behavioral features of



the system and their related context. The most important feature of a model is its ability

to reduce the complexity of a design [1]. Modeling is the process of creating models. The

modeling focuses on those things that are relevant (essential) while avoiding those things

that are irrelevant (incidental) to understand the system. It captures the most important

and essential information of the system.

Model Integrated Computing (MIC) is a methodology to allow systems to be

designed to evolve. MIC uses domain-specific modeling concept to capture the essential

information about the system and its context as models. These domain-specific models

can then be analyzed and validated from different levels or views (structural or

behavioral). Also various computational transformations of the models can be performed.

Modeling Integrated Program Synthesis (MIPS) is a specific approach to MIC. In

MIPS, models are created for a particular domain. Then models are analyzed, validated

and translated into either the application program, or the configuration for the run-time

application environment. Once the system requirements or context change, the models

can be updated and analyzed. The application program can be regenerated from the

updated models. MIPS facilitates the management of complex software systems and

enables easy system modification and generation, reduces the cost and risk of system

modifications, and therefore allows safe and efficient application evolution.

In a MIPS environment, a paradigm is used to describe the structural and

behavioral organization of the systems in an abstract form. Paradigms define the models

available in a domain, the relationships between the models, and the attributes of the

models. Once a paradigm is created for a domain, a model builder tool allows designers

form a model diagram by creating models, which are usually specified graphically. Then



specific model interpreters need to be created for the paradigm to transform the diagrams

into desired outputs.

MetaModeling

A model is an abstraction of a system. Models describe the elements, their

attributes and relationships between the elements in a system. The metamodel is a model

that defines a modeling language. It captures information used to describe or define

domain-specific models. In order to define models, a modeling language or environment

must be employed, which consists of a collection of concepts (semantics) with a notation

(syntax) and rules governing the concepts and notation [2]. A metamodel formally

defines the syntax and semantics of a particular domain-specific modeling language or

environment.

Why do we need to study or use the metamodeling concept here? In MIPS, the

paradigm is created and used to describe the elements and their relationships in a system.

Models are created according to the paradigm. Then interpreters are developed to

translate the models into executable systems. The paradigm, models, model builder, and

model interpreter form a domain-specific modeling environment (DSME), which

describes a particular solution to the requirement of a system. Once the system content or

context changes, models in the DSME can be updated to reflect the changes and

application program can be regenerated. However, during the lifecycle of the large-scale

computer based system, requirement of the system may also need to be modified to meet

some particular purposes. In this case, the changes of the system requirements will lead to

the changes of the solution to the requirement, which mean changes in the DSME. The



paradigm must be modified to reflect the changes of the requirements, the models must

be modified or recreated to describe the solution to the new requirement, and interpreters

must be modified or recreated to incorporate the changes in the requirements and

solutions. Here lies the DSME evolution problem. Building a DSME is not a trivial task.

Modifying an existing DSME to meet the new requirement is even worse than creating a

new one. It is obvious that if we could use MIPS to model and manage the design and

evolution of application systems, why could not we use the MIPS to model and manage

the design and evolution of the DSME. This is the purpose of the metamodeling

environment. The metamodeling environment provides a paradigm that captures and

describes the generic syntax and semantics used to create DSME. Metamodels are created

to describe a particular domain-specific modeling environment, and metamodel

interpreters are used to translate the metamodels into the paradigm of the particular

DSME. Refer to [1] for more detail about the metamodeling concept.

MultiGraph Architecture (MGA)

MultiGraph Architecture (MGA), being developed at the Institute for Software

Integrated System at Vanderbilt University, is a toolkit for creating domain-specific

MIPS environments. The structure of MGA is illustrated in Figure 1.

In the MGA, the Metaprogramming Interface provides a way for designers to

specify and model the model paradigm of an application domain. The modeling paradigm

is the modeling language of the domain specifying the modeling objects and their

relationships [3]. The syntax, semantics and graphical representation of the modeling

paradigm are specified in the metamodeling environment. In the metamodeling



environment, Unified Modeling Language (UML) class diagrams are used to specify the

syntax of the model paradigm. The Object Constraint Language (OCL) is used to specify

the semantics of the paradigm. The syntax, semantics and graphical representation

specification of the paradigm form the metamodels in a metamodeling environment.

These specifications are automatically translated into the paradigm of the MIPS

environment.

Figure 1: The Multigraph Architecture

A MIPS environment consists of a model builder, models, and model interpreters.

The model builder is used to build models according to the model paradigm. The model

interpreter translates the models built in the model builder into the applications,

configurations of the analysis tools, or any desired outputs.

Modeling Concepts in the MGA



The following modeling concepts are used in the MGA to represent a generic

and domain-independent approach to describe various modeling environments.

• Modeling paradigm

• Categories

• Atoms

• Models

• Attributes

• Connections

• Ports

• References

• Hierarchical containment

• Conditionals

• Aspects

The modeling paradigm describes the syntax and semantics of a particular

domain. It defines what models or objects are presented in the domain, what are the

attributes of these objects and how are they related. The category groups a set of related

models which together perform a particular function of a system or construct a subset of a

system.

The atoms and models are the objects available in a domain. An atom is the

smallest elements in a domain, which can not contain other objects. A model is a

compound object that can contain other models or atoms. For each kind of atom and

model, a set of attributes can be defined and associated with them. An attribute is a



property of an object. The attribute values are user changeable. Connections present the

simplest and most obvious relationships between objects. Connections can be created

between atoms, atom references and ports. Connections cannot connect two models

directly. They can only be connected through ports. Connections can be directed or

undirected and can only connect two objects that are in the same parent model. Ports are

parts of a model, through which the model can connect to other models or atoms in the

same containment relationship (in the same parent model).

The connection concept can only express the relationship between two objects in

the same hierarchy (connections can only be made between two objects that have the

same parent model). In order to represent the relationships between objects in different

hierarchies, or even in different model hierarchies (Categories), references are used in

MGA. A reference works like a pointer in object-oriented programming languages. It

provides a way to reach other objects out of the model scope. Like connections,

references must be contained or defined in a model.

Connections and references can only represent the relationships between two

objects. The conditional concept provides a way to express the relationships between

two sets of objects. The first set of objects is called the conditional controllers, which

consist of the same kind of domain objects (models, atoms or references). Usually the

controller set has a single element. The second set is called the parts of the conditional.

These can be of several different kinds of objects or connections [3].

As mentioned above, models can contain other models or atoms as parts. This

containment relationship creates the hierarchical decomposition of the models. Any

objects (models or atoms) can have at most one parent model.



Aspects provide a way to view the models from different points of view. Every

model has a set of predefined aspects. Every part (other model, atom, connection or

reference) of the model belongs to at least one aspect, and is visible or hidden in each

aspect. The aspect concept provides primarily visibility control for the model. For a more

detailed description of the MGA modeling concepts please refer to [6].

Graphical Modeling Editor

MGA provides a set of tools to perform and automate (1) building, checking,

storing and generating model paradigms, (2) building, checking, storing models, (3)

transforming the models into applications and/or inputs or configurations for system

engineering analysis tools, and (4) integrating applications on heterogeneous

parallel/distributed computing platforms [4,5].

At the core of the MGA MIPS environment is the Graphical Model Editor (GME)

[6]. It provides a generic open structure to integrate all the MGA concepts and tools

together. It provides interfaces to human modelers using a well-defined syntax (graphical,

tabular, and textual). It can load and understand the model paradigms and provides an

easy to use graphical interface to allow designer to manipulate the models. It is also

integrated with the metamodeling layer and constraint manager to facilitate creating and

maintaining the models. Models can be stored in or loaded from either the MS Repository

or Object Oriented databases. GME uses the Component Object Model (COM)

technology to achieve the component integration. It provides a COM interpreter interface

that supports the accessing and modification of the models in the GME. The interpreters

can be written in any language that supports COM. The GME COM interface allows the



interpreters to access all the details and concepts of the models in the GME, perform

necessary syntax or semantics checking, and to modify the models. Upon the GME COM

interpreter interface, a high-level C++ interpreter interface is implemented and provided

in the GME. This high-level C++ interpreter interface wraps the COM interface and

provides easier using functions to ease the programming task of the designer.

Model Interpreters

The main goal of this thesis is to study and create a generic approach specifying

the behavior and structure of MGA model interpreters. This approach should allow

designers to specify and model domain specific model interpreters in the metamodeling

environment. The model interpreter specification together with the modeling paradigm

specification constitutes the complete metamodeling specification for a DSME. In this

way, the entire DSME can be specified, modeled, and automatically synthesized from the

metamodeling environment, therefore allowing the evolution of the entire DSME.

A model interpreter acts like the back-end of a compiler in sense. It traverses the

model structure (which can be viewed as a tree or graph) in specific order, retrieves

information of the objects, performs actions during the traversing and visiting of the

objects, and generates various desired outputs.

It is sometimes easy to describe the behaviors of a model interpreter, however it

is highly non-obvious how to generically specify and implement them. There is no

available method to specify the model interpreter in a high-level programming layer.



It is natural to think the behavior of a model interpreter as a series of actions taken

during the traversing and visiting objects in a structure form, which is summarized as the

following steps:

1) Traversing and visiting the objects in the model structure in a specific sequence.

2) Inspecting and capturing the relationships between the objects and attributes of

the objects.

3) Performing relevant actions during visiting and traversing the object and

translating the captured information into desired outputs.

In order to specify and implement these steps in a generic way, first we need to

have a static and well-defined structure of the objects in the source domain so that the

traversing and visiting procedure can be defined and associated to the structured form.

Second, a concise and sophisticated way to specify all the possible and complex traversal

sequences must be developed. Finally a way to merge or associate the actions with the

traversing procedures to specify the order and duration of the actions must be developed.

All these techniques must be simple enough to use, but sophisticated enough to specify

all the possible situations that may happen during the interpretation procedure.

In the following sections, relevant techniques that may be useful in the high-

level model interpreter specification and transformation are studied.

Compiler Techniques

The first and foremost application of graph traversal and actions is the

intermediate code generator part of a compiler [7].



Compiler Background

A compiler is a program that reads a program written in one language – the source

language – and translates it into an equivalent program in another language – the target

language [15].

There are two stages to compilation: analysis and synthesis. The analysis part

breaks up the source program into constituent parts and creates an intermediate

representation of the source program. The synthesis part constructs the desired target

program from the intermediate representation. During analysis, the operations implied by

the source program are determined and recorded in a hierarchical structure called a tree.

Often, a special kind of tree called syntax tree is used, in which each node represents an

operation, and the children of a node represent the arguments of the operation. Figure 2

shows the general phases in which a compiler operates. Each of these phases transforms

the source program from one representation to another.

As translation progresses, the compiler’s internal representation of the source

program changes. A lexical analysis phase reads the characters in the source program and

groups them into a stream of tokens in which each token represents a logically cohesive

sequence of characters, such as an identifier, a keyword, or a punctuation characters.



Figure 2: Phases of a Compiler

Syntax analysis (parsing) is kind of hierarchical analysis. It imposes a hierarchical

structure (syntax tree) on the token stream. It involves grouping the tokens of the source

program into grammatical phrases that are used by the compiler to synthesize outputs.

Usually, the grammatical phrases of the source program are represented by a syntax tree

[7]. The syntax tree is a compressed representation of the parse tree in which the

operators appear as the interior nodes, and the operands of an operator are the children of
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the node for that operator. Figure 3 shows a syntax tree for the expression “ position :=

initial + rate * 60”.

Figure 3: A Syntax Tree Example.

The semantic analysis phase checks the source program for semantic errors and

gathers type information for the subsequent code-generation phase. It uses the

hierarchical structure determined by the syntax-analysis phase to identify the operators

and operands of expressions and statements.

After syntax and semantic analysis, some computers generate an explicit

intermediate representation of the source program. We can think of this intermediate as a

program for an abstract machine. The code optimization phase attempts to improve the

intermediate code, so that faster-running machine code will result. The final phase of the

compiler is the generation of target code. The intermediate instructions are each

translated into a sequence of machine instructions that perform the same task.

After building the syntax tree from the input text, and performing semantic

analysis, compilers traverse the syntax tree and output the generated code. Compiler

research literature provides a great source for efficient traversal and transformation

algorithms. Also, the area of automatically generated compilers provides some interesting

:=

position

initial

rate 60

*

+



technologies for the structured specification of graph traversals. Attribute grammar is the

widely used one. In the following section I will give a brief overview of Attribute

Grammars, and their possible application to model interpreter specification.

Attribute Grammars

Attribute Grammars were introduced by Knuth [8] more than thirty years ago, and

since then they have been widely studied and have been proved to be a useful formalism

for specifying the context-sensitive syntax and the semantics of programming languages,

as well as for implementing editors, compilers and compiler-writing systems. An attribute

grammar is a declarative specification that ties semantic specification to the syntactical

rules of a programming language, and describes how attributes (variables) are computed

for rules in a particular syntax [9].

An AG uses a context-free grammar (a notation for specifying the syntax of a

language) to specify the syntactic structure of the input. It associates a set of attributes

with each grammar symbol, and associates a set of semantic rules for computing values

of the attributes associated with the symbols with each production. The grammar and the

set of semantic rules constitute the AG.

An AG forms an extension of a context-free grammar framework in the sense that

information is associated with programming language constructs by attaching attributes

to the grammar symbols representing these constructs [9]. Each attribute has a (possibly

infinite) set of possible values. Attribute values are defined by attribute evaluation rules

(semantic rules) associated with the productions of the context-free grammar. These

semantic rules specify how to compute the values of certain attribute occurrences as a



function of other attribute occurrences. There are two notations for associating semantic

rules with productions, syntax-directed definitions, and translation schemes. Syntax-

directed definitions are high-level specifications for translations. They hide many

implementation details, and free the user from having to specify explicitly the order in

which translation takes place. Translation schemes indicate the order in which semantic

rules are to be evaluated, so they allow some implementation details to be shown.

Conceptually, with both syntax-directed definitions and translation schemes, we

parse the input token stream, build the parse tree, and then traverse the tree as needed to

evaluate the semantic rules at the parse–tree nodes (see Figure 3). Evaluation of the

semantic rules may generate code, save information in a symbol table, issue error

messages, or perform other activities. The translation of the token stream is the result of

evaluating the semantic rules.

Figure 4: Conceptual View of Attribute Grammar

The attributes associated with a grammar symbol can represent anything we

choose: a string, a number, a type, a memory location, or whatever. They are divided into

two disjoint classes, the synthesized attributes and the inherited attributes. The attribute

evaluation rules associated with a grammar production define the synthesized attributes

attached to the grammar symbol on the left side and the inherited attributes attached to

the grammar symbols on the right side of the production [9].

A context-free grammar assigns a tree structure to each sentence. One could think

of the nodes for the grammar symbols in a parse tree as records with fields for holding
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information, where the field names correspond to attributes. The values of the

synthesized attributes at a parse tree node and the inherited attributes at its immediate

descendants are defined by the attribute evaluation rules associated with the production

applied at that node. The value of a synthesized attribute of the parent is computed from

the values of attributes at its children and (possibly) other attributes of the parent itself.

The values of an inherited attribute of a child are computed from the values of attributes

at its parent and its siblings and (possibly) other attributes of the child itself.

Generally speaking, a synthesized attribute attached to a tree node contains

information concerning the subtree at that node. Inherited attributes are convenient for

expressing the dependence of a programming language construct on the context in which

it appears [9].

Semantic rules set up dependencies between attributes, which are represented by a

graph. If an attribute b at a node in a parse tree depends on an attribute c, then the

semantic rule for b at that node must be evaluated after the semantic rule that defines c.

The interdependencies among the inherited and synthesized attributes at the nodes in a

parse tree can be depicted by a directed graph called a dependency graph. From the

dependency graph, we can derive an evaluation order for the semantic rules. Evaluation

of the semantic rules defines the values of the attributes at the nodes in the parse tree for

the input string. A semantic rule may also have side effects, e.g. printing a value or

updating a global variable. The evaluation order derived from the dependency graph is a

topological sort of a directed acyclic graph. Any topological sort of a dependency graph

gives a valid order in which the semantic rules associated with the nodes in a parse tree

can be evaluated.



The translation specified by an attribute grammar can be summarized as follows:

The underlying grammar is used to construct a parse tree for the input. The dependency

graph is constructed by the interdependency of the attributes defined by semantic rules.

From a topological sort of the dependency graph, we obtain an evaluation order for the

semantic rules. Evaluation of the semantic rules in this order yields the translation of the

input.

There are many well-studied algorithms and implementations to construct the

translators, including constructing dependency graphs, finding topological sort of the

graphs, and evaluating the semantic rules in order and generating the outputs. Here, I

only focus on the specification approaches toward evaluation, and how they are related to

the model interpreter specification.

Specifying Model Interpreters with AGs

Attribute Grammars specify a way to walk the tree and calculate the values of the

attributes attached to the nodes of the tree [10]. In the MGA, a paradigm is used to define

the structure of the modeled system. In general, a software structure can be viewed as a

graph. The objects are the nodes in the graph. The edges between the nodes represent the

relationships between the objects. The graph can be reduced to a tree, if we only view or

study some specific relationships (containment, aggregation and inheritance) between the

objects. In this way, the model interpreter can be viewed as a translator that traverses the

tree in specific order, performs actions associated to the nodes in the tree, and generates

the outputs. This is very similar to the way an Attribute Grammar works, so it is possible



for us to construct an Attribute Grammar that specifies the translation of a paradigm in

the MGA.

Although the Attribute Grammar provides a very high-level specification

formalism for the traversal of a tree through the use of dependency among attributes [10],

unfortunately, Attribute Grammars have very serious practical limitations. First the

construction of an Attribute Grammar is a non-trivial task. The attributes must be set up

over the whole tree for a specific traversal order. Sometimes one has to introduce extra

attributes just for forcing a particular kind of traversal [10]. If the software system is

complex enough, assigning attributes to the tree to specify a behavior of the interpreter

will be extremely painful. Some AG specifications may be as large as or even larger than

a manually developed implementation for the same task. Second, in order to apply

attribute grammars, the software system must be viewed as a tree. In this way, some

relationships specified by the MGA may or will not be accessed easily. Also large AGs

lack a structure to improve comprehensibility and maintainability. Thus, while Attributed

Grammars offer a very high-level formalism for the structured specification of traversals

of graphs, their usability is limited.

Adaptive Programming

Introduction to Adaptive Programming

The adaptive programming concept was developed by Lieberherr [11] and

others to support evolutionary development of object-oriented software. Object-oriented

(OO) programming has been a great success since its appearance. Part of its success is

because of the flexibility that object encapsulation provides. OO allows both the data and



behavior to be encapsulated in the class. This provides a more natural description of the

real world and reduces the semantic gap between a program and the world it models.

However OO doesn’t provide comparable support for flexibility in object

interrelationships. It has been noted that OO programs follow a pattern of collaborations

where multiple objects of different classes cooperate to achieve a certain goal [10]. A

complex behavior in OO program is implemented by a set of simpler behaviors

distributed over a set of objects. In this case, the tight binding of data and function in OO

becomes one of its disadvantages. This leads to programs that are hard to evolve and to

maintain. It requires coding in the smallest details of the relationships among objects.

Often, a great deal of code needs to be edited in the face of even a small change to the

conceptual interdependence class structure [11].

Adaptive Programming is designed to allow the flexibility of the relationships

between functions and data. That is, functions and data are loosely coupled through

navigation specification. Adaptive means that the software heuristically changes itself to

handle an interesting class of requirements changes related to changing the object

structure [11]. It works by having the programmer program at a higher schematic level

that abstracts away details such as navigation paths. These schematic patterns can be

instantiated to a particular class graph to arrive at an executable program. It allows us to

express the “intention” of a program without being sidetracked by the details of the

objects structure [11]. Adaptive programming techniques provide a novel solution to the

maintenance and evolution of OO software. It also provides valuable information and

techniques for the model interpreter specification.



The main goal of the Adaptive Programming is to make the programs structure-

shy by using only minimal information about the implementation-specific class structure

when writing the behavior. Adaptive programs are written using two loosely coupled

fragments: behavior and implementation class structures. It provides a high level

description of class structures (Class Dictionary Graph) and a high level language for

describing object behavior (propagation pattern, traversal strategies with visitor classes).

An adaptive object-oriented software development tool called Demeter has been

developed in Northwest University, which provides more valuable practical experiences.

Demeter

Demeter [11] is an object­oriented software development environment. It

provides tools to help you design the two key components in any object­oriented system:

object structure and object behavior. In Demeter, these two components are represented

by the concepts of class dictionary and propagation pattern, respectively.

The class dictionary in Demeter defines the class structure of an application. It

defines the classes of the application and the relationships between the classes. In

particular, it describes inheritance (is-a) relationships and aggregation (part-of)

relationships. Informally, class dictionary graphs express object-oriented class hierarchies

as mathematical graph structures. In a class dictionary graph, concrete and abstract

classes are represented as vertices, and part-of and inheritance relationships are expressed

as edges. Demeter will automatically generate the C++, or Java classes definitions from

the class dictionary. In Demeter, a class dictionary is defined by a high-level specification

language. It also allows limited UML usage in the specification of the class dictionary.



A propagation pattern defines a specific behavior for a collection of classes. The

behaviors of the application as a whole are described by a set of propagation patterns.

The advantage of using propagation patterns as opposed to regular C++ code is their

adaptiveness. Propagation patterns avoid hard coding the details of the class structure into

the program, and therefore de-couple the class structure as much as possible from the

program. Consequently, the program is less prone to change when the class structure is

modified. In addition, programs written with propagation patterns are more concise since

trivial structure traversal code does not need to be specified, and is again left to the code

generator (savings are typically 50% or more) [12]. Demeter provides a high level

language to specify the behavior of the application separately from the structure

(propagation pattern), which is also very valuable to the study of model interpreter

specification. In the following section, I will give a detail description of Demeter

propagation pattern with the traversal strategies.

Propagation Pattern

Propagation patterns define the behaviors of the objects in terms of collaborating

groups of classes. Every propagation pattern generally defines a function or method

(called an operation in Demeter) of the application. So, for an application there may be

numbers of propagation patterns defined. In general, a propagation pattern consists of 4

logical blocks:

1) Signature

A propagation pattern specifies a function or method of the system. The

signature of the propagation pattern defines the method or function’s signature for the set



of classes involved in this function, which includes name, parameters and return type of

the function.

2) Traversal specification

A traversal is a navigation through a group of related objects with the purpose

of accomplishing some task. Traversals define the set of classes involved in the operation

in a succinct form, in terms of paths in a class dictionary graph [12]. From the

implementation point of view, a path represents a sequence of object invocations,

following the order of the edges in the subgraph defined by the traversal. Traversal

defines a subgraph of the class dictionary graph that specifies the precise strategy to

traverse the subgraph. The strategy is a very compact and high-level specification of the

traversal: it simply refers to the classes involved, omitting all implementation details. For

example: if class A is associated with class B, which is associated with class C, a

traversal can simply specify “ from A to C” without mention the intermediate class B, to

specify traversal from A to C through B [10]. The paths to traverse the subgraph specified

by the propagation pattern are computed based on the propagation patterns and class

dictionary graph. The low-level code that traverses and navigates the subgraph is

generated automatically by the tool. Traversal specification must include, at least, the

source classes (*from* ClassSet), i.e. those classes for which the operation applies. They

may include the target classes (*to* ClassSet). They may also restrict the paths by using

the primitives: (*bypassing* EdgeSet), (*through* EdgeSet), and (*via* ClassSet).

3) Transportation specification

In many cases, it is necessary to pass information from one class to others along

the traversal. Transportation specification declares the internal argument objects to be



carried along portions of the traversal. The transportations of objects are made along

transportation traversals, which are subsets of the propagation pattern traversal. The

carried objects can be (*in*), (*out*) or (* inout*). These qualifiers have the same

meaning as in many interface definition languages: (*in*) objects can be read along the

traversal and their modification will not be visible outside; (*out*) objects are to be

written to somewhere along the traversal, so that they bring out information.

Carried objects can be initialized when they are declared. By default, they are

initialized at the source class of the transportation directive. Transportation of objects is

internally implemented by the Demeter tools as a signature extension, that is, the

corresponding methods are augmented with more parameters. The variable names of the

carried objects are available in all classes involved in the transportation path.

4) Code wrappers

Code wrappers are pieces of C++ or Java code attached to some classes, which

are involved in the propagation pattern. The C++ or Java codes are the implementation of

the operations or actions taken in the classes and edges along the traversal. The wrappers

can be “*prefix*” or “*suffix*”. The “*prefix*” codes are executed before the traversal

enter the classes or edges, the “*suffix*” codes are executed after the traversal leaves the

classes or edges. The codes in the wrappers are no concern of the Demeter. They are low-

level implementation codes entered by the designer, and it is the designer’s responsibility

to guarantee the correctness of the codes in wrapper.

Demeter tools read the propagation pattern and class dictionary graph, check their

consistency, and synthesize all the traversal codes, which are distributed across classes as

methods. The automatic generation of these codes removes the mundane tasks from the



programmer: iterating over lists, invoking methods on objects in the list, and hand-coding

the traversal of a quite complex graphs with the help of small, distributed methods. The

code also incorporates the user-specified code fragments that are executed during

traversal [10].

Adaptive programming provides a compact and efficient way to specify the

traversal of a software structure. In AP, user defined low-level code can be integrated

with the specification to perform various desired functions of the system. The actual

traversal codes are synthesized; designers are not burdened with low-level

implementation details of the traversal. All of these concepts can be used to model or

specify the model interpreter naturally. The main task of a model interpreter is to traverse

the software structure, and perform various actions during the traversal, which generate

the desired outputs. So in this thesis, I use the propagation pattern of Adaptive

Programming as the main concept to study a way to visually specify the model interpreter

in the GME, and construct a metamodeling environment to automatically generate the

model interpreter for a specific domain.



CHAPTER III

APPROACH

The goal of this thesis is a metamodeling environment that can visually specify

MGA model interpreters for specific domains, and synthesize the model interpreters

automatically. Based on the observations made above, a visual specification of the model

interpreter has been developed by using the propagation pattern concepts of the AP. Also,

a preliminary metamodeling environment has been created to allow designers to specify

and automatically synthesize the model interpreter for a specific domain. This

metamodeling environment is integrated with the existing UML/GME metamodeling

environment to achieve the complete metamodeling of a Domain Specific Modeling

Environment (DSME) and evolution of the entire DSME.

Based on the background study in chapter 2, in order to specify a model

interpreter, the following information or components should be defined:

1) Model Structure specification (class dictionary in AP). The model structure defines

the entities (classes) available in a model paradigm and the relationships between

these entities.

2) Behavior specification of the model interpreter (propagation pattern in AP). The

behavior specification specifies a function or method of a model interpreter. It

includes how the models should be traversed, what actions should be taken during the

traversal, in what order the actions should be taken, and how the possible objects or



variables should be carried along the traversal. The behavior specification is closely

related to the model structure specification.

3) A meta-interperter that understands the syntax and semantics of the model structure

and behavior specification of a model interpreter and translates the specification in

the metamodeling environment into the model interpreter.

The following sections illustrate how these components are achieved in the

metamodeling environment of GME.

Model Structure Specification

The main task of model structure specification is to provide a succinct and easy

to understand form to describe the classes available in the modeling paradigm, and the

relationships between these classes.

In the existing UML/GME metamodeling environment, the general design

methodology utilizes UML to specify the modeling paradigm syntax, and uses MCL to

specify semantics. Presentation specifications are created to take the form of a mapping

between the UML entities and relationships and GME objects representing elements of

the target modeling environment [1]. The UML class diagram in the existing

metamodeling environment specifies the classes, attributes, and relationships between the

classes. It is a perfect specification language to express the model structure in this

situation.

Because the UML class diagram of the existing metamodeling environment

provides a ready to use model structure specification of the paradigm, we will use it as

the model structure specification for the model interpreter specification.



Figure 5 shows the UML metamodel representation of a simple modeling

paradigm called the ACME [20].

Figure 5: UML model of the ACME metamodel

We will use ACME as an example to illustrate the model interpreter

specification concepts. Before I go into the detail of the model interpreter specification, I

will explain a little bit more about the ACME modeling environment and what the

ACME model interpreter will do.



ACME is an Architectural Description Language (ADL) used to describe

software systems. ACME uses components and connectors as basic architectural

elements, both of which have interconnection interfaces. Components and connectors are

interconnected in a straightforward manner – component ports attach to connector roles,

and connector roles attach to component ports – to form representation of software

architectures. Sets of connections and components may be grouped together to form

attachment groups. ACME uses aggregations of components, connectors, and attachment

groups to form systems – larger and more complex software representations [20].

ACME is text-based. However, because the ACME metaphor of design is

popular and well known, a graphical representation of the language would be of use to a

large community of software system designers [1]. For this reason, the ACME

metamodeling environment has been designed and created to allow designers to create

ACME by using a graphical representation. After the ACME models are created by using

GME, the model interpreter will translate those graphical modeling concepts into text-

based ACME models.

In the UML class diagram, the classes can be viewed as nodes in the class

dictionary graph of AP. Several kinds of associations are allowed in UML class diagrams

to specify the relationships between classes. Among these associations, only the

inheritance and aggregation associations will be viewed as edges in the class dictionary

graph. These will be used to compute the traversal path of the behavior specification

(introduced in next section). Through these two kind of associations, all the entities in a

model paradigm can be reached from a model, except the GME reference objects. The

reason we only use inheritance and aggregation in the model structure specification is to



avoid the possible circular traversal paths in the object graph instanced from the class

graph. If we only use or traverse along the inheritance and aggregation edges, the

instanced object graph can be viewed as tree, which guarantees the avoidance of circular

traversal path [11].

Figure 6 shows the UML class diagram of ACME metamodel with only

inheritance and aggregation associations. If we specify that the traversal will always

progress from the model to its parts (if it has parts) and from the base class to its derived

classes (if the class is base class). Then we can prove that the possible traversal paths will

not be circular. From figure 6 we can see that all the possible traversal paths are among

the following:

• System -> Component -> Port ->InPortAtom or OutPortAtom

• System ->Component -> PropertyAtom

• System -> AttachmentAtom

• System -> PropertyAtom

• System -> Connector -> PropertyAtom

• System -> Connector -> Role ->SrcRoleAtom or DstRoleAtom

• System -> PortsAndRolesConns

Through these paths, we can reach every kind of the classe specified in UML

class diagram from System class, except for AttachmentPath, which is mapped to a

reference object in the GME paradigm according to the presentation specification of

existing metamodeling environment. (Refers to [1] for more detailed information).



Figure 6: UML Diagram of the ACME with Only Inheritance and Aggregation

Behavior Specification

The behavior specification addresses the following questions for the behaviors

of a model interpreter:

1) Signature of the behavior: This should specify the parameters of an operation (an

atom that groups all the traversal specification, transportation specification and

actions specification in the metamodeling environment).



2) Traversal specification: How should we traverse the model structure? What is the

start and end points of a traversal? Which traversal paths should we use?

3) Transportation specification: What objects or variables will be carried along the

traversal path during the traversal? What will be the initial values of the objects or

variables?

4) Action specification: What actions will be taken during the traversal?

5) Visiting sequence specification. In what order the parts of a model should be visited

during the traversal?

The existing metamodeling environment specifies all the necessary information

(syntax, semantics and presentation) of a DSME paradigm. In order to integrate the

model interpreter specifications into the existing metamodeling environment, a new

category called “metainterpreter” has been added to the existing UML/GME

metamodeling paradigm. The new “metainterpreter” category will define all the

necessary behavior specifications for a model interpreter, which fully describes a model

interpreter together with the model structure specification in the UML class diagram of

the existing metamodeling environment.

Figure 7 shows the behavior specification for the model interpreter of ACME

metamodeling environment.



Figure 7: ACME MetaInterpreter Specification

We have seen the UML class diagram of the ACME paradigm and known the

available classes in the ACME paradigm and the relationships between classes. The goal

of ACME model interpreter is to translate the graphical specification of ACME model

into text-based ACME specification. In the following section, we will discuss how the

ACME model interpreter is specified in the metamodeling environment.



The Interpreter Model

In the “metainterpreter” category of the metamodeling paradigm, “interpreter”

models are defined, which contain all the necessary information to specify model

interpreters. For every “interpreter” model in the metamodeling environment, a model

interpreter will be synthesized. Because for a specific domain many model interpreters

may be defined to translate the models into different outputs, multiple interpreter models

are allowed in the metamodeling environments for a specific domain. They will be

translated into different model interpreters for the domain. As I explained in the

background section, the GME model interpreters can be written in any language that

interfaces with COM. In this thesis, the synthesized model interpreters are implemented

with C++ code that utilizes the high-level C++ interpreter interface provided by GME.

There are two textual attributes for the interpreter model: “Header” and

“Interpret”. The “Header” attribute allows designers to define the header information of

the “Interpreter.cpp” file, which is synthesized from the metamodeling environment. The

“Interpreter.cpp” file defines the entry point of a model interpreter. It defines a

“CInterpreter” class with a member function called “interpret”, which is the starting

point of the interpretation. The “Header” attribute provides the header definition of the

“Interpreter.cpp” file, including include files and global variable definitions.

The “Interpret” attribute of the interpreter model allows designers to input the

C++ code that calls and executes the operations of the model interpreter specified in the

metamodeling environment. The code defined in the “Interpret” attribute will be the

implementation of the “Interpret” member function of the “CInterpreter” class, which



comes from the high level C++ interpreters interface. Figure 8 shows the attribute

definitiona of the "ACMEMetaInterpreter" model.

Figure 8: The Attributes of the AcmeMetaInterpreter Model

An operation atom is defined as a part of the interpreter model. It is equal to a

propagation pattern definition in the Adaptive Programming. Every operation atom in the

interpreter model groups a set of traversal specifications, transportation specifications and

action specifications, and indicates a behavior of a model interpreter over a set of

collaborative objects. It is represented as an ellipse in the GME. In the ACME model

interpreter specification, an operation called “WriteAcme” is defined (see figure 7).

Figure 9 shows the attribute definitions of the "WriteAcme" operation Atom.

There are two field attributes in an operation atom: “parameters” and “Sequence to visit

parts”.



Figure 9: The Attribute of the WriteAcme Operation Atom

The “parameters” attribute defines the parameters of the function or the method

specified by the operation atom, which is similar to the signature definition of a

propagation pattern in the AP. Multiple parameters separated by commas can be defined

in the “parameters” attribute. The data type of the parameters may be any C++ built-in

type or any validated user defined data type. The parameters can be passed by value,

pointer or reference. If the parameter is passed as reference the variable value changed

inside the traversal will be visible to the outside of the traversal. It can be used to bring

back some information or to work as a return variable of the operation.

The “Sequence to visit parts” attribute of the operation atom allows designers to

specify in which order the parts of models will be visited. For example, in the ACME

metamodel, the "System" model may have parts of different types. It can have objects of

"Component", "PropertyAtom", "Connector", "AttachmentAtom" or

"PortsAndRolesConns" types as its parts. Once we enter a "System" model and want to

traverse its parts, we need to know in which order these parts should be traversed. This

can be specified in the “Sequence to visit parts” attribute of the operation atom. The

object types are input in the field separated by a “>” sign. The object types specified in

the field can be of any object types defined in the metamodeling environment. They can



also be “MODELS”, “ATOMS” or “CONNS”, which represents a group of models, atoms

or connections respectively. For example: “MODELS > AttachmentPath > InPortAtom >

OutPortAtom > SrcRoleAtom > DstRoleAtom > PropertyAtom > CONNS”, means that

once we enter the model, we need first visit all its model parts in unspecified order; then

we need to visit its atom parts in the order specified, which is first visiting

“AttachmentPath” part, then “OutPortAtom”, then “SrcRoleAtom”, then “DstRoleAtom”,

and finially “PropertyAtom”. After visiting atom parts, we visit connection parts of the

model. In the “Sequence to visit parts” attribute, designer can supply a partial order of the

possible parts to be visited during the traversal. The objects that are not specified in the

attribute will be traversed in an unspecified order after all the objects specified in the

attribute have been traversed.

Traversal Specification

After defining an operation in the interpreter model, we need to specify the

traversal path of the operation. This should answer the question: “if we are at node of

type X, where do we go next?” The “next” should be an object that is reachable from

objects of type X either directly or indirectly, possibly through inheritance [10].

As I stated in the model structure specification section, we will use the UML

class diagram as the model structure specification. In the UML class diagram, we view

model structure as a tree. The classes are nodes and the inheritance and aggregation

associations are edges in the tree. All the traversals will go from a model to it parts, or

from a base class to the derived classes. Under this restriction, the class graph specified in



the UML class diagram can be viewed as a directed tree, avoiding possibility of traversal

loops in the instanced object graph.

One approach specifying the traversals is to use the exact propagation graph,

which explicitly specifies every detail of the traversal path, i.e. where to go from every

possible node of the graph. For example, if we want to retrieve all the “Port” atoms

contained in a “System” model (see figure 6), we may specify “from System to visit all its

parts of Component type, then from the Component model to visit all its parts of

InPortAtom and OutPortAtom type”. In this way, we specify every detail of the traversal,

explicitly indicating what is the next object to be visited on every object. However as

stated in the Adaptive Programming, this will introduce difficulty in maintaining and

evolving the software. We want to specify the traversal in a simple and concise way so

that the specification is minimally dependent on the given class graph. We should build

only minimal class structure information into the specification, which will lead to more

compact and reusable specifications. So according to the AP, we specify the traversal to

retrieve all the “Port” atoms in a “System” model as “form System to Port”. In this way,

we only specify the start point and the end point of the traversal. We do not explicitly

specify the intermediate node during the traversal, which could be computed according to

the class dictionary.

In the interpreter model of the metamodeling environment, the start point of an

operation (traversal) is connected to the operation atom with the “traverseFrom”

connection. Every operation atom will connect to one and only one class reference object

through the “traverseFrom” connection, which is represented as a solid line with

arrowhead. In the "ACMEMetaIntepreter" model (Figure 7), the "WriteACME" operation



will always traverse from the "System" model. The "System" here is a reference object

that refers to the "System" Class atom in the UML class diagram of the ACME

metamodel.

There may be one or several end points in a traversal. The end points of a

traversal are connected to the start point of the traversal with “traversalTo” connections.

The “traversalTo” connections are also represented as solid lines with arrowhead. In the

“ACMEMetaInterpreter”, the “WriteACME” operation will traverse from “System” model

down to all accessible “InPortAtom”, “OutPortAtom”, “AttachementPath”,

“PropertyAtom” and “Role” atoms. Here the end points of the traversal are also the

reference objects that refer to the Class atoms in the UML metamodel. The traversal only

walks through the aggregation and inheritance associations, which means we will only

traverse inside a model to reach all its directly or indirectly accessible parts of the types

specified in the traversal.

In order to specify accurate and complete traversal paths, constraints must be

expressed in the specification. For example, the “from System to PropertyAtom”

specification will result in three possible paths (see Figure 6):

1) System à  Component à  PropertyAtom

2) System à  PropertyAtom

3) System à  Connector à  PropertyAtom

All these paths satisfy the specification of “from System to PropertyAtom”. In

case that we only want to retrieve the “PropertyAtom” objects in the  “Component” parts

of a “System” model, we will need to constraint the specification. The

“traverseByPassing” and “traverseThrough” connections are introduced to achieve this



goal. We may constraint a traversal by using “from A to B through X”, which indicates all

the possible paths from A to B through X. The “from System to propertyAtom through

Component” will lead to only one path in the “WriteACME” operation: “System à

Component à  PropertyAtom”. The specification “from A to B byPass X” indicates all the

possible paths form A to B that do not contain any objects of type X. The “from System to

PropertyAtom byPass Component” will lead to two paths: “System à  PropertyAtom”

and “System à  Connector à  PropertyAtom”. These two constraints are expressed in the

traversal specification of the interpreter model as “traverseThrough” connection and

“traverseByPass” connection. The “traverseThrough” connection is represented as a

solid line that connects the operation atom to a reference class. The “traverseByPass”

connection is represented as a doted line that connects the operation atom to a class

referrence class. Multiple “traverseThrough” and “traverseByPass” connecitons are

allowed for an operation specification. Figures 10 and 11 show an example of “through”

and “byPass” constraint specification.

The base classes are allowed to be used in the traversal specification. For

example the specification “from Component to Port” will result in two traversal paths:

"Component à  InPortAtom" and "Component à  OutPortAtom", because, according to

the UML metamodel of ACME, the "Port" class is the base class of the "InPortAtom" and

"OutPortAtom".



Figure 10: from System to PropertyAtom through Component

Figure 11: from System to PropertyAtom byPass Component



Transportation Specification

During the traversal, we may need to carry an object down to a sub-object or up

to a containing super-object, so the following questions should be addressed in the

transportation specification: what objects or variables need to be transported during the

traversal, how should they be initialized, and what are the ranges of the transportation?

We could define the transportation of objects by simply adding extra parameters

into the signature of the operation. However, if this is done, the passed objects or

variables will be visible to the entire traversal path. This introduces redundancy and

inefficiency, and a structure dependency problem. Again, we want only minimal class

structure information to be involved to ensure good reusability.

In this case, the transportation specification is used to specify the desired objects

or variables to be carried along the traversal and the range of the transportation. In the

interpreter model of the metamodeling environment, an “transportation” atom is defined

to indicate the desired object or variable that needs to be passed during the traversal. The

“transportation” atom is represented as a small car in the interpreter model.  In the ACME

metainterpreter specification (Figure 7), there are three transportations defined: one

“space” and two “first” variables. Similar to the traversal specification, in the

transportation specification, only the start point and the end points of the transportation

paths are specified. The range of the transportation will be a subgraph of the traversal

graph. Two connections are defined to specify the start point and the end point of

transportation: “transFrom” and “transTo” connection. Similar to the “traversalFrom”

and “traversalTo” connection, the “transFrom” and “transTo” connections are

represented as solid lines with arrowheads to indicate the transportation direction. Every



“transportation” atom must connect to one and only one class reference object in the

interpreter model, with the “transFrom” connection indicating the start point of the

transportation. A “transportation” atom can connect to multiple class reference objects

by the “transTo” connection to specify the end points of the transportation. For example,

the “space” transportation is specified to be carried from “System” models along all the

traversal paths to the “PropertyAtom” atoms. This means the “space” variable will be

available to all nodes and edges in the transportation graph defined, which are “System

à  Component à  PropertyAtom”, “System à  PropertyAtom”, and “System à

Connector à  PropertyAtom”. The transportation specification lives in the context of a

traversal specification, which means that the transportation graph is a sub-graph of the

traversal graph. Necessary error checking or constraints should be available to enforce

this rule.

Figure 12 shows the attribute definitions of the “space” transportation atom.

Figure 12: The Attributes of the “space” Transportation Atom

 There are three attributes defined in a transportation atom: “Type”, “Init” and

“defined as data member?”. The “Type” attribute is a field attribute that allows users to

define the name and the type of the object or variable to be transported. The type could be



any C++ built-in type or user defined data type. The “Init” attribute supplies the possible

initial values of transportations. The initial value of a transportation must match the data

type specified in the “Type” attribute. It is designer’s responsibility to guarantee the

correctness of the inputs. The “defined as data member?” attribute specifies whether this

transportation should be defined as a data member of the Traverse class, which is the

implementation of the behavior specification, and is synthesized automatically from the

behavior specification. I will give a detailed discussion about this later in the Code

Generation section.

Action Specification

Action specifications capture what should be done when visiting a particular

kind of object. Here, the action specifications will be user-defined C++ code. The action

specifications are modeled as the attributes of the class reference object. Figure 13 shows

the attributes of the “Component” reference in the "ACMEMetaInterpreter" model.

There are five attributes defined for a reference object in the interpreter model:

“Class Data Member”, “before visiting” action, “after visiting” action, “before traverse

children” action and “after traverse children” action. The “Class Data Member” attribute

allows designers to define necessary data members for the Class represented by the class

reference. The “before visiting” action and “after visiting” action specify the actions that

happen before or after visiting the object of the class type represented by the reference

class. These two actions (“before visiting” and “after visiting”) actually happen in the

parent object of the object represented by the reference class.



Figure 13: Attributes of the “Component” Reference Model

For example, the “before visiting” action of the object of “Component” type

actually will happen in the object of “System” class that contains the object of

“Component” type. The “before traverse children” and “after traverse children” actions

will happen in the object of the reference class just before or after the traversing of its



parts. For example, the “before traverse children” action of the object of the

“Component” type will be executed before the traversing the parts of the object. The

exact position that the action will be executed will be explained and discussed in the

Code Generation section.

Code Generation: Implementation of the Behavior Specification

In this thesis, a model interpreter generator has been implemented. It understands

the syntax and semantic of the interpreter specification and synthesizes the model

interpreter automatically from the specifications. The synthesized model interpreter is

implemented in C++ code, which utilizes the high level C++ interpreter interface of

GME. In this section, how the model interpreters are implemented and how we translate

the model interpreter specification into the implementation are introduced.

As I stated at the beginning of this chapter, two main components constitute a

model interpreter: model structure definition and model interpreter behavior definition.

Model structure definition here is specified by the UML class diagram and the model

behavior definition is specified in the interpreter model by the operations, traversal

specifications, transportation specifications, and action specifications. According to the

model interpreter specification in the metamodeling environment, six C++ source files

are synthesized: “ClassDic.cpp”, “ClassDic.h”, “Strategies.cpp” and “Strategies.h”,

“Interpreter.cpp” and “enum.h”. These files together implement the model interpreter.

Mainly the “ClassDic” files implement the class definitions and the relationships between

the classes. The “Strategies” files implement the behaviors of the model interpreter,



which include traversing the object structure, and performing related actions to generate

the desired outputs.

In addition to the “ClassDic” files and “Strategies” files, an “Interpreter.cpp”,

“Interpreter.h”, and a VC++ project are also synthesized automatically from the

specification. The “Interpreter.cpp” file defines the entry point of a model interpreter,

which triggers the model interpretation procedure.

Class Definition

In the metamodeling environment, the UML class diagram is used to specify the

system structure information. That is, it specifies what classes are available in the

paradigm and what are the relationships between them. The “ClassDic.cpp” and

“ClassDic.h” are synthesized according to this UML class diagram. For every class atom

in the GME UML metamodel, We define a class in the “ClassDic” files. Figure 14 shows

the “CSystemBuilder” class definition resulted from the “System” class atom definition in

the ACME UML metamodel.

For the “System” class atom in the ACME metamodel, a

“CSystemBuilder” class is defined, which is a derived class from “CBuilderModel” class.

As I stated before, the synthesized model interpreter is implemented by utilizing the high-

level C++ interpreter interface provided by the GME, so all the classes defined in

“ClassDic” files are derived from the “CBuilderModel”, “CBuilderAtom” or

“CBuilderObject” according to their different presentations in the GME. For example, the

“System” class atom in the ACME UML metamodel is mapped to a model in the GME,

so it is defined as a class derived from “CBuilderModel” class. The “PropertyAtom” class



atom in the ACME UML metamodel is represented as an atom in the GME, so the

corresponding “CPropertyAtomBuilder” class will be derived from the “CBuilderAtom”

class.

Figure 14: The Class Definition of the “System” Class Atom in ACME
Metamodel

Two special situations are the “Connection” and “Conditional” object in the

GME. Some class atoms defined in the UML metamodel are presented as “Connections”

or “Conditional” object in the GME. In this case, the corresponding class definitions are

not derived from any base classes. Instead, they wrap a “CBuilderConnection”, or a

“CBuilderConditional” object, respectively, in their class definition. For example, the

“PortsAndRolesConns” class atom in the UML metamodel is mapped to a Connection in

the GME. The figure 15 shows the definition of the “CPortsAndRolesConnsBuilder”

class.

We can see that there is a private pointer to the “CBuilderConnnection” defined in

the “CPortsAndRolesConnsBuilder” class. This pointer provides access to the

connections of “PortsAndRolesConns” type in the GME.

class CSystemBuilder;
typedef CTypedPtrList<CPtrList, CSystemBuilder*> CSystemBuilderList;

class CSystemBuilder: public CBuilderModel
{

DECLARE_CUSTOMMODEL(CSystemBuilder,CBuilderModel)
public:

CPropertyAtomBuilderList* get_Property() const;
CAttachmentAtomBuilderList* get_AttachmentPart() const;
CPortsAndRolesConnsBuilderList* get_PortsAndRolesConns() const;
CAttachmentPathBuilderList* get_AttachmentPath() const;
CComponentBuilderList* get_CompPart() const;
CConnectorBuilderList* get_ConnPart() const;

public:
//member functions that wraps the action taken on this node

virtual void WriteAcme(FILE * fpt);
};



Figure 15: The Class Definition of the “PortsAndRolesConns” Class Atom

In the “ClassDic” files, the inheritance relationships are also defined and

implemented. For example, in the ACME UML metamodel, the “SrcRoleAtom” and

“DstRoleAtom” are derived from the “Role” class (Figure 16). Figure 17 shows the

corresponding class definition of these classes. The “CSrcRoleBuilder” and

“CDstRoleBuilder” are derived from the “CRoleBuilder” class.

Figure 16: The Inheritance Relationship in the ACME UML Metamodel.

class CPortsAndRolesConnsBuilder
{
public:

CPortsAndRolesConnsBuilder(CBuilderConnection* c) { conn = c;}
~CPortsAndRolesConnsBuilder() { delete conn;}
CRoleBuilder * get_Src() const;
CPortBuilder * get_Dst() const;
CBuilderModel* GetParent() const;

private:
CBuilderConnection* conn;

};



Figure 17: The Class Definitions of the “Role” and “SrcRole” and “DstRole” Classes

The final part to be explained is the data member and member function definitions

in the synthesized classes. In the class definition, a set of class member functions is

defined to retrieve the available parts of the object. For example, in the “CSystemBuilder”

class definition, the “CPropertyAtomBuilderList* get_Property() const” member function are

defined and implemented to retrieve the parts of “Property” type. This function will

return a list of the parts of “Property” type in the “System” object. Also a set of member

functions are defined to directly retrieve the values of the object attributes. In addition to

these functions, a set of virtual functions are defined and implemented in the class

definition. For example, the “virtual void WriteAcme(FILE * fpt)” function in the

“CSystemBuilder” class. These virtual functions are the trigger points for a traversal

starting at the current object. Every virtual function corresponds to an operation

definition in the interpreter model of the metamodeling environment. For example, the

class CRoleBuilder: public CBuilderAtom
{

DECLARE_CUSTOMATOM(CRoleBuilder,CBuilderAtom)
public:
};

class CDstRoleAtomBuilder: public CRoleBuilder
{

DECLARE_CUSTOMATOM(CDstRoleAtomBuilder,CRoleBuilder)
public:
//member functions that wraps the action taken on this node

virtual void WriteAcme(FILE * fpt,bool & first);
};

class CSrcRoleAtomBuilder: public CRoleBuilder
{

DECLARE_CUSTOMATOM(CSrcRoleAtomBuilder,CRoleBuilder)
public:
//member functions that wraps the action taken on this node

virtual void WriteAcme(FILE * fpt,bool & first);
};



“virtual void WriteAcme(FILE * fpt)” function is synthesized from the “WriteAcme”

operation atom in the “ACMEMetaInterpreter” model. These virtual functions will active

traversals that start at the current object and traverse down along the path specified in the

traversal specification. Figure 18 shows the implementation of the “WriteAcme” function

of the “CSystemBuilder” class.

Figure 18: The Implementation of the “CSystemBuilder::WriteAcme” Member Function

We can see that the “WriteAcme” function will create a pair of objects of the

“WriteAcme_T” traversal class and “WriteAcme_V” visitor class, and call the “visit”

function of the visitor object by passing itself as a parameter. Detailed discussion will be

given in next section about the traversal and visitor classes, which are the

implementations of the behavior specification of the model interpreter.

The data members of the class definition come from the behavior specification in

the metamodeling environment. As I explained in the behavior specification section,

there is a “Class Data Member” attribute defined in the class reference object of the

interpreter model (see Figure 13). This “Class Data Member” attribute allows the

designer to define the class data members for the synthesized class. The defined class

data members could be used to help the implementation of the behavior of the model

interpreter, like passing messages or storing information.

void CSystemBuilder::WriteAcme(FILE * fpt)
{

WriteAcme_T trv;
WriteAcme_V * vis= trv.get_Visitor();
vis->visit(this,fpt);

}



Strategy (Traversal/Visitor Classes) Definition

We have seen how the class definitions are synthesized from the metamodeling

specification. In this section, I will explain how the model interpreter behaviors are

implemented and synthesized from the behavior specification of the interpreter model in

the metamodeling environment.

As I stated before, the behavior specifications are grouped by operations. Every

operation atom in the interpreter model groups a set of traversal specifications,

transportation specifications, and action specifications. It specifies a function or method

of the model interpreter. For every operation atom, a pair of Traversal and Visitor classes

are synthesized, which implement the functionality specified by the operation atom.

The Traversal class captures how the models should be traversed. It addresses

the question: “If we are at node of type X, which node do we go to next?” The Traversal

class encapsulates the traversal code fragments (in C++) that navigate through a group of

related objects in the specified order to accomplish some task. The Visitor class captures

the actions to be taken when visiting a node of a particular type. They encapsulate the

C++ code fragments that perform desired operations and provide a context for the

traversal. The Traversal and Visitor classes are directly linked to each other, and are

operated in a co-routine like manner [10]. Suppose the Traversal starts at a specific type

of model node. Based on its specification, it determines how to follow pointers emanating

from that type of node, and call the Visitor on the objects that the pointers are pointing to.

The Visitor might take an action, and/or active the Traversal to proceed from the

accessed node. So the control flow oscillates between the Traversal and the Visitor: the



Traversal determines where to go next, the Visitor “visits” (i.e. takes actions) and calls

back the Traversal to proceed further [10].

The model interpreter generator will translate each traversal specification,

transportation specification, and action specification grouped by an operation atom into a

pair of Traversal and Visitor classes. The Traversal class and Visitor classes are tied

together via reference pointers to each other. Figure 19 shows the Traversal class

definition and the Visitor class definition for the “WriteAcme” operation of the

“ACMEMetaInterpreter” model. The Traversal class is called “WriteAcme_T”, and the

Visitor class is named as “WriteAcme_V”. We can see that the “WriteAcme_T” class

keeps a pointer to the “WriteAcme_V” class, and the “WriteAcme_V” class keeps a

pointer to the “WriteAcme_T” class.

A set of traverse and visit functions is defined in the Traversal and Visitor class

respectively. The Traversal and Visitor classes together guide a traversal through an

object graph in the specific order and perform specific operations on the nodes along the

traversal to accomplish some task. In this case, a visit function is defined for every type

of object in the traversal object graph and a traverse function is defined for every type of

model in traversal object graph. The first parameter passed to both the traverse function

and visit function is a pointer to the type of the model/atom object where this

traverse/visit function will be called. The rest of the parameters are the “Signature”

attribute definition of the operation atom and possible transportation specifications. For

example in the “void traverse(CSystemBuilder* self,FILE * fpt,CString space)” function, the

first parameter “self” is a pointer to “CSystemBuilder”, the “FILE* fpt” parameter comes



from the “Signature” attribute of “WriteAcme” operation atom, and the “Cstring space”

parameter comes from the “space” transportation.

Figure 19: The Traversal and Visitor Class Definition for the “WriteAcme”
Operation of the “ACMEMetaInterpreter”

Figure 20 shows a typical implementation of a traverse function of a Traversal

class and a visit function of a Visitor class. In the visit function, the <before visiting

actions> and <after visiting actions> come from the “Before visiting” and “After visiting”

attributes of the class reference object (in action specification). If the current node is not

the end node of the traversal, the visit function will also call the traverse function of the

corresponding Traversal class. In the traverse function, the available parts of the current

node are retrieved in the order specified in the “Sequence to visit parts” attribute of the

class WriteAcme_V;
class WriteAcme_T {
public:

WriteAcme_T();
~WriteAcme_T() {}
void traverse(CConnectorBuilder* self,FILE * fpt,CString space,bool & first);
void traverse(CComponentBuilder* self,FILE * fpt,CString space,bool & first);
void traverse(CSystemBuilder* self,FILE * fpt,CString space);
WriteAcme_V* get_Visitor() { return vis;}

private:
WriteAcme_V* vis;

};
class WriteAcme_V {
public:

WriteAcme_V(WriteAcme_T* _t);
~WriteAcme_V() {}
void visit( CConnectorBuilder* self,FILE * fpt,CString space);
void visit( COutPortAtomBuilder* self,FILE * fpt,bool & first);
void visit( CInPortAtomBuilder* self,FILE * fpt,bool & first);
void visit( CComponentBuilder* self,FILE * fpt,CString space);
void visit( CDstRoleAtomBuilder* self,FILE * fpt,bool & first);
void visit( CPropertyAtomBuilder* self,FILE * fpt,CString space);
void visit( CSrcRoleAtomBuilder* self,FILE * fpt,bool & first);
void visit( CAttachmentPathBuilder* self,FILE * fpt);
void visit( CSystemBuilder* self,FILE * fpt);

private:
WriteAcme_T* trv;

};



operation atom. Then the corresponding visit functions are called on the parts (the control

flow back to Visitor class). In the traverse function, the <before traversal parts action>

and <after traversal parts action> come from the “Before traverse children” and “After

traverse children” attributes of the class reference object (in action specification). These

user-defined codes are executed in the specific order at the specific positions. The Visitor

class may also have data members that come from the transportation specifications when

the transportations are specified to be defined as data members.

Figure 20: A Typical Implementation of a Traverse and Visit Function

void SomeVisitor::visit(CurrentObject * self, parameters ){
<Before visiting actions>
trv->traverse(self, parameters);
<after visiting actions>

}

void SomeTraversal::traverse( CurrentObject* self,signatures, transportations){
<before traversing parts1 actions>
Part1List* part1=self->get_Part1();
while( there is entry in the part1List){

Part1* arg = Part1->GetNext();
vis->visit(arg,singature, transportations);

}
<after traversing parts1 actions>

<before traversing parts2 actions>
Part2List* part2=self->get_Part2();
while( there is entry in the part2 list){

Part2* arg = part2->GetNext();
vis->visit(arg,singature, transportations);

}
<after traversing parts2 actions>

:
:
:

<before traversing partsN actions>
PartNList* partN=self->get_PartN();
while( there is entry in the partN list){

PartN* arg = partN->GetNext();
vis->visit(arg,singature, transportations);

}
<after traversing partsN actions>

}



The Visitor and Traversal classes are defined in the “Strategy.cpp” and

“Strategy.h” files.

CInterpreter Class Definition

The “CInterpreter” class is a class standardized in the GME high-level C++

interpreter interface. It provides an “interpret” member function that is the entry point to

the interpretation process. The implementation of the “interpret” function comes from the

“Interpret” attribute of the interpreter model in the metamodeling environment. The

“Header” attribute of the interpreter model will contribute the header definition of the

“CInterpreter.cpp” file.

Visual C++ Project

The model interpreter generator also generates the Visual C++ workspace

project for the model interpreter. The name of the interpreter model will be the name of

the project. In the project, all necessary resource files, make files and source files are

generated. It can be loaded by the Microsoft Visual C++ developing environment and

built directly.

In addition to the project, “ClassDic” and “Strategy” files, an “enum.h” file is

also synthesized. It defines the menu attributes specified in the metamodeling

environment as C++ “enum” types.



CHAPTER IV

EXAMPLE

In addition to the ACME metamodeling environment, two other metamodeling

environments (ORMS and SignalFlow) have been created with interpreter metamodels.

In this chapter, I will use the ORMS metamodeling environment as an example to

demonstrate the full range and capability of the metamodeling environment for the model

interpreter.

The ORMS (Outage Restoration Management System) is a diagnosis engine

developed by the Institute for Software Integrated System at Vanderbilt University for

Joe Wheeler Electrical Membership Corporation, a small electric utility company in

Trinity, AL [21]. The ORMS first gathers the electrical circuit information stored in

various databases, such as a Geographic Information System (GIS), an IVR (Interactive

Voice Recognition) system and a CIS (Customer Information System). Then it executes

the diagnosis algorithm to find the possible outages and their locations in the electrical

network. Because the real data of the Joe Wheeler electrical network is extremely huge, it

is difficult to simulate, test and debug the ORMS diagnosis algorithm using the real data.

In this situation, we built an ORMS utility modeling environment. The ORMS modeling

environment allows us to build electrical utility network models of reasonable size and to

modify the data flexibly in the GME. Then we can use the ORMS model interpreter to

translate the GME utility network models into the ORMS diagnosis engine, and test the

diagnosis engine on the utility network models built in the GME. The interpreter also



provides the ability to allow user interactions with the ORMS. Thus, we can simulate the

outages in the electric network using the models created in the GME, and test and debug

the ORMS diagnosis engine conveniently.

For this reason, we created an ORMS metamodel and synthesized the ORMS

modeling environment, and the ORMS model interpreter.  The UML diagram of the

ORMS metamodeling environment is shown in Figure 21.

To represent an electrical network, we define a utility model that consists of

various components. The components are divided into unidirectional components and bi-

directional components. Every component has two types of terminals: “InputTerminals”

and “OutputTerminals”. Components are connected through a “Conn” connection. All

“SubStation”, “CB”, “MS”, “Transformer”, “Load”, “Line” and “Switch” component

classes are derived from the “Component” class directly or indirectly. They have some

common attributes. However, they may also have their own attributes, which are defined

in the GME category of the metamodeling environment and are not shown here.

Based on the UML metamodel and the GME presentation specification of the

metamodeling environment, we can synthesize the paradigm of the ORMS modeling

environment and then use the ORMS paradigm to build utility models to represent the

electrical networks. Figure 22 shows a GME model for a simple electrical network with

its electrical components created by using the ORMS paradigm.

The task of the ORMS model interpreter is to build the object network in the

ORMS diagnosis engine according to the electrical network models created in the GME.

Basically, the interpreter will traverse through the electrical network represented by the

Utility model. For every component within the utility model it creates a corresponding



component object in the ORMS run-time engine. If the two components are connected in

the utility model of GME, it connects the corresponding components in the ORMS.

Figure 21: UML Model of the ORMS Metamodel



Figure 22: An Example Model of the ORMS Electrical Utility Network

Figure 23 shows the “ORMSBuilder” interpreter model of the metamodeling

environment that specifies the ORMS model interpreter.

In the “ORMSBuilder” interpreter model, an operation called “BuildNetWork” is

created, which groups a set of traversal, transportation and action specifications, and

specifies the behaviors of the ORMS model interpreter. The traversal specification says

that the traversal will start from a Utility model and traverse down to all the directly and



indirectly accessible terminal atoms and “Conn” connections contained in the Utility

model.

Figure 23: The ORMSBuilder Interpreter Model of ORMS Metamodeling Environment



During the traversal, three transportations (“Utility”, “Component” and

“Terminal” ORMS objects) are defined. The “Utility” ORMS object is passed from

“Utility” model to all accessible “Component” models. The “Component” ORMS object

is passed from all “Component” model to all accessible “Terminal” atoms. There is no

end point specified for the “Terminal” transportation, since the “Terminal” transportation

here is used to only define a “Terminal” data member for the corresponding Traverse

class synthesized from the traversal specification.

Figure 24 shows the attributes of the “Terminal” transportation. We can see that

the “Terminal” transportation is specified to be defined as a data member.

Figure 24: Attributes of “Terminal” Transportation.

As I explained before, the corresponding actions to be executed at the nodes along

the traversal path are specified as the attribute of the class reference objects. Figure 25

shows the actions need to be taken in all “Component” models. In the “Component”

model, corresponding ORMS component objects are created according the “Component”

type (MS, Transformer, RS, Load, etc.). Also, the various specific actions that need to be

taken for different components are specified in the attributes of the specific component

reference classes. Figure 26 shows the actions need to be taken for the “Load” model.

Because the “Load” model is derived from the “Component” model, the actions specified



for the “Component” model will also be executed in the “Load” model. However, the

action specified in the “Load” model will only be executed in the “Load” model. In the

current metamodeling environment, the actions specified in the based class will be

executed before the actions specified in the derived class. This may not be true for all

model interpreters. More accurate specification should and will be used in the future to

address this problem. Based on the “ORMSBuilder” interpreter specification in the

ORMS metamodeling environment, the ORMS model interpreter has been synthesized

and successfully used in the project.



Figure 25: Action Specification of the Component Model



Figure 26: Action Specification for Load Model.



CHAPTER V

CONCLUSIONS

The metamodeling environment for the model interpreter studied in this thesis

allows the specification and synthesis of model interpreters for the GME-based modeling

environment. It is integrated with the existing UML/GME metamodeling environment for

the Domain Specific Modeling Environment (DSME). They together allow the entire

DSME to be modeled and synthesized, and further allow the complete evolution of the

DSME.

By properly separating the model structure specification and the model interpreter

behavior specification, the approach studied in this thesis enhances the ability to evolve

and maintain model interpreters. When the system requirements change, changes can be

made to the model interpreter specification, and the new model interpreter can be

correctly resynthesized from the new specification. This reduces the cost and effort to

develop and evolve model interpreters.

Although this thesis research has led to several advances in DSME specification

and synthesis capabilities, limitations still exist:

1) In order to avoid the circular traversal path, the traversal specification can

only follow the inheritance and aggregation relationships in the model

structure. Hence, this sometimes leads to complex specification and more

effort in specifying access to other relationships existed in the modeling

environment. For example, the reference relationships can not be specified



directly in the traversal specification, because it is not accessible through

aggregation or inheritance relationships in the GME UML metamodel.

2) Although most of the model interpreter behaviors can be modeled and

specified in the metamodeling environment, not all the model interpreter

behaviors are easy to be specified by the behavior specification studied in the

thesis. Sometimes in order to specify a general simple behavior of a model

interpreter (like, generating text files), many operations and traversal

specifications are required. It is desired to have the ability to allow user to

write these trivial behaviors and integrate them into the synthesized model

interpreter.

3) Now, the synthesized model interpreter is based on the high-level C++

interpreter interface provided by the GME. If the high-level C++ interpreter

interface changes in the future, the metaintepreter modeling environment does

not have the ability to evolve to meet the change of the interpreter interface. It

is desired to build a modeling environment to synthesize the metaintepreter

modeling environment itself, and thus allow the metamodeling environments

to evolve themselves.
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Model Integrated Computing (MIC) has been accepted and proven as an efficient

and effective technology for developing, evolving and maintaining the large computer-

based systems (CBSs), where functional, performance, and reliability requirements

demand the tight integration of physical processes and information processing [1]. MIC is

a model-based approach to software development. It allows designers to create models of

domain-specific systems using model-integrated program synthesis environments

(MIPS), and synthesize application program from these models. The MultiGraph

Architecture (MGA), under development at the Institute for Software Integrated Systems

at Vanderbilt University, is a toolkit for creating such MIPS systems. The MGA has been

used as a basis for developing a wide variety of engineering-based MIPS environments.

The model interpreter plays a key role in MIC. It is the bridge between the

domain-specific modeling environment (DSME) and the real application domain. The

model interpreter traverses the models and their parts, examines the relationships between

the models, transforms the necessary information in the models into the languages used

by tools, or executable specifications used to automatically synthesize software. MIC

relies on the interpreters to translate the information specified in the DSME, domain

specific models into various desired outputs for the application domain. Writing a model

interpreter is a non-trivial task. The designer or programmer needs to study and



understand the structure of domain specific models, the exact output required of the

interpreter, and the relationship or mapping between these two. The designer also needs

to implement the translation between the DSME and the output, which involves lots of

repetitive and error prone programming. Instead of hand writing these interpreters, the

entire DSME should be modeled itself, and generated from these metamodels. This

would allow the complete MGA design environment to evolve in the case of changing

domain requirements. Model interpreters need to be specified and synthesized from the

metamodeling environment of MGA.

Analysis shows that it is possible and desirable to model both the syntactic and

semantic behavior of model interpreters and to synthesize model interpreters

automatically. This leads to a completed metamodeling environment and allows both the

domain-specific applications and the DSME itself designed to evolve.

In this thesis, I present an approach to specify and synthesize domain-specified

model interpreters for MGA. The metamodeling environment will allow DSME designers

to create visual specifications of the model interpreter for a specific domain, and the

domain-specific model interpreters will be synthesized automatically from the

metamodeling environment. This completes the functionality of the metamodeling

environment to specify and synthesize the entire domain-specific MIPS environment, and

reduces the risk and cost of MIC system development.
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