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Abstract—The application of model-based diagnosis schemes
to real systems introduces many significant challenges, such as
building accurate system models for heterogeneous systems with
complex behaviors, dealing with noisy measurements and distur-
bances during system operation, and producing valuable results
in a timely manner with limited information and computational
resources. The Advanced Diagnostics and Prognostics Testbed
(ADAPT), deployed at NASA Ames Research Center, is a rep-
resentative spacecraft electrical power distribution system that
embodies a number of these challenges for developing realistic
diagnosis and prognosis algorithms. ADAPT contains a large
number of interconnected components, along with a number of
circuit breakers and relays that enable a number of different
power distribution configurations. The system includes electrical
dc and ac loads, mechanical subsystems, such as motors, and fluid
systems, such as pumps. The system components are susceptible
to different types of faults that include unexpected changes in pa-
rameter values, discrete faults in switching elements, and sensor
faults. This paper presents Hybrid TRANSCEND, a comprehensive
model-based diagnosis scheme to address these challenges. The
scheme uses the hybrid bond graph modeling language to
systematically develop computational models and algorithms for
hybrid state estimation, robust fault detection, and efficient
fault isolation. The computational methods are implemented
as a suite of software tools that enables analysis and testing
through simulation, diagnosability studies, and deployment on
the experimental testbed. Simulation and experimental results
demonstrate the effectiveness of this methodology in efficient
diagnosis of heterogeneous components for an embedded system.

Index Terms—Model-based diagnosis, electrical power distri-
bution systems, distributed diagnosis.

I. INTRODUCTION

The increasing complexity of modern engineering systems
has made the deployment of online health monitoring and
diagnosis schemes a necessary and important challenge to
ensure safe, reliable, and efficient operation of these systems.
Model-based diagnosis schemes are the preferred approach
because they allow for more general and robust diagnosis solu-
tions [1]–[5]. However, deployment of these schemes on real
systems presents significant challenges that include building
accurate and reliable models, designing robust observers and
fault detectors, and developing fault isolation schemes that
produce valuable information in a timely manner with limited
information and computational resources.

The Advanced Diagnostics and Prognostics Testbed
(ADAPT), developed at NASA Ames Research Center [6],
emulates spacecraft power storage and distribution systems,
and is designed to provide an environment where researchers
and practitioners can deal with a number of these challenges
in developing and testing their diagnosis and prognosis algo-
rithms. In developing our diagnosis schemes for ADAPT, we
have to address a number of new and significant challenges in
the context of a real-world application. Given that we are deal-
ing with real system components, we have limited information
and data to estimate and validate the parameters of our models.
In addition, our system consists of heterogeneous subsystems
that exhibit different behavior characteristics with different
time constants. For example, the ADAPT system includes both
dc and ac subsystems with corresponding loads. Some of the
loads are purely electrical, some are electromechanical, e.g.,
motors and fans, and some, such as pumps, extend to the
fluid domain. Another challenge is designing robust detectors
that are sensitive to small fault magnitudes but maintain low
false alarm rates in the presence of measurement noise and
disturbances. When tracking and analyzing system behavior
online, we are limited by the set of installed sensors, and the
instrumentation that is in place for data collection and storage.
Further, real systems exhibit a number of different kinds of
faults in sensors, actuators, and the process, which may be
represented as unexpected changes in model parameter values,
or unexpected changes in the on/off modes of the switches
that operate the system in different configurations, such as
supplying power to different loads. Our model-based diagnosis
approach has to account for different kinds of behaviors and
different fault types in an integrated framework.

In order to address the challenges in diagnosis of real-
world systems, we use the Hybrid TRANSCEND methodology,
which is a comprehensive model-based approach for combined
qualitative/quantitative diagnosis in hybrid systems [2]. For
this work, the Hybrid TRANSCEND algorithms had to be
extended to isolate discrete faults [7], and incorporate a
distributed diagnosis framework [8] for developing separate
diagnosers for the dc and ac subsystems. The two subsystem
diagnosers operate in a coordinated fashion to produce the
overall system diagnosis results in a timely manner. The
overall implementation is incorporated into our Fault Adaptive
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Fig. 1. Schematic diagram of ADAPT.

Control Technology (FACT) [9] paradigm, a model-integrated
computing approach [10], which provides a framework for
automatically synthesizing the runtime code of the deployed
diagnosis system, thus making our model-based approach scal-
able and generalizable to a number of different applications.

This paper discusses a number of innovative and novel
features of Hybrid TRANSCEND. First, we extend our hy-
brid diagnosis scheme for parametric faults to a combined
parametric and discrete fault scheme. Second, to deal with
the limited sensors in the ac subsystem, we develop a new
method for deriving parametric and discrete fault signatures
for ac measurements, which exhibit fault transients that occur
faster than the sampling frequency of the sensors. Given the
signatures, we can analyze the diagnosability of the system.
Third, we develop a comprehensive methodology for com-
bined diagnosis of dc and ac subsystems in a hybrid systems
framework, which is achieved using an extension of our previ-
ous distributed diagnosis methods [8] for continuous systems
based on system diagnosability analysis. Fourth, we illustrate
the effectiveness of our approach by extensive experimental
studies we have conducted, some on the hardware testbed,
and some in a fully-developed simulation environment called
VIRTUAL ADAPT [6].

The paper is organized as follows. Section II describes the
ADAPT system and the challenges that it presents for devel-
oping real world model-based diagnosis solutions. Section III
presents FACT, our model-integrated diagnosis tool-suite,
and Section IV describes our modeling scheme. Section V
discusses our approach to tracking complex hybrid system
behaviors and online fault detection. Section VI describes
our integrated framework for diagnosis of the heterogeneous
components of the ADAPT testbed, and Section VII discusses
the details of our online fault isolation scheme. Section VIII

discusses our experimental results, and Section IX provides the
conclusions and our directions for future work on real-world
diagnosis applications.

II. THE ADVANCED DIAGNOSTICS AND PROGNOSTICS
TESTBED

The ADAPT system schematic, shown in Fig. 1, illustrates
a typical functional representation of the power generation
(two battery chargers), power storage (three sets of lead-acid
batteries), and power distribution components (two inverters,
a number of relays and circuit breakers, and a variety of other
dc and ac loads) of a spacecraft’s electrical power system.
The testbed can be commanded into different configurations,
and contains sensors that measure system variables, such as
voltages, currents, and temperatures.

The current testbed operational infrastructure, shown in
Fig. 2, contains a User component, which simulates a
crew member and provides commands to the testbed, an
Antagonist component, which injects faults and spoofs
sensor data sent to the User, and a Test Article com-
ponent, such as a diagnoser, which receives the data and
commands issued by the User and determines the health of
the system. The Observer component logs all system data
in order to evaluate the performance of the test articles. A
common communication interface between the testbed and the
various components is supported through a publish/subscribe
messaging server that operates at 2 Hz.

We have identified over 170 different faults that are of
interest to ADAPT. The Antagonist can inject discrete
faults by blocking or changing user commands to the testbed,
and sensor faults by spoofing sensor data. Only a subset of the
faults can be injected into the system, so the remainder of the
faults are synthesized using an accurate simulator that we have
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Fig. 2. Messaging architecture for ADAPT.

developed, called VIRTUAL ADAPT [6]. The Antagonist
can use the simulator to realistically spoof sensor data based
on simulated faulty scenarios. VIRTUAL ADAPT is also used
as an offline version of the testbed for diagnoser design and
diagnosis experiments. As indicated in Fig. 2, the simulation
testbed includes the same interfaces as the actual testbed and
replicates its behavior under nonfaulty and a number of faulty
conditions.

A. Challenges of Model-Based Diagnosis

Like other real-world systems, ADAPT presents a number
of challenges to model-based diagnosis, including those asso-
ciated with model development, system monitoring, and fault
isolation.

1) Model Development: ADAPT can operate in a large
number of configurations and contains a number of com-
ponents, some of which have complex, nonlinear dynamic
behaviors. The system contains over fifty relays and circuit
breakers that can configure the system into different modes of
operation. To avoid the computational intractability of dealing
with more than 250 modes of system operation, we require
a modeling framework that specifies the system mode as a
combination of the modes of a set of switching elements that
operate at the component level. Other challenges to modeling
include the derivation of accurate nonlinear models (e.g., the
charging and discharging characteristics of the battery) from
a relatively small number of available measurements, and
dealing with fast-switching components (e.g., the inverter).

2) System Monitoring: A complete model-based approach
to online diagnosis requires mechanisms for accurately track-
ing the dynamic behavior of the system in the presence

of modeling errors, measurement noise, and disturbances in
the system. This requires systematic analysis to achieve the
proper tradeoff between sensitivity of detection and false alarm
generation. Monitoring the behavior of ADAPT is particularly
difficult, especially because the ac components operate at
60 Hz while the available measurements are only provided
at a rate of 2 Hz by the data collection instrumentation.

3) Fault Isolation: Our fault isolation scheme has to deal
with parametric process faults (e.g., unexpected changes in
system parameter values, such as a resistance), additive sensor
faults (e.g., bias in a sensor), and discrete faults (e.g., unex-
pected changes in system operating mode). ADAPT requires
a combined diagnosis approach for simultaneous diagnosis of
its dc and ac subsystems. The transient dynamics of faults in
the dc components can be tracked at the sampling frequency
used by the testbed instrumentation, i.e., 2 Hz. However, this
sampling rate is insufficient to track fault transients in ac
components, which occur at rates much faster than 60 Hz,
the nominal operating frequency for these components.

III. THE FAULT ADAPTIVE CONTROL TECHNOLOGY
TOOL-SUITE

To address the challenges in developing useful diagno-
sis solutions for complex systems, we have developed the
FACT tool-suite [9], which uses a model-integrated comput-
ing approach, where we can automatically synthesize sim-
ulation models, hybrid observers, and diagnoser code from
component-based system models. We construct these models
using graphical interfaces provided in the Generic Modeling
Environment [10], which is a meta-modeling framework for
specifying domain-specific modeling languages. We design
model transformations for automatically synthesizing the code
for the different components of the run-time application.
This greatly simplifies the entire development process, from
development and testing the initial prototypes to generating
the diagnosers for the runtime environment.

Our approach to hybrid systems modeling is based on the
hybrid bond graph (HBG) language [11]. The HBG language
supports energy-based topological modeling of physical pro-
cesses. System components are modeled as HBG fragments,
which are connected through energy and signal ports to define
the complete system behavior. Switching is defined locally
at the component level, and given a particular mode, the
system equations can be derived automatically from the model
configuration [12]. Therefore, pre-enumeration of the complete
system modes is not required during system design.

The overall FACT schematic for diagnosis applications
appears in Fig. 3. System behavior is tracked dynamically
using a hybrid observer, which is derived automatically from
the HBG model [2]. Given the inputs and system measure-
ments, the observer computes the estimated outputs, which
provides the nominal reference for diagnosis up to the point
of fault detection. The observer scheme helps to account
for model uncertainty and sensor noise. Fault detection and
symbol generation are defined as tests of statistical signifi-
cance, implemented using the Z-test [13] and a sliding window
technique [14]. Fault detectors are tuned to adjust sensitivity
in order to minimize false alarms and missed detections.
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Fig. 3. Schematic diagram of FACT.

FACT implements the Hybrid TRANSCEND [1], [2] method-
ology for combined qualitative/quantitative diagnosis in hybrid
systems. Fault isolation is based on qualitative analysis of
deviations from nominal behavior in the measurements caused
by faults. This can be followed by a fault identification scheme
to estimate the fault magnitude [2], [15]. In recent work, we
have extended our qualitative diagnosis scheme to deal with
both parametric and discrete faults [7], and have developed
a distributed diagnosis approach for continuous systems [8].
The extended diagnosis schemes and the distributed diagnosis
approach provide an innovative framework for developing a
comprehensive model-based diagnosis methodology for space-
craft power distribution systems.

IV. MODEL DEVELOPMENT

Our component-based models of hybrid physical systems
are based on the HBG modeling language [11]. HBGs extend
bond graphs [12], and are particularly suitable for diagnosis
because they incorporate causal and temporal information
required for deriving and analyzing fault transients. In bond
graphs, components are represented by vertices, and bonds,
drawn as half arrows, capture ideal energy connections be-
tween the components. Associated with each bond are two
variables: effort, e, and flow, f , and the product e·f defines the
rate of energy transfer through the bond. In the electrical do-
main, effort and flow map to voltage and current, respectively.
1-junctions represent series connections (where all f values
are equal and

∑
e = 0), and 0-junctions represent parallel

connections (where all e values are equal and
∑
f = 0).

Component behaviors are modeled as resistances, R, which
capture energy dissipation in the system (e = Rf ), capaci-
tances, C, (ė = 1

C f ) and inductances, I , (ḟ = 1
I e), which

capture energy storage functions, and sources of flow (Sf )
and effort (Se), which model the flow of energy into and out
of the system. Nonlinearities in the system are modeled as time
varying parameter values, which are defined as functions of
system variables using modulating elements. The constituent
equations of the bond graph elements and junctions define a
set of differential algebraic equations that together describe
the continuous system behavior.

HBGs [11] extend bond graphs by introducing switching
junctions, which act as ideal switches, enabling a junction to
be in either the on or the off mode of operation. Off 1-junctions
behave as sources of zero flow. Similarly, off 0-junctions act
as sources of zero effort. When on, switching junctions behave

(a) Circuit schematic.

(b) Hybrid bond graph.

Fig. 4. Switched circuit example.

as normal junctions. The switching behavior is defined by a
control specification (CSPEC), modeled as a finite automaton
[2], [11], where the state determines whether the junction is
on or off. The overall system mode is defined implicitly by
the individual states of all the CSPECs, and this provides a
concise representation of the hybrid system model.

Consider the example electrical circuit shown in Fig. 4. The
circuit consists of an ac source Se with voltage, v(t), resistors
R1 and R2, inductor L1, and capacitor C1. The series and
parallel connections in the circuit are captured using the 1−
and 0−junctions, respectively. The switch, Sw1, is assumed
to be ideal, and hence, is modeled by a switching 1-junction,
representing a series connection that can be on or off. The
switching junction is denoted by the dashed arrow in Fig. 4b.

In this work, we focus on the diagnosis of single, abrupt,
persistent faults in hybrid systems. We classify faults into two
categories: (i) parametric faults, and (ii) discrete faults. Para-
metric faults, which represent partial failures or degradations
in system components, manifest as abrupt changes in the HBG
model parameter values. Sensor faults are modeled as additive
parametric faults. Discrete faults correspond to differences be-
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tween the actual and expected state of a switching component
in the HBG model, and are modeled using unobservable fault
events in the CSPECs [7].

The ADAPT model includes component models for the bat-
teries, inverters, relays, circuit breakers, dc loads that include
simple circuits, and ac loads that include fans, pumps, and
light bulbs. These components can be composed to form dif-
ferent configurations or subsystems of ADAPT. Faults can be
introduced into these components by changing their nominal
parameter values or by creating an unexpected change in the
mode of their switching junctions. From the HBG models,
we can derive a hybrid state-space formulation which forms
the basis for the hybrid observer and the parameter estimation
scheme, a reconfigurable block diagram which forms the basis
of our simulation models, and the temporal causal graph
(TCG), which forms the basis for performing qualitative fault
isolation from transients.

A. Generating Simulation Models

We use the HBG to automatically generate simulation mod-
els of the system for offline diagnosis experiments. Each mode
of the HBG corresponds to a bond graph model that defines
the continuous behavior within a mode. The computational
model for each mode (e.g., state-space equations or signal
flow graphs) can be derived systematically from this BG model
using well-defined methods [12]. We have developed efficient
methods for incrementally generating the computational model
after a mode change occurs [16], [17], which offers significant
advantages for large hybrid systems like ADAPT, because
it avoids unnecessary pre-enumeration of all system modes.
This scheme has been used to develop the VIRTUAL ADAPT
simulation testbed [6] mentioned earlier. VIRTUAL ADAPT,
implemented in Matlab Simulink [18], includes external wrap-
pers to communicate to the messaging server of ADAPT.
In more recent work in progress, this method is also being
employed to efficiently regenerate the state-space equations
for the observer when mode changes occur.

B. Temporal Causal Graphs

Our model for qualitative fault diagnosis, the temporal
causal graph (TCG), is derived from the bond graph model of
the system. In addition to capturing the system dynamics, the
model explicitly captures the propagation of both parametric
and discrete fault effects on other system variables, which
include the system measurements [1], [19]. The TCG is essen-
tially a signal flow graph whose nodes are system variables
or discrete fault events. The labeled edges represent the qual-
itative relationships between the variables, i.e., equality (=),
direct (+1) or inverse (−1) proportionality, integral (dt), and
parametric dependencies (e.g., 1/R1). The algebraic relations
imply instantaneous propagation effects, whereas the integral
edges imply a delay in the propagation. Links from discrete
fault events to variables may have ±1 labels and additional N
and Z labels, if the fault causes the variable value to go from
zero to nonzero or from nonzero to zero, respectively. The
directionality of these edges is determined by causality, i.e.,
the preferred order for computing the effort and flow variable

Fig. 5. Example TCG for the nominal mode where the switch is off.

values. The causal directions are derived from the bond graph
model [12].

The TCG for the circuit example is given in Fig. 5 for
the mode where the switch is off. If the switch turns on
unexpectedly (represented by fault event Swon

1 ), then the flow
of current through the switch will go from zero to a nonzero
value, which then affects the values of other variables in the
system. A change in a parameter value caused by a fault, e.g.,
R+

1 , cannot cause such discrete changes from zero to nonzero
values or vice versa.

V. MONITORING AND FAULT DETECTION

As illustrated in the FACT diagnosis scheme in Fig. 3,
the fault detector triggers the fault isolation and identification
modules. The robust fault detection scheme combines a hybrid
observer for tracking nominal system behavior and a statistical
hypothesis testing scheme for robust fault detection. The
two components take into account measurement noise and
modeling errors while keeping the false alarm rate low.

A. Hybrid Observer

The hybrid observer combines the use of an extended
Kalman filter (EKF) for tracking continuous system behavior,
and automata for tracking the on/off mode of every switching
junction in the HBG model and making mode transitions
when indicated by the CSPECs [2]. Mode changes produce
a reconfiguration in the HBG model. As a result, the state-
space equations are recomputed automatically, the EKF is
updated, and the tracking of continuous behavior resumes. The
EKF scheme assumes the modeling errors and measurement
noise are uncorrelated Gaussian with zero mean, therefore, the
two covariance matrices that represent the modeling error and
measurement noise are assumed to be diagonal with known
variance values.

The observer receives updated measurements at a rate of
2 Hz, the frequency of the measurement system. However, the
observer must receive measurements at kHz rates to accurately
track ac system behavior, due to the controlled fast-switching
behavior of the inverter. To accommodate this, we execute
the model at the kHz rate, but use the observers to update
state estimates at the 2 Hz data collection rate. All of the dc
measurements contribute to the state update function in the
EKF. For the ac subsystems, we use the instantaneous values
of ac voltage and currents from the model as measured values,
since the rms and phase sensor reading are based on average
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computations and cannot be directly used in the EKF update
functions.

B. Fault Detection

Our fault detection scheme employs separate fault detec-
tors for each measurement, which allows each detector to
be tuned individually to achieve maximum sensitivity for a
given signal. For each measurement we define the residual as
r(t) = y(t)− ŷ(t), where y(t) is the measurement signal, and
ŷ(t) is the estimated output signal generated by the hybrid
observer. The fault detection scheme employs the Z-test to
look for nonzero residual signals [14]. The Z-test requires that
the sample mean and standard deviation of a given population
be known [13]. We estimate the population standard deviation
and sample mean using a sliding window technique that is
illustrated in Fig. 6. A small sliding window (e.g., 5 samples),
W1, is used to estimate the current mean µr(t) of a residual
signal, i.e.,

µr(t) =
1
W1

t∑
i=t−W1+1

r(i).

The variance of the nominal residual signal is computed using
a window W2 preceding W1, where W2 � W1 (e.g., 100
samples). W2 is offset by W1 by a buffer Wdelay (e.g., 50
samples), to ensure that W2 does not contain any samples
after fault occurrence:

µ′r(t) =
1
W2

t−W1−Wdelay∑
i=t−W1−Wdelay−W2+1

r(i)

σ2
r(t) =

1
W2

t−W1−Wdelay∑
i=t−W1−Wdelay−W2+1

(r(i)− µ′r(t))2.

Given a pre-specified confidence level, α, (e.g., α = 95%)
tables provide the bounds z− and z+ for a two-sided Z-test.
The thresholds for the fault-no fault decision, ε−r (t) and ε+r (t),
are computed as:

ε−r (t) = z−
σr(t)√
W1

+ E (1)

ε+r (t) = z+ σr(t)√
W1

− E, (2)

where E is a modeling error term. A computed mean value
µr(t) that lies outside of the thresholds at time t implies
a fault. For practical applications, parameters W1, W2, and
Wdelay, the confidence level α, and the modeling error term,
E of the fault detector have to be tuned experimentally
to optimize performance (i.e., minimize false alarms while
keeping detection sensitivity high) [14].

VI. DIAGNOSER DESIGN

Our approach to diagnosing faults in power distribution
systems, such as ADAPT, combines schemes for diagnosis
from transients in the dc subsystems and changes in steady-
state values for ac measurements, such as rms and phase values
of voltages and currents. We describe how we derive fault
signatures for the two cases. Given the signatures, we analyze

Fig. 6. Sliding windows in the fault detection scheme.

system diagnosability, and based on this analysis, develop the
overall system diagnoser as two interacting diagnosers: the dc
subsystem diagnoser, and the ac subsystem diagnoser, using
our distributed diagnosis methodology.

A. Fault Signatures for DC Measurements

For the dc measurements, the fault signatures are derived
from the transients that result after fault occurrence. Assuming
that the system output is continuous and continuously differ-
entiable except at the points of fault occurrence and mode
changes, the transient response after a fault occurrence can be
approximated by a Taylor series expansion, which is defined
by the changes in magnitude and higher order derivatives in
the signal at the point of fault occurrence [1], [15]. In TRAN-
SCEND, these signatures are represented in a qualitative form:
+ (increase), - (decrease), and 0 (no change) in the magnitude
and derivatives of the residual signal. If a fault produces an
immediate change in the residual, i.e., a discontinuity at the
point of fault occurrence, then the magnitude symbol will be
+ or -, otherwise it will be 0. In previous work, we have
proved that the first change and subsequent slope provide all
of the discriminatory evidence for qualitative fault isolation in
dynamic systems [15]. Therefore, our fault signatures include
two symbols: the magnitude change and slope of the residual
signal. For discrete fault analyses, fault signatures have been
extended to include a third symbol that indicates if a fault
causes zero to nonzero or nonzero to zero value change in a
measurement. Discrete faults cause mode changes at junctions,
and, as a result, variable values linked to this junction may go
from nonzero to zero abruptly (for a junction turning off) or
go from zero to nonzero abruptly (for a junction turning on).
The symbols N, Z, and X, imply zero to nonzero, nonzero to
zero, or no discrete change behavior in the measurement from
the estimate [7].

Fault signatures representing the transient behavior due to
parametric and discrete faults are defined as follows for our
three-symbol representation.

Definition 1 (Fault Signature from Transients). A fault signa-
ture for a fault f in a system mode q defines the qualitative
effect in magnitude, slope, and discrete change in measurement
m due to the occurrence of f .

Fault signatures are derived for each hypothesized fault
f in mode q by performing a forward propagation function
on the TCG [1], [7]. Signatures for the circuit example are
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TABLE I
FAULT SIGNATURES FROM TRANSIENTS FOR THE CIRCUIT WITH THE

SWITCH ON

Candidate VR1 IR2

C+
1 0+,X -+,X

C−1 0-,X +-,X
L+

1 -+,X 0-,X
L−1 +-,X 0+,X
R+

1 -+,X 0-,X
R−1 +-,X 0+,X
R+

2 0-,X -+,X
R−2 0+,X +-,X
Swoff

1 0-,X -*,Z

given in Table I, assuming the voltage source is dc instead
of ac, and variable values are nominally positive, where the
measurements are the voltage across R1, VR1 , and the current
through R2, IR2 . The table shows that the system is not
diagnosable with the selected measurements, because faults
in L1 and R1 cannot be distinguished in this mode.

B. Fault Signatures for AC Measurements

As discussed, analyzing fault transients in the ac domain,
where the components operate at 60Hz, would require sam-
pling of measurements at rates greater than 120 Hz. This
would make the online analysis of fault signatures computa-
tionally infeasible. Besides, as discussed earlier, the ADAPT
system is equipped only with rms and phase sensors for
the voltages and currents in the ac subsystem, and these
sensors generate their output at 2 Hz. Therefore, we resort
to a steady state analysis of the system bond graph to derive
fault signatures for the ac measurements given faults in the
ac components. The HBG model of the system provides the
relations between the component parameter values and the ac
measurements. The parameters for the R, C, and I elements
are replaced by their complex impedance representations in the
ac domain. Given the frequency, ω = 2πf , (f is frequency
in hertz) the impedance of a resistance, R, is ZR = R, a
capacitor, C, is ZC = 1

jωC , and an inductor, L, is ZL = jωL.
The bond graph structure then provides the series/parallel
relations between the voltages across and currents through
the different elements in the circuit (Kirchhoff’s laws), and,
like before, by combining the constitutive relations of the
elements and the junction equations, we can derive the voltage
and current variable relations in symbolic form. By algebraic
manipulation, we get the symbolic form of the expressions
for the rms and phase of these measurements. Computing
the partial derivative of a measurement with respect to a
particular fault variable, provides an expression for the fault
signature in symbolic form. After substituting nominal values
of all other parameters, if the sign of this partial derivative is
always positive (negative) for the considered fault magnitudes,
then the corresponding fault signature is defined to be a +
(-). If the sign cannot be uniquely determined, the ambigu-
ity is represented using a *. Since discrete faults represent
changes in system mode, we determine the signatures by
simply computing the rms and phase values for the different

configurations, and then comparing them to see what effects
the mode changes will have.

Fault signatures for representing steady-state changes are
defined as follows for our two-symbol representation.

Definition 2 (Fault Signature by Steady-state Analysis). A
fault signature for a fault f in a system mode q defines
the qualitative effect in magnitude and discrete change in
measurement m due to the occurrence of f .

To illustrate the approach, we consider the circuit given
in Fig. 4a. The measured signals are the voltage across R1,
vR1(t), and the current through R2, iR2(t). The measurements
include both rms values and phase difference relative to the
source voltage for both measured signals. We assume that the
source voltage v(t) is 120 V rms at 60 Hz, and the parameters
have nominal values of C1 = 0.005 F, L1 = 0.03 H,
R1 = 1 Ω, and R2 = 2 Ω. The switch implies the system
can operate in two mode configurations. We need to analyze
the effects of faults in both modes, q0, where the switch is
off, and q1, where the switch is on. Given the frequency,
ω, the impedances are ZL1 = jωL1, for the inductor L1,
ZC1 = 1

jωC1
for the capacitor C1, ZR1 = R1, for the resistor

R1, and ZR2 = R2, for the resistor R2. Using the bond graph
model as described above, we derive the symbolic expressions
describing the measurements as a function of the inputs and
the impedances, and compute the fault signature matrix for
each mode (see Table II for fault signatures in mode q1):

vR1 =
vR1

Zeq

iR2 =

 0, for mode q0
vZC1,R2

ZeqR2
, for mode q1

where

ZC1,R2 =
(
jωC1 +

1
R2

)−1

Zeq =
{

jωL1 +R1 + 1
jωC1

, for mode q0
jωL1 +R1 + ZC1,R2 , for mode q1

Using these expressions, we can calculate the fault signa-
ture matrix for each mode. The signatures for mode q1 are
shown in Table II. In some cases, the direction of change in
measurement values depends on fault magnitude. For example,
C+

1 will always cause a decrease in the rms value of VR1 , but
C−1 may cause either an increase or decrease in VR1 depending
on its magnitude, as shown in Fig. 7. For its nominal value of
0.005 F, with an increase in C1, the measurement value always
decreases, but for a decrease in magnitude, the measurement
value may go above or below the nominal measurement value,
so we represent the signature in this case as a * (see Table II).
Discrete faults do not produce ambiguous signatures. For
example, when the switch is on, the rms value of IR2 is 2.83 A,
and when off, it is zero, therefore, when unexpectedly going
from q1 to q0, we will observe a decrease in IR2 , and it will
go to zero. This is represented by the fault signature -,Z.
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TABLE II
FAULT SIGNATURES FOR AC MEASUREMENTS FOR THE CIRCUIT WITH

THE SWITCH ON

Fault VR1 φVR1
IR2 φIR2

C+
1 -,X -,X -,X -,X

C−1 *,X +,X +,X +,X
L+

1 -,X -,X -,X -,X
L−1 +,X +,X +,X +,X
R+

1 +,X +,X -,X +,X
R−1 -,X -,X +,X -,X
R+

2 +,X -,X -,X -,X
R−2 -,X *,X +,X +,X
Swoff

1 -,X +,X +,Z -,Z
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Fig. 7. VR1 rms value as a function of C1 magnitude.

C. Distributed Diagnoser Design

Distributed diagnosers make the overall diagnosis approach
more efficient, because they partition the diagnosis task into
smaller subtasks [20]–[22]. In [8], we presented an approach
for designing distributed diagnosers for continuous systems
whose subsystem structure is given (Algorithm 1 in [8]).
In this paper, we extend this approach to hybrid systems,
which allows us to decouple the diagnosers for the dc and
ac subsystems of ADAPT. Our objective is to decompose
the overall diagnosis task into smaller subtasks performed
by local diagnosers such that the local diagnosers generate
globally correct diagnosis results while minimizing the number
of measurements required to be communicated amongst the
local diagnosers.

To generate distributed diagnosers for hybrid systems, we
require the fault signatures for each mode of the system, which
are generated using the techniques previously discussed. Since
mode changes can occur during fault isolation, we also have to
account for the possible interleavings of signatures for differ-
ent modes. The traces formed by measurement deviations and
mode change events can be represented as a finite automaton
that maps states to consistent fault hypotheses [19]. We denote
this finite automaton as DF,M,Q, where F is the set of all
possible faults, M is the set of all available measurements,

and Q is the set of all system modes.
We define a subsystem Si = (Fi,Mi), where Fi is the set

of faults in Si, Mi is the set of measurements in Si. The
different Fi and Mi form partitions of the set of faults, F ,
and measurements, M , respectively. Given κ subsystems, Si =
(Fi,Mi), 1 ≤ i ≤ κ, and DF,M,Q, our design problem is to
construct, for each subsystem, a measurement set M̃i ⊆ M
such that (i) M̃i ⊇Mi is minimal, and (ii) all single faults in
Fi are globally diagnosable by measurements in M̃i.

Definition 3 (Global Diagnosability). A set of faults, Fi ⊆
F is globally diagnosable by M̃i ⊆ M if M̃i can uniquely
isolate every fault, f ∈ Fi, from all other faults in F for every
possible sequence of mode transitions.

Given the set of available measurements, global diagnos-
ability is not always attainable in real-world systems, and,
in fact, we will show in Section VIII that ADAPT is not
globally diagnosable. We first analyze the diagnosability of
the system. If the system is not globally diagnosable for
a set of measurements, we define the notion of “aggregate
faults”. An aggregate fault includes all single faults that are
not distinguishable from one other. Our diagnosis methodology
treats aggregate faults as single faults, and, as a result, the
reduced fault set is guaranteed to be globally diagnosable.

Given Fi and M̃i, we construct a local diagnoser [8],
D

Fi, M̃i,Q
, for each subsystem. By ensuring that each M̃i is

minimal, the local diagnosers share minimal information with
one another.

The procedure for designing diagnosers for a partitioned
hybrid system is presented in Algorithm 1. Our design goal is
to minimize the number of additional measurements, while
ensuring that each subsystem is globally diagnosable. For
each subsystem Si, we assign to remFaultsi the faults in
Fi that are not globally diagnosable using measurements in
Mi. The search is simplified by defining a notion of proximity
among subsystems and using this information to prioritize the
selection of additional measurements for a local diagnoser. We
represent the system, S, as a graph of connected subsystems.
The proximity d is defined as the minimum path length from
Sg to Sh. The search for additional measurements starts from
closer subsystems. When remFaultsi is not empty, we start
by assigning M̃i equal to Mi, and generating a working
measurement set M̃i

d≤1
by pooling in measurements from all

subsystems, Sl, at a distance d ≤ 1 from subsystem Si, i.e.,
M̃i

d≤1
=
⋃

lMl. We select additional measurements from

M̃i

d≤1
−Mi to reduce the number of faults in remFaultsi.

When different measurement combinations provide the same
reductions, we pick the measurement set M̂i that adds minimal
number of external measurements to Mi while making the
maximum number of faults in remFaultsi globally diagnos-
able. The set M̃i is expanded, and remFaultsi is reduced to
a smaller set. If remFaultsi is non-empty, d is incremented,
and the procedure is repeated till remFaultsi is empty. At
this point, we have the local diagnoser D

Fi, M̃i,Q
. We will

show the results of this algorithm on ADAPT in Section VIII,
where we define as subsystems as the dc subsystem, Sdc, and
the ac subsystem, Sac.
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Algorithm 1 Designing Diagnosers for a Partitioned System

Input: κ local subsystems, Si = (Fi,Mi), and DF,M,Q

for each Si do
identify remFaultsi ⊆ Fi that are not globally diagnosable in
DF,Mi,Q.
δ = 1; M̃i = Mi

while remFaultsi 6= ∅ do
identify measurement set M̂i from measurements of sub-
systems Si at a distance d ≤ δ that isolates maximal
r ∈ remFaultsi, and M̃i − M̂i is minimal.
M̃i = M̃i ∪ M̂i

remFaultsi = remFaultsi − r
if remFaultsi 6= ∅ then
δ = δ + 1

construct DFi, M̃i,Q

VII. ONLINE FAULT ISOLATION

The distributed diagnosers are designed offline. We use our
tracking scheme for online fault detection and qualitative fault
isolation, where observed measurement deviations are matched
to predicted fault signatures to isolate faults. In the following,
we describe our method for robust symbol generation, and
the online signature matching scheme for qualitative fault
isolation.

A. Symbol Generation

For each dc measurement, we extract the magnitude and
slope of the deviation, as well as the discrete change feature.
For each ac measurement, we use only the first change and
the discrete change behavior. The changes are abstracted
symbolically to +, 0, -, N, Z, and X symbols, and the computed
symbols form the observed fault signatures that are matched
to predicted signatures during fault isolation.

A robust method based on the Z-test is used for computing
the symbolic features of the residual signal. If the measure-
ment residual, r(t) = y(t) − ŷ(t), is greater than ε+r (t) (less
than ε−r (t)), we assign a + (-) to the magnitude value for the
residual.

The calculation of the slope of a measurement deviation
starts with the estimation of the initial residual value, µr0(td),
after fault detection by computing the average of the residual
samples over a small window ,W3, i.e.

µr0(td) =
1
W3

td+W3−1∑
i=td

r(td + i).

Again using the Z-test, the slope of the residual (i.e., the mea-
surement) is determined over another small, but larger window
(e.g., 15 samples) after the end of the smaller window [14].
The mean value of the measured and expected values of the
signal after fault detection are given by:

µrd
(td+t) =


(

td+Wn−1∑
i=td

r(td + i)

)
Wn

− µr0 , Wn > W3

0, Wn ≤W3

.

It is assumed that the variance of the residual does not change
due to the occurrence of the fault, i.e., σ2

r(t) = σ2
r(td) for all

t ≥ td. The variance of µrd
is σ2

rd
(td +t) ≈ σ2

r/Wn, while the
variance of µr0 is σ2

r0
≈ σ2

r/W3. That is, the uncertainty of
the initial residual value depends on the noise and W3, while
the uncertainty of the mean estimate depends on the noise
and the number of samples used in the calculations. Using a
confidence value α and the corresponding z+ and z− values,
the + slope symbol is generated when:

µrd
> z+σr

(
1√
W3

+
1√
Wn

)
.

Similarly, the - slope symbol is generated when

µrd
< −z+σr

(
1√
W3

+
1√
Wn

)
.

The size of the window used to calculate the mean, Wn, is
increased until the symbol is successfully generated, or Wn

becomes larger than a pre-specified limit, at which the slope
is reported as 0, implying that the true slope is either zero or
unknown but very small.

To compute the discrete change feature, we do not use the
residual, but use the observed and estimated values of the
signal, by again computing the mean of the measured signal,
y(t), and the mean of the estimate, ŷ(t), over a small window,
Wdc:

µy(td) =
1
Wdc

td+Wdc−1∑
i=td

y(i)

µŷ(td) =
1
Wdc

td+Wdc−1∑
i=td

ŷ(i),

where td is the time of fault detection. We wish to determine
whether each signal belongs to a population with zero mean,
and choose the variance of the population to be the variance
of the residual r(t), σ2

r(t), as a good approximation of the true
variance of the zero-mean distribution. Here the thresholds are
computed as:

ε+ydc
= ε+ŷdc

= z+σr(td)√
Wdc

+ Edc

ε−ydc
= ε−ŷdc

= z−
σr(td)√
Wdc

+ Edc,

where Edc is a modeling error term. These thresholds are
the same for fault detection (Equations 1 and 2), only they
are computed for y(t) and ŷ(t) rather than r(t). If µy(td) is
outside its bounds, we say it is nonzero, otherwise we say
it is zero. Similarly, if µŷ(td) is outside its bounds, we say
it is nonzero, otherwise we say it is zero. If the estimate is
nonzero and the measurement is zero, we report Z, and if the
estimate is zero and the measurement is nonzero, we report N,
otherwise, we report X.

B. Distributed Fault Isolation

Observed fault signatures computed using symbol genera-
tion are matched to predicted fault signatures to isolate faults.
Each local diagnoser, e.g., the dc and ac diagnosers, obtains
the symbols for its own measurements. Inconsistent faults
are eliminated, and consistent faults retained in the set of
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hypothesized faults. A globally correct diagnosis result is
reached when: (i) all measurements for a local diagnoser have
deviated and the fault hypothesis set is reduced to a singleton
fault set, or, (ii) a local diagnoser’s hypothesis set is reduced
to a singleton but all of its measurements have not deviated,
and all other diagnosers produce a null hypothesis, i.e., their
candidate sets are empty [8].

Mode changes are handled using the techniques presented
in [2]. If a controlled mode change occurs, such as a relay
turning on or off, the faults signatures for the new mode are
used, and consistent faults must match future measurement de-
viations for the current mode. If an inconsistency is obtained,
autonomous mode changes are hypothesized, such as circuit
breakers tripping, then faults in the hypothesized modes should
be consistent with the predictions in the hypothesized modes.

VIII. EXPERIMENTAL RESULTS

We choose a subset of components in the ADAPT system
to demonstrate our approach. This subset includes one of the
lead-acid batteries, two DC loads, an inverter, and two ac
loads. The models of the dc components can be found in [19],
and the models of the ac components can be found in [23].
A schematic of the subsystem is given in Fig. 8. The battery
acts as a direct non-ideal voltage source for the dc loads. The
inverter connected to the battery produces a constant 120 V
rms, 60 Hz, sinusoidal ac output when the input voltage is in
the range 21-32 V. When the voltage falls below 21 V, the
inverter shuts off automatically. The two dc loads connected
to the battery are purely electrical, while the ac loads include
a light bulb and a large fan. In addition, we also consider
four relays, two of which connect the dc loads to the battery,
while the remaining two connect the ac loads to the inverter.
The available measurements include the rms values of inverter
voltage and current, Vrms and Irms, the phase difference
between the inverter voltage and current, φ, the temperature
of the light bulb, Tbulb, the rotational speed of the fan, ωfan,
the currents through the two dc loads, IL1 and IL2, and the
battery voltage and current, VB and IB .

The fault signatures for the mode where all loads are active
is given in Table III. From the table, we can see that the
system is not globally diagnosable, because Swoff

3 and R+
bulb

cannot be distinguished. We form an aggregate fault from
these two individual faults to apply the diagnoser design
algorithm described in Section VI. To do this, we consider two
subsystems (see Fig. 8), (i) the dc subsystem, which contains
the battery, the two dc loads and the two relays, Sw1 and Sw2,
and (ii) the ac subsystem, which contains the inverter, the ac
loads, and the relays connecting these loads to the inverter,
Sw3 and Sw4. The dc subsystem fault list, Fdc, includes
resistances of the dc loads, RL1 and RL2A, the capacitance and
resistance of the battery, C0 and R1, and faults in the switches,
Sw1 and Sw2. The dc measurements, Mdc, include IL1, IL2,
VB , and IB . The ac subsystem fault list, Fac, includes faults
in the inertia and resistance of the fan, Jfan and Bfan, the
resistance of the light bulb, Rbulb, and faults in the switches,
Sw3, and Sw4. The ac measurements, Mac, include Vrms,
Irms, φ, Tbulb, and ωfan.

Using Algorithm 1, we obtain distributed diagnosers for
the selected subsystems, which naturally falls out of the
decoupling of the systems introduced by the inverter. The
distributed diagnoser for the ac subsystem does not require any
additional measurements from the dc subsystem to isolate its
faults, i.e., M̃ac = {Vrms, Irms, φ, Tbulb, ωfan}. This is clear
from the signatures given in Table III. If a dc fault occurs, no
deviations will be observed on any of the ac measurements,
therefore, the ac diagnoser will not isolate any ac faults.

The dc subsystem, on the other hand, does require ac
measurements to achieve unique isolation. Faults in the ac
subsystem also cause the dc measurements to deviate. To
overcome this ambiguity, the distributed diagnosis design com-
municates the Irms measurement to the dc diagnoser. Since
dc faults do not change Irms, (this is due to the controlled
behavior of the inverter) the dc diagnoser eliminates all local
faults and determines the fault is in the ac subsystem when
Irms deviates. If it does not deviate, the dc diagnoser will
isolate a dc fault and the ac diagnoser will not since it will
not observe any deviations. Due to the automonmous mode
change behavior of the inverter, the dc diagnoser also requires
Vrms, because the ac measurements are affected by a dc fault,
if the fault is such that it causes the inverter to shut off, i.e.,
M̃dc = {VB , IB , IL1, IL2, Vrms, Irms}. If a change occurs in
Vrms, then a subsequent change in Irms is explained by the
inverter shutting off, and not an ac fault.

A. Simulation Results

We first present diagnosis results obtained on the simulation
testbed Virtual ADAPT. For this study, we did not have access
to the phase sensor readings, therefore, we investigate the
effectiveness of our extensions to ac diagnosis in simulation.
We used the simulation model to provide the nominal reference
for fault detection and symbol generation. For this set of
experiments, we inject faults into the configuration where both
ac loads and the first dc load are all online. For the fault
detectors, we selected W1 = 5, W2 = 100, Wdelay = 50,
W3 = 3, Wn = 20, and α = 99.97%. We chose E = 0 for
all measurements except IB , where E = 0.2, and φ, where
E = 0.0001.

The results are summarized in Table IV. In the table, tf
represents the time of fault occurrence, td − tf is the delay
in fault detection, and ti − tf is the time to isolate the fault,
which is given as the point at which a diagnoser last reduces its
fault set. In all cases, the correct fault was isolated. In some
cases, i.e., for C−0 and R+

1 , the slope had to be calculated,
which took an additional amount of time. Note that the fault
R+

bulb, and increase in the bulb resistance, and Swoff
3 , a fault

where Sw3 is stuck off, could not be distinguished, which was
predicted using diagnosability analysis. In the following, we
step through the reasoning of the distributed diagnosers for
two interesting scenarios.

The first scenario represents a fault which is a 5% decrease
in the bulb resistance, R−bulb, at 100 s. The relevant measure-
ment plots corresponding to this scenario are shown in Fig. 9.
This change results in an increase in the phase difference,
which is detected by the ac diagnoser at 100.5 s, and it
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Fig. 8. Selected subset of ADAPT.

TABLE III
FAULT SIGNATURES FOR THE MODE WITH ALL LOADS ON

Fault DC Measurements AC Measurements
VB IB IL1 IL2 Vrms Irms φ Tbulb ωfan

C−0 +*,X +*,X +*,X +*,X 00,X 00,X 00,X 00,X 00,X
R+

1 0-,X 0-,X 0-,X 0-,X 00,X 00,X 00,X 00,X 00,X
R+

L1 0*,X -*,X -*,X 0*,X 00,X 00,X 00,X 00,X 00,X
R−L1 0*,X +*,X +*,X 0*,X 00,X 00,X 00,X 00,X 00,X
R+

L2A 0*,X -*,X 0*,X -*,X 00,X 00,X 00,X 00,X 00,X
R−L2A 0*,X +*,X 0*,X +*,X 00,X 00,X 00,X 00,X 00,X
Swoff

1 0*,X -*,X -*,Z 0*,X 00,X 00,X 00,X 00,X 00,X
Swoff

2 0*,X -*,X 0*,X -*,Z 00,X 00,X 00,X 00,X 00,X
R+

bulb 0*,X -*,X 0*,X 0*,X 0,X -,X -,X -,X 00,X
R−bulb 0*,X +*,X 0*,X 0*,X 0,X +,X +,X +,X 00,X
J−fan 0*,X +*,X 0*,X 0*,X 0,X 0,X -,X 0,X -+,X
B+

fan 0*,X +*,X 0*,X 0*,X 0,X 0,X +,X 0,X 0-,X

Swoff
3 0*,X -*,X 0*,X 0*,X 0,X -,X -,X -,X 00,X

Swoff
4 0*,X +*,X 0*,X 0*,X 0,X -,X +,Z 0,X 0-,X
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Fig. 9. R−bulb fault, where Rbulb decreases by 5%.

generates {R−bulb, B
+
fan, Sw

off
3 } as the initial fault candidate

set. At 101.5 s, the ac diagnoser detects an increase in the
Tbulb. Since only R−bulb is consistent with the observed increase
in Tbulb, all other candidates are dropped by the ac diagnoser,
and a unique candidate is obtained. The dc diagnoser later
observes the increase in Irms, and since no faults in the dc
subsystem can cause an increase in the rms inverter current,
it eliminates all faults.

For a second scenario, a 50% decrease in the Load 1
resistance, R−L1, is injected at 100 s. As shown in Fig. 10,
this fault causes the Load 1 current and the battery current to
increase discontinuously. Both these changes are detected at
100.0 s, and results in the dc diagnoser generating {C−0 , R

−
L1}

as the fault candidates. At 103.0 s, it is determined that neither
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Fig. 10. R−L1 fault, where RL1 decreases by 50%.

measurement exhibited any discrete change behavior, which
does not affect the current candidate list. At 104.0 s, it is
determined that the change in IB is a discontinuity, and that
VB decraesed. The fault C−0 is dropped since it would cause
the battery voltage to increaseinstead, and R−L1 is isolated as
the true fault.

We have also studied in simulation the effect of fault
magnitude and sensor noise on fault detection times and the
fault isolation results. With R−L1, for example, the fault was
detected in less than 0.5 s, on average, for magnitudes of at
least 5% with the different levels of noise. Full details for the
different faults in the dc subsystem can be found in [19].
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TABLE IV
DIAGNOSIS RESULTS FROM SIMULATION EXPERIMENTS

Fault DC Diagnoser AC Diagnoser
td − tf ti − tf Result td − tf ti − tf Result

C−0 at −1% 0.5 12.0 {C−0 } N/A N/A ∅
R+

1 at +200% 1.5 10.5 {R+
1 } N/A N/A ∅

R+
L1 at +50% 0.0 4.5 {R+

L1} N/A N/A ∅
R−L1 at −50% 0.0 4.0 {R−L1} N/A N/A ∅
Swoff

1 0.0 3.0 {Swoff
1 } N/A N/A ∅

R+
bulb at +50% 0.5 0.5 ∅ 0.5 0.5 {R+

bulb, Sw
off
3 }

R−bulb at −5% N/A N/A ∅ 0.5 1.5 {R−bulb}
J−fan at −50% N/A N/A ∅ 0.0 0.0 {J−fan}
B+

fan at +50% N/A N/A ∅ 0.5 4.0 {B+
fan}

Swoff
3 0.5 0.5 ∅ 0.5 0.5 {R+

bulb, Sw
off
3 }

Swoff
4 0.5 0.5 ∅ 0.5 0.5 {Swoff

4 }
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Fig. 11. Nominal system operation.
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Fig. 12. R+
L1 fault, where RL1 increases by 100%.

B. Testbed Results

We have also performed online experiments on the ADAPT
testbed. In online experiments, we have to cope with model
uncertainty in addition to sensor noise, and the observer and
fault detectors had to be tuned for this purpose. To demonstrate
the diagnosis approach, we show the results obtained for a
load fault and a switch fault, and refer the reader to [19] for
additional experiments. In these experiments, we consider a
configuration that includes the battery discharging to the two
dc loads only. The nominal behavior of the system in shown
in Fig. 11.

For a first scenario, a 100% increase in the Load 1 resis-
tance, R+

L1, is manually injected at 439.5 s in mode q11. The
measured and estimated outputs are shown in Fig. 12. The in-
crease in resistance causes a discontinuous drop in the current,
detected at 440.0 s. Since the slope has not yet been com-
puted, the possible fault candidates are {R+

1 , R
+
L1, Sw

off
1 }.

At 441.0 s, an increase is detected in VB(t). Since I−L1 cannot
affect VB(t), it is dropped. R+

1 is also dropped because it
would have decreased, and not increased, the battery voltage.
At 442.5 s, it is determined that no discrete change in IL1(t)
occurred, so R+

L1 is isolated as the true fault.
We now investigate an unexpected switch fault. At 375.5 s,
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Fig. 13. Sw1 turns off.

Sw1 turns off without a command. The measured and esti-
mated outputs are shown in Fig. 13. As a result of the fault,
IL1(t) goes immediately to zero, and VB(t) increases as a
result of less current being drawn. The fault is detected at
376.0 s, and the symbol generator reports a decrease in IL1(t).
The initial fault hypotheses are then {R+

1 , R
+
L1, Sw

off
1 }. At

376.5 s, the increase in VB(t) is detected, so the diagnosis
reduces to {R+

L1, Sw
off
1 }. At 378.5 s, the symbol generator

determines that I−L1 went to zero, and therefore Swoff
1 is

isolated as the true fault. Except for the discrete change behav-
ior of IL1(t), the switch fault produces the same qualitative
signatures as the load resistance fault. Therefore, it is clear that
the additional symbol is necessary to discriminate between the
faults.

IX. CONCLUSIONS

Applying model-based diagnosis techniques to real-world
systems provides many challenges, including the building of
accurate system models. The modeling task is complicated
because details of component models are often unavailable,
interactions between components are not fully documented,
and sufficient data may not be available to estimate the
parameters of the model. We faced these issues when modeling
a number of components of the ADAPT system – the battery,
the inverter, the fan, and the pump.

Our FACT tools greatly facilitate synthesizing the different
modules of the diagnosis system and the VIRTUAL ADAPT
testbed. However, setting the parameters of the observer and
fault detectors are also critical tasks for accurate system mon-
itoring, avoiding false alarms, and correct symbol generation.
Coming up with the right parameter values involves running
a number of systematic experiments. In some cases it is
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hard to guarantee false alarm rates because the nature of the
modeling errors and measurement noise may be unknown. In
our work, assuming Gaussian distributions, and estimating the
measurement noise variance online worked well.

We extended our traditional hybrid diagnosis approach to
include steady-state analysis for ac systems, which provided
us with fault signatures for ac and dc measurements. Based
on the signatures, we performed diagnosability analysis of the
system and designed distributed diagnosers for the heteroge-
neous dc and ac subsystems. In future work, we will perform
additional online experiments to test our fault detection and
symbol generation strategy for a sensitivity to a variety of
fault magnitudes under different sensor noise profiles. We are
also improving our parameter estimation scheme for use on
ADAPT, and would like to provide confidence estimates when
multiple candidates are retained after fault isolation. Ongoing
work is also further extending our techniques to deal with
incipient faults.
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