
1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE
2 IEEEAC paper#1397, Version 1, Updated 2009:12:09

Configurable Hardware-Based Radio Interferometric

Node Localization
Sándor Szilvási, János Sallai, Isaac Amundson, Péter Völgyesi, Ákos Lédeczi

Institute for Software Integrated Systems
Vanderbilt University, 2015 Terrace Place, Nashville, TN 37203, USA

{sandor.szilvasi, janos.sallai, isaac.amundson, peter.volgyesi, akos.ledeczi}@vanderbilt.edu

Abstract—Wireless ad-hoc sensor networks are typically

deployed randomly in space to gather information about the

physical world. In these spatially random sensor networks,

one of the fundamental problems is precise node

localization along with the key requirement to keep node

cost at minimum. Existing radio interferometry-based node

localization techniques achieve cm resolution using only

low-cost radio chips readily available on sensor nodes. This

paper proposes an alternative hardware-based solution for

the signal processing part of such a technique. We show that

our approach tolerates a much wider range of interference

frequencies while freeing up precious computational and

storage resources on the sensor node. The proposed ranging

functionality can eventually be included in current COTS

radio transceiver chips, thus accurate localization will be

available on the nodes, without a significant additional cost

in computation or price.

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. RELATED WORK ..2
3. PROPOSED ALGORITHM DESCRIPTION3
4. FPGA IMPLEMENTATION ..4
5. RESULTS AND CONTRIBUTION ...7
6. CONCLUSION AND FUTURE WORK9
ACKNOWLEDGEMENTS ..9
REFERENCES ..9
BIOGRAPHY .. 10

1. INTRODUCTION

In the past decade, considerable research effort has been

expended on wireless sensor network (WSN) applications.

These WSNs usually consist of tens, hundreds or thousands

of spatially distributed sensor nodes that cooperate to

achieve a common goal. In order to do that, nodes must

perform several tasks such as sensing, local and cooperative

processing of the sensed data and establishing/maintaining

the wireless network connection. In several applications the

individual nodes in the sensor network are deployed

randomly, but the precise location information of the nodes

is crucial for the application. Such applications include

transient event detection-based sniper localization [1] and

tracking periodic signal sources via beamforming [2]. Both

of these call for an accurate and reliable node localization

method.

One way to classify node localization methods is based on

the signal modality they rely on. A wide range of these

modalities exist, such as acoustic sound and ultrasound,

infrared and visible light, and radio waves. The particular

choice of signal modality influences the attainable accuracy,

power-efficiency, and the hardware requirements of the

localization – factors that are of great significance in WSNs.

The demand for small-size sensors with considerable

resource constraints, built from cheap and disposable

hardware components, inherently determine the method that

can be used in a particular WSN application.

The Global Positioning System (GPS) is based on radio

signals and is a readily available, widely used technology

for localization, providing an adequate positioning solution

for various applications. However, the hardware

components required to compute the location estimate at

each GPS receiver are expensive and computationally

demanding, rendering GPS less desirable for WSNs.

Furthermore, GPS requires line-of-sight to at least four

satellites, thus this localization method is unavailable

indoors, or in cluttered urban and forested environments.

Sensor node localization algorithms are usually a three-step

process [3]. The first step is meant to determine the spatial

relationship between the nodes, and is commonly referred to

as ranging. This low-level step may utilize measurements

based on the above mentioned signal modalities in order to

derive relative distances and/or bearings between sensor

nodes. The ranging accuracy is crucial regarding the overall

localization performance. Therefore, a calibration step is

performed to compensate for errors due to hardware

manufacturing differences and varying operating conditions.

Both the ranging and calibration processes are calculated on

the sensor nodes, however, the localization step is often

computed in a centralized manner. Localization resolves the

relative or absolute positions of the nodes by fusing the

ranging measurements, and is often formulated as an

optimization problem. Such a multi-step process that

achieves centimeter-resolution accuracy is the Radio

Interferometric Positioning System (RIPS) [4].

The main idea of RIPS is to utilize the low-cost radio chips

already available on the sensor nodes for localization.

Earlier approaches required CPU-intensive signal

processing algorithms – tying up resources of the typical

low power 8-bit microcontroller architectures used on these

sensor platforms. In this paper, we propose an alternative

hardware-based ranging solution for RIPS that can be

included in future radio chips to support precise node

localization in WSNs. Results show that our approach out-

performs the pre-existing RIPS solution with regards to

robustness, accuracy and speed.

The remainder of this paper is organized as follows. In

Section 2, we briefly overview the ranging step of the RIPS

algorithm. In Section 3, we describe our proposed method

for enhanced ranging accuracy. In Section 4, we present a

solution using a prototype sensor node based on

reconfigurable hardware. Then, we evaluate the

performance of our solution using real-world radio signal

measurements and make a comparison with previous results

in Section 5. Finally, we conclude in Section 6.

2. RELATED WORK

The Radio Interferometric Positioning System was

developed as a means for accurately determining relative

position of a set of sensor nodes over a wide area by only

using the onboard radio hardware. The randomness in the

initial phases of the local oscillators on the transmitter and

receiver nodes prohibits using the phase of the RF carrier

directly for distance measurements. Instead, RIPS employs

transmitter pairs at close frequencies for generating an

interference signal. The envelope phase of the interference

signal is independent of the phase of the receivers. The

ambiguity in the phase at the transmitter side is eliminated

by using a pair of receivers for measuring the phase offset

between the receiver pairs. The pairwise phase differences

between a sufficient number of participating nodes

constrains each node to a unique position in the sensing

region. RIPS was shown to have an accuracy of 3 cm and a

range of up to 160 meters.

RIPS was originally implemented on the COTS Mica2 mote

platform [5]. These resource-constrained devices have a 7.4

MHz processor, 128 kB program memory (ROM), 4 kB

RAM, ADC with 9 kSPS sampling rate, and a CC1000

tunable radio transceiver [6] that operates in the 433 MHz

ISM band. Although the radio hardware is quite versatile

for its size and cost, 433 MHz is too high to analyze the

received signal directly.

However, the phase and frequency of the envelope signal

can be measured by making successive reads of the received

signal strength indicator (RSSI). The phase of this low-

frequency signal can be estimated with adequate accuracy,

less than 5% error, using limited processing power and

currently available time-synchronization methods (<5 us)

[7].

Figure 1 illustrates the approach. Two nodes, A and B,

transmit pure sinusoids at respective frequencies fA and fB,

such that fB < fA. The two signals interfere, resulting in an

interference signal with beat frequency |fA – fB|. The phase

offset between receiver pairs is measured, which is a linear

combination of the distances between the four participating

nodes:

)2(mod
2





 ACBCBDAD dddd 

Figure 1: The Radio Interferometric Positioning System

Due to bandwidth limitations, the raw RSSI signal cannot be

transmitted to the base station, and therefore must be

processed on the mote. However, signal analysis on the

resource-constrained mote hardware is non-trivial, involving

both online and post-processing steps. During the online

processing step, the RSSI signal is placed into a 256-byte

buffer, one sample at a time upon each A/D converter

interrupt. The clock speed and sampling rate limit the

processing to approximately 820 CPU cycles per sample.

Upon each interrupt the raw sample is incorporated into a

moving average in order to filter out signal noise.

Amplitude is determined by collecting the minimum and

maximum peak values from the first 10% of the buffered

samples, enough to cover at least one period. The amplitude

is used as a signal quality indicator, as well as for

determining a threshold for peak detection. The peaks are

indexed, and are used to determine the frequency and phase

of the signal in the post-processing step.

Post-processing is run after the buffer is full. The indexed

peaks are used to determine the signal period, and outlying

peaks are discarded. Signal frequency is determined by

taking the reciprocal of the average period length.

Similarly, signal phase is estimated by averaging the phases

of the filtered peaks. Upon completion of the post

processing step, the computed signal amplitude, frequency

and phase are sent to the base station where the localization

algorithm is run. The post-processing frequency and phase

estimation of the RIPS algorithm takes less than 10,000

cycles per measurement and yields to a phase measurement

error of approximately 0.09 radian (approximately 5

degrees).

3. PROPOSED ALGORITHM DESCRIPTION

The goal of our proposed FPGA-based RIPS algorithm is to

improve the performance of the original RIPS by estimating

the phase of the interference signal envelope in a faster,

more robust and more accurate way. According to RIPS,

two transmitter nodes transmit pure sine waves at

frequencies f1 and f2 = f1 + f₀ respectively, which produce a

signal with an envelope frequency of f₀. The goal of the

phase estimation algorithm is to determine the phase of the

beat signal at a given time instant (t₁) after the start of

reception (t₀). That is, the problem can be summarized as

follows:

Given a starting time t₀ and an beat signal s(t) determine

the phase of the envelope of s(t) at time t₁ (t₁ > t₀).

The current RF frontend in our hardware is integrated into

the radio chip, which mixes the RF signal down to an

intermediate frequency (IF). However, this IF signal

contains not just the frequency components f1 and f2. Rather,

it is distorted by noise, high frequency harmonic

components and significant amount of DC-bias. Most of

these originate from either the antenna or the radio chip, and

therefore have to be removed to enable robust and accurate

phase estimation. The high-level block diagram of the

proposed phase estimation algorithm is shown in Figure 2.

First, the IF signal is fed through several signal shaping

stages, removing the carriers and the DC bias in order to

obtain the fundamental component of the envelope signal.

Then, this signal is fed into a Phase-Locked Loop (PLL) as

a reference to lock-on. Once the pre-calculated ∆t = t₁ - t₀
PLL lock-in time elapses, the actual phase of the PLL is

captured. This phase value represents the output of the

phase estimation algorithm.

Figure 2: High level design of the Phase Estimation

algorithm

IF signal shaping

The signal shaping part of the phase estimation process

consists of five consecutive stages in order to gain a DC-

unbiased smooth envelope from the IF signal, while

exploiting parallelism and keeping resource demands low.

Parallelism is exploited by running the stages in a pipeline,

while resource usage is kept low by utilizing multi-rate

signal processing techniques, that is, filtering the IF signal

at a significantly lower rate. The detailed dataflow diagram

of these stages is shown in Figure 3.

Figure 3: IF signal shaping stages with decimation and

interpolation

Consider an ideal IF signal that consists of two spikes at f1

and f2, as shown in Figure 4 (a). In order to access the

envelope, the IF signal is simply multiplied by itself. By

squaring the signal, the linear combinations of the original

frequencies appear in the spectrum raising periodic

components at 0 Hz (DC), f2 - f1, 2f1, f1 + f2 and 2f2, as

depicted in Figure 4 (b).

Four of these components have to be suppressed to access

the smooth f2 - f1 component corresponding to the envelope.

This can be achieved by applying appropriate filters to the

squared signal. Constructing filters operating at the original

1 MSPS frequency is extremely resource-intensive,

therefore, decimation is performed first. Decimation helps

relax the filter specifications and allows more time for

processing each sample. Therefore, the squared signal is

decimated by a factor of R using a decimation filter. The

sketch of the resulting spectrum is depicted in Figure 4 (c).

Note that some high-frequency components transform into

the spectrum due to the non-ideal low-pass characteristic of

the anti-alias filter.

The down-sampled signal is then further smoothed by a

low-pass filter with a cut-off frequency at slightly above

f2 - f1. The resulting spectrum that is free of the three higher

frequency components can be seen in Figure 4 (d).

The signal after the third stage is still highly DC-biased.

This DC component is removed in the fourth stage by a

high-pass filter. The spectrum of the filtered, hence DC-

unbiased signal is depicted in Figure 4 (e).

Finally, an interpolating filter is utilized in the fifth stage in

order to up-sample the signal and to suppress resulting

images. The corresponding spectrum is sketched in Figure

4 (f).

Phase-Locked Loop

The RIPS algorithm requires the transmitters to start

transmission for phase measurements in a time-

synchronized manner. This instantaneous switching

produces transients in the received RF and the down-mixed

IF signals. The transients in the IF signal also recur on the

output of the filter structure that is on the input of the PLL,

which can adversely affect the PLL lock-in time. Therefore,

a timer logic is utilized to disable the PLL during the

transient, as depicted in Figure 2. The PLL is enabled by the

timer logic only after a fixed time delay, ensuring that the

PLL receives a transient free, smooth beat signal from the

Signal shaping module that can be used as a reference

signal.

The PLL module is realized as an All-Digital PLL

(ADPLL), which is a simplified version of the Jitter

Bounded DPLL described in [8]. The Jitter Bounded DPLL

is a hardware-friendly PLL implementation that can produce

a phase aligned output signal with a frequency matching that

of the input (reference) multiplied by a rational number

from a given range, and a jitter error that is below a well

defined and adjustable bound. It uses a logarithmic search

approach to find the input frequency in the range of 0 Hz to

the sampling frequency, and adjusts the output frequency

accordingly. This search is carried out in a fixed number of

steps determined by the internal phase representation bit-

width and the range of frequencies to scan.

Our implementation is simplified in the sense that it

produces an output with exactly the same frequency as the

input signal and that it tries to acquire a lock on the input

signals from the range of approximately 0 Hz to a several

times f2 - f1, that is, the nominal frequency of the received

envelope signal.

4. FPGA IMPLEMENTATION

Throughout the design process, an FPGA-based sensor

board (SB) was used as an experimental platform. The SB

and its block diagram are shown in Figure 5 and Figure 6

respectively. The heart of the SB is a Xilinx Spartan-3L

XC3S1000 FPGA. This low-power FPGA model from

Xilinx is running at 20 MHz system clock and has 1 million

gate equivalent programmable logic resources suitable for

implementing fairly complex signal processing algorithms.

The rest of the SB is built around the FPGA. The FPGA

configuration data is stored in a Xilinx Platform FLASH

memory and is read automatically upon power-on. An 8-

Mbyte pseudo-SRAM (pSRAM) is utilized to store

intermediate results from the application or to serve as a

sample buffer for high sampling rate measurements. The

70 ns clock cycle pSRAM has 16-bit wide data lines which

makes it suitable to store up to 4M 16-bit samples at a rate

of 1 MSPS. High speed communication between a PC and

the FPGA on the SB is supported by an FTDI USB

controller providing a Virtual UART communication

channel. This channel can be used for downloading samples

from and for tuning parameters in the FPGA. The eight

LEDs residing symmetrically around the FPGA are also

directly attached to the FPGA pins rendering them a useful

tool to visualize inner states. The purpose of the low-cost

CC1000 radio chip included in the SB is twofold. On one

hand it is connected to the FPGA via an SPI port and

therefore it can be used for ―regular‖ radio communication.

On the other hand, either the power present in the received

Figure 4: Schematic spectrum of the received IF signal

(a), IF signal square (b), after decimation by a factor of

R (c), low-pass filtering (d), high-pass filtering (e) and

interpolation (f).

radio signal or the down-mixed intermediate frequency (IF)

signal is accessible on the RSSI/IF pin of the CC1000. This

analog signal is then sampled by a 12-bit ADC, connected

to the FPGA as an SPI slave module, at a rate of up to 1

MSPS.

Figure 5: FPGA-based sensor board

Figure 6: Block diagram of the FPGA sensor board

The FPGA design of the RIPS phase estimation algorithm

consists of several modules implemented as register transfer

level (RTL) VHDL modules. These modules are essentially

signal processing blocks that were either generated with

MATLAB toolboxes or were directly written in VHDL.

There are, however, some controller functionalities of

sequential nature that were implemented using a simple

soft-core processor.

The high-level block diagram of the entire FPGA design is

described in Figure 7. The IF signal received from the

CC1000 radio chip is sampled with a 12-bit A/D converter

at 1 MSPS (not shown). Based on the settings dictated by

the on-chip PicoBlaze controller, the samples are then either

routed to the recorder or to the signal shaping block of the

RIPS phase estimator module. Raw recordings obtained

through the upper branch were used to experiment with, and

to help determine specifications for and to design the

appropriate filters in MATLAB. On the other hand, the

lower branch carries out the actual phase estimation. Once a

phase estimation result is available, an interrupt is generated

for the PicoBlaze controller which, in return, reads and

forwards it to the FTDI USB controller. A detailed

description of the individual modules is presented below.

RIPS Phase Estimator module

The Phase Estimator module, found in the lower branch in

Figure 7, logically encapsulates the Signal shaping and

ADPLL modules and provides timing control logic, as

shown in Figure 2. It receives the 12-bit IF sample values as

its input at a rate of 1 MSPS and provides the estimated

phase as its output. The received IF signal is expected to

have dominant frequency components f1 and f2, providing

an interference frequency of f2 - f1 = 1 kHz ± 500 Hz.

All the functionalities of the RIPS Phase Estimator module

were first developed in MATLAB using ―synthetic‖ pure

sine wave input signals and double precision floating point

numeric representation as a proof of concept. The input

signal was replaced with actual recordings, and later all the

internal variables were turned into fixed-point values of

appropriate precision. Once the corresponding VHDL

modules were created, they were functionally verified by

bitwise matching the MATLAB and VHDL (ModelSim)

simulation results.

Signal shaping module

The Signal shaping module contains a hardware multiplier

and a set of multi-rate filters to extract the 1 kHz beat signal

and to suppress all the other components. This module is

always enabled and has the structure shown in Figure 3 with

a decimation and interpolation rate of R = 16.

The first and last filter stages are responsible for the sample

rate conversion. Cascaded Integrator Comb (CIC) decimator

and interpolator filters are utilized that provide a resource-

economic low-pass filter to overcome anti-aliasing and anti-

imaging, respectively [9]. The CIC decimator in the first

stage operates at 1 MSPS and down samples the IF signal

by a factor of R = 16 to 62.5 kHz. The CIC filter has M = 2

stages, meaning that the output has to be compensated by a

constant factor of 𝑅𝑀 = 256.

The low-pass filter at the second stage is intended to

eliminate components at frequencies higher than 1 kHz by

providing a stopband attenuation of 30 dB for frequencies

higher than 2 kHz. The selected filter structure is a 72-tap

symmetric FIR filter that has to operate at 1 MSPS / R =

62.5 kHz. Since the system clock frequency of 20 MHz is

significantly higher, there is enough processing time to

calculate the filter output serially, using a single hardware

multiplier.

The high-pass filter at the third stage aims to remove the

DC content of the signal. To achieve the steep transitions

dictated by the 50 dB stopband attenuation below 1 Hz

without affecting the frequency components around 1 kHz, a

114-tap symmetric FIR filter structure is used. This filter

also operates at the reduced 1 MSPS / R = 62.5 kHz

frequency.

The CIC interpolator at the last filter stage is a low

hardware cost implementation of an interpolator and an anti-

imaging filter. It uses 3 stages to upsample the signal by a

factor of R = 16 and, therefore, to restore it to the original

1 MSPS sampling rate.

ADPLL module

The detailed block diagram of the ADPLL module is shown

in Figure 8. The ADPLL is continuously fed through the

REF FREQ signal with the output of the Signal Shaping

module at a rate of 1 MSPS. However, the samples of the

f2 – f1 = 1 kHz input signal are ignored until the filter

transients decay and the ADPLL is enabled. Once enabled,

it uses the input as a reference to adjust the frequency and

phase of an internal digitally-controlled oscillator (DCO).

The DCO uses the Phase register as an accumulator to store

its actual phase with 20-bit precision and to increment it by

the content of the ∆-Phase register in every clock cycle. The

actual phase, the value of the Phase register, is continuously

monitored by a DCO freq counter to compare the frequency

of the internal DCO and the reference signal. Comparison is

done by counting the number of DCO signal periods that

occur under one period of the reference signal. The counter

value is connected to the Zero comparator, which detects

the occurrence of too many or too few DCO periods,

indicating that the DCO frequency is respectively too high

or too low. Based on the Zero comparator output, the Phase

register control adjusts the content of the ∆-Phase register,

which is done in a Successive Approximation Register

(SAR) fashion. SAR calibration means that the appropriate

∆-Phase register value is searched by successively adding

to it or subtracting from it a logarithmically decreasing

value in every reference signal period. Therefore, in the case

of our N = 20-bit wide ∆-Phase register, it takes N-1 = 19

steps to set the phase step value accurately. The final value

of the ∆-Phase register corresponds to approximately

1 kHz. Hence, by using this a priori information, only a

small 2𝑝 -size (p = 12) subspace, that corresponds to the

0 Hz to 4 kHz range, has to be searched during the

Figure 7: High-level block diagram of the phase estimator FPGA design

Figure 8: Block diagram of the ADPLL module

successive approximation procedure (compared to the

original 2𝑁 possible values). Synchronization of the DCO

signal to the reference signal is achieved by resetting both

the DCO freq counter and the Phase register on the rising

edge of the reference signal.

Once the DCO frequency is set by the above method, a fine

tuning mechanism provided by the Phase comparator takes

place. Based on the actual value of the Phase register at the

time of the rising edge of the reference signal, the Phase

comparator tells if the DCO still leads or lags, (i.e., too fast

or too slow, respectively). One LSB is added to the ∆-Phase

register when lead is indicated and one is subtracted when

lag is detected.

Recorder module

The Recorder module in the upper branch in Figure 7

provides an alternative data path for the received samples.

First, IF input samples are buffered into the external

pSRAM memory in a circular buffer. While continuously

recording, a simple threshold-based state machine watches

for a trigger event to occur. Once the trigger conditions are

met, a number of additional samples are stored in the

pSRAM. After that, the buffer content is accessible through

the USB module.

PicoBlaze processor

The PicoBlaze soft-core processor shown in Figure 7 is a

simple controller used to deal with low-level operations

such as setting and reading register values of the different

modules while presenting a relatively high-level interface

through the USB controller. For that, the PicoBlaze core

accepts text commands received through a (virtual) serial

COM port. These include automated parameter setting for

more complex operations (e.g. frequency setting of the

CC1000 radio module) and direct read/write access of both

the FPGA registers and the CC1000 registers.

USB module

The USB controller module is the driver for the FTDI USB

chip found on the sensor board. It provides a convenient

interface for other modules of the design including the

PicoBlaze processor and the Recorder module to

communicate through the USB port via a Virtual COM Port.

The Recorder module is always granted access first in order

to achieve high transfer rates while the PicoBlaze processor

has a lower priority. The latter is connected to the USB

controller module to send and receive parameter values and

to report phase estimation results.

5. RESULTS AND CONTRIBUTION

In our experimental setup there were two transmitters and

one receiver node. Transmitter SB nodes were replaced with

a single software-defined radio (SDR) [10, 11] equipped

with two radio front-ends in order to synthesize interfering

radio signals at 433 MHz and 433 MHz + 1 kHz with

precise frequency separation. Since the SDR operates from a

single clock source (single oscillator) only, the frequency

uncertainty originating from differences and instability in

the internal oscillator of the separate nodes were eliminated.

On the receiver side, we used the SB shown in Figure 5 to

record the IF signal and evaluate the estimation accuracy

offline.

Evaluating a single measurement, the spectra of the original

IF signal and that at the output of the different filter stages

are shown in Figure 9 (a). The spectrum of the IF signal

show significant components around DC and somewhat

below 160 kHz. The two dominant frequency components at

156 kHz and 157 kHz correspond to the received two

interfering sinusoidal signals, whereas the side lobes ±

12 kHz apart from these are likely to occur due to the

spurious harmonic content already present in the received

RF signal and due to the non-linearity added by the radio

front-end. When multiplying the signal by itself, the sum

and difference frequencies appear in the spectra as reflected

in Figure 9 (b). The sum frequencies are largely attenuated

by the CIC decimation filter, while the components of the

difference frequencies, around 1 kHz and DC, remain

undamped. There are, however, components that

transformed into the 0 Hz to 1/R MSPS (62.5 kHz)

spectrum due to the decimation. The low-pass filter clearly

suppresses these over 2 kHz and the high-pass filter

removes the DC-content as shown in Figure 9 (d) and (e).

As a result, the only remaining component is the 1 kHz

envelope signal that is restored to the original 1 MSPS

sampling rate by the CIC interpolator filter.

Phase estimation accuracy

Accounting for imprecision in the frequency of the

transmitted signals, and hence in the interference frequency,

the performance of the RIPS Phase Estimator algorithm was

evaluated over a large range of frequencies around 1 kHz.

First, the phase estimate output of the RIPS Phase Estimator

was calculated for a given recording using fixed-point

simulations. This result was then compared to a reference

phase, defined as the phase corresponding to the

interference frequency in the high resolution DFT of the

filtered IF signal. Repeating the experiment 50 times at the

same interference frequency, we determined the average

phase estimation error over the 100 Hz – 2100 Hz frequency

range. The results summarized in Figure 10 indicate a robust

operation in the 400 Hz – 1500 Hz range with an average

error of less than 0.03 radian (approximately 2 degrees) on

each tested frequency. That corresponds to an accuracy that

outperforms the former RSSI-based RIPS algorithm by

more than 60%.

Figure 10: Mean deviation of phase measurements at

different interference frequencies

Phase estimation speed

When measured from the turn-on time of the IF signal, the

processing time of the phase estimation algorithm consists

of two dominant parts. The first one is the signal shaping

transient length that mainly originates from the delays

introduced by the filter structure. Since only CIC and FIR

filters are used in the design, a finite upper bound can easily

be obtained by summing the individual filter impulse-

responses. The latencies caused by the multiplier and the

CIC filters are on the order of microseconds and are

therefore negligible compared to the FIR filters operating at

the relatively low 62.5 kHz sampling rate. The 72-tap low-

pass filter and the 114-tap high-pass filter add 1.152 ms and

1.824 ms latencies, respectively, resulting in a total latency

of approximately 3 ms for the signal shaping module.

The second part is the time associated with the ADPLL

lock-in time. The modified architecture of the ADPLL

searches for the correct ∆-Phase register value only in the

range of 0 to 2𝑝 , where p = 12. Setting each bit in the

∆-Phase register requires one period of the filtered

interference signal, thus resulting in an upper bound of 12

times the lowest interference frequency expected. Assuming

that the two received RF signals are at least 500 Hz apart,

the maximum ADPLL lock-in time can be estimated to take

24 ms. That is, the overall processing time is 27 ms when

measured from the start of a transient (e.g. start of

reception) and neither the filter variables are properly filled

nor the ADPLL has acquired the lock yet. However, after

the ADPLL locked in, the phase information of the DCO,

and therefore, that of the input signal, is updated and

available in every 1 MSPS clock cycle. Also, measurements

on several adjacent channels, needed by RIPS for phase

disambiguation, can be carried out much faster if the radio

signals are not turned off completely between channel

hopping. We have yet to investigate the exact gain in these

situations.

Hardware resource requirement

Timing reports showed that the current design is capable of

running at the targeted 20 MHz system clock frequency. A

summary of resource utilization is shown in Table 1, and

Figure 9: Offline evaluated spectrum of the received

IF signal (a), IF signal square (b), after decimation by

a factor R = 16 (c), low-pass filtering (d), high-pass

filtering (e) and interpolation (f)

indicates moderate usage of the resources available in the

XC3S1000 Spartan-3L FPGA. The overall design uses one

quarter of the Flip Flops and 4-input LUTs available in the

FPGA. Clearly, the majority of the Flip Flops are utilized by

FIR filters as storage elements. Two thirds of the LUTs in

the design are also harnessed to the FIR filters found in the

phase estimator module, typically as distributed memory for

FIR filter coefficients. Since coefficients are stored in

LUTs, only one block-RAM is used in the design, namely to

store the program code of the PicoBlaze processor. Table 1

also shows that three hardware multipliers were utilized.

One of the three is used to multiply the input signal by

itself, while the other two are exploited by the FIR filters,

respectively.

Available

Total

Design

RIPS Phase

Estimator

Flip Flops 15,360 4,055 (26%) 3,637 (23%)

4-input LUTs 15,360 3,079 (22%) 2,262 (15%)

Block RAMs 24 1 (4%) 0 (0%)

Multipliers 24 3 (12%) 3 (12%)

Table 1: Device Utilization Summary

6. CONCLUSION AND FUTURE WORK

The characteristics of ad-hoc WSNs require us to look at

more than the pure signal processing problem itself when it

comes to distributed real world applications. Additional

steps include the configuration and maintenance of the

wireless network topology, time-synchronization and

localization of the individual nodes. We contributed to the

node localization problem by providing a hardware-based

solution that reduces the average error of the phase

estimation step of the RIPS algorithm by 60%. We expect a

speedup and/or accuracy improvement in the overall RIPS

localization process; however, these metrics still have to be

evaluated.

The FPGA-based prototype realization and the

corresponding utilization data suggest a feasible hardware-

oriented implementation. We recommend the inclusion of

such phase estimator logic in low-cost radio chips (e.g. the

CC1000) to support RIPS-based precise node localization

on WSN nodes, without causing significant overhead in the

processing unit. Even though the solution presented could

already be implemented in radio chips, there is still room for

improvement. Analog filter solutions should also be

examined, while in the case of the same digital filter stage

approach, the impact on the accuracy of filter word length

reductions should be investigated. The processing time is a

parameter our solution did not improve significantly.

However, since the algorithm spends the bulk of its time

waiting for the ADPLL to lock, replacing the SAR approach

with a faster converging one could speed up the phase

estimation process drastically.

Taking a look at the big picture, the RIPS localization

algorithm heavily relies on the presence of an accurate time-

synchronization algorithm in the WSN. Hardware support

for clock synchronization would also considerably reduce

the workload on the processing unit and increase the

synchronization accuracy.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grant CNS-

0721604, ARO MURI Grant W911NF-06-1-0076 and US

Army SBIR Grant W15QKN-08-C-0440.

REFERENCES

[1] Ledeczi, A., Nadas, A., Volgyesi, P., Balogh, G., Kusy,

B., Sallai, J., Pap, G., Dora, S., Molnar, K., Maroti, M., et

al., "Countersniper System for Urban Warfare", ACM

Transactions on Sensor Networks, vol. 1, pp. 153--177,

November, 2005.

[2] Kushwaha, M., Amundson, I., Volgyesi, P., Ahammad,

P., Simon, G., Koutsoukos, X., Ledeczi, A., and Sastry, S.,

"Multi-modal Target Tracking using Heterogeneous Sensor

Networks", 17th International Conference on Computer

Communications and Networks (ICCCN 08), St. Thomas,

Virgin Islands (USA), 2008.

[3] Kusy B. "Spatiotemporal Coordination in Wireless

Sensor Networks", Nashville, TN, USA, August 2007.

[4] Maroti, M., Kusy, B, Balogh, G., Volgyesi, P., Molnar,

K., Nadas, A., Dora, S., and Ledeczi, A., "Radio

Interferometric Geolocation", ACM Third International

Conference on Embedded Networked Sensor Systems

(SenSys 05), San Diego, CA, pp. 1--12, November, 2005.

[5] Crossbow, ―MICA, Wireless Measurement System

Datasheet‖,

http://www.xbow.com/Products/Product_pdf_files/Wireless

_pdf/MICA.pdf

[6] Texas Instruments, ―CC1000: Single Chip Very Low

Power RF Transceiver‖,

http://focus.ti.com/lit/ds/symlink/cc1000.pdf

[7] Maroti, M., Kusy, B., Simon, G., and Ledeczi, A. ―The

flooding time synchronization protocol‖. In Proceedings of

the 2nd international Conference on Embedded Networked

Sensor Systems (Baltimore, MD, USA, November 03 - 05,

2004). SenSys '04. ACM, New York, NY, 39-49.

[8] Walters, S.M.; Troudet, T., "Digital phase-locked loop

with jitter bounded," IEEE Transactions on Circuits and

System, vol.36, no.7, pp.980-987, Jul 1989

[9] Hogenauer, E., "An economical class of digital filters for

decimation and interpolation," IEEE Transactions on

Acoustics, Speech and Signal Processing, vol.29, no.2, pp.

155-162, Apr 1981

[10] Ettus Research LLC, ―USRP motherboard datasheet‖,

http://www.ettus.com/downloads/er_ds_usrp_v5b.pdf

[11] ―GNU Radio‖, http://gnuradio.org

http://www.isis.vanderbilt.edu/biblio/author/25?sort=author&order=desc
http://www.isis.vanderbilt.edu/biblio/author/58?sort=author&order=desc
http://www.isis.vanderbilt.edu/biblio/author/22?sort=author&order=desc
http://www.isis.vanderbilt.edu/biblio/author/50?sort=author&order=desc
http://www.isis.vanderbilt.edu/biblio/author/30?sort=author&order=desc
http://www.isis.vanderbilt.edu/biblio/author/30?sort=author&order=desc
http://www.isis.vanderbilt.edu/biblio/author/51?sort=author&order=desc
http://www.isis.vanderbilt.edu/biblio/author/4?sort=author&order=desc
http://www.isis.vanderbilt.edu/biblio/author/100?sort=author&order=desc
http://www.isis.vanderbilt.edu/biblio/author/88?sort=author&order=desc
http://www.isis.vanderbilt.edu/biblio/author/52?sort=author&order=desc
http://www.isis.vanderbilt.edu/node/3515
http://www.isis.vanderbilt.edu/biblio/author/20?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/21?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/22?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/23?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/23?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/24?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/8?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/25?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/26?sort=year&order=desc
http://www.isis.vanderbilt.edu/node/3451
http://www.isis.vanderbilt.edu/node/3451
http://www.stanford.edu/~kusy/pubs/dissBrano.pdf
http://www.stanford.edu/~kusy/pubs/dissBrano.pdf
http://www.isis.vanderbilt.edu/biblio/author/52?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/30?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/50?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/22?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/88?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/88?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/58?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/100?sort=year&order=desc
http://www.isis.vanderbilt.edu/biblio/author/25?sort=year&order=desc
http://www.isis.vanderbilt.edu/node/3531
http://www.isis.vanderbilt.edu/node/3531
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA.pdf
http://focus.ti.com/lit/ds/symlink/cc1000.pdf
http://www.ettus.com/downloads/er_ds_usrp_v5b.pdf
http://www.ettus.com/downloads/er_ds_usrp_v5b.pdf
http://gnuradio.org/

BIOGRAPHY

Sándor Szilvási is currently a Ph.D.

student at Vanderbilt University and

a Research Assistant at the Institute

for Software Integrated Systems at

Vanderbilt University. His current

research interests include wireless

sensor networks and low-power

FPGA design. He received his M.Sc.

in Electrical Engineering from the Budapest University of

technology and Economics, Budapest, Hungary, in 2008.

Contact him at sandor.szilvasi@vanderbilt.edu.

János Sallai is an Academic

Researcher at Institute for Software

Integrated Systems, Vanderbilt

University. His research interests

include execution environments and

languages for wireless sensor

networks, and distributed acoustic

beamforming. He received his Ph.D.

in Computer Science from Vanderbilt

University and his M.Sc. in Computer Science from the

Budapest University of Technology and Economics.

Contact him at janos.sallai@vanderbilt.edu.

Isaac Amundson is a Ph.D. student

at Vanderbilt University and a

Research Assistant at the Institute for

Software Integrated Systems. His

research focuses on methods related

to spatio-temporal coordination in

mobile wireless sensor networks. He

received MS degrees in Mechanical

Engineering and Computer Science,

both from Vanderbilt University.

Contact him at isaac.amundson@vanderbilt.edu.

Péter Völgyesi is a Research

Scientist at the Institute for Software

Integrated Systems, Vanderbilt

University. His current research

interests include wireless sensor

networks and domain specific

modeling environments. He received

an M.Sc. in Computer Science from

the Budapest University of Technology and Economics.

Contact him at peter.volgyesi@vanderbilt.edu.

Ákos Lédeczi is an Associate

Professor in Vanderbilt University’s

Department of Electrical Engineering

and Computer Science and a Senior

Research Scientist at its Institute for

Software Integrated Systems. His

research interests include model-

integrated system development and

wireless sensor networks. Lédeczi has a PhD in electrical

engineering from Vanderbilt University. Contact him at

akos.ledeczi@vanderbilt.edu.

mailto:sandor.szilvasi@vanderbilt.edu
mailto:janos.sallai@vanderbilt.edu
mailto:isaac.amundson@vanderbilt.edu
mailto:peter.volgyesi@vanderbilt.edu

