
Teachable Agents: Combining Insights
from Learning Theory and Computer

Science

Sean Brophy, Gautam Biswas, Thomas Katzlberger, John Bransford, and Daniel Schwartz
Box 45-GPC

Vanderbilt University
Learning Technology Center

Nashville, TN

Abstract. We discuss computer environments that invite students to learn by instructing
“teachable agents” (TA’s) who venture forth and attempt to solve problems that require
knowledge of disciplines such as mathematics, science or history. If the agents have been
taught properly they solve the problems they confront; otherwise they need to be further
educated. The TA’s have both a “knowledge dimension” and a “personality dimension” (e.g.,
some may be impetuous, not listen or collaborate well, need many examples to understand,
etc.). This helps students focus on academic content plus the characteristics of “difficult
agents” that interfere with learning. The paper briefly discusses learning by teaching, learning
by programming, and relevant classroom research. This background helps identify key
principles underlying teachable agent learning environments. The rest of the paper discusses a
framework for instantiating these principles into a general teachable agent environment.

1. Introduction

In this paper we discuss computer environments that invite students to learn by
instructing “teachable agents” (TA’s) who venture forth and attempt to solve problems that
require knowledge of disciplines such as mathematics, science or history. If the agents have
been taught properly they solve the problems they confront; otherwise they need to be further
educated. The TA’s have both a “knowledge dimension” and a “personality dimension” (e.g.,
some may be impetuous, not listen or collaborate well, need lots of examples to understand,
etc.). This helps students focus on academic content plus the characteristics of “difficult
agents” that interfere with learning.

The TA environments that we discuss are designed to facilitate research on human
learning (especially research on the potential advantages of “ learning by teaching”). For
example, in our environments, students do not know exactly what problem an agent will have
to solve. Therefore, they need to think about “big ideas” that will prepare an agent to solve a
class of problems. Presumably, teaching about big ideas will facilitate student learning and
transfer as compared to teaching specific facts for solving a specific problem [1].

Our TA work is also intended to help us discover and refine computer science
techniques for designing agents who can be taught by students and then display the effects of
this teaching in their behavior. For example, students do not program TA’s with procedural
steps. Instead, they use representations common to the disciplines of knowledge we want the

students to learn. So, rather than teaching an agent with a pseudo-code algorithm for
computing X given Y, students can construct a graph that shows the functional relationship.

In the following, we briefly review research on the benefits of learning by teaching and
learning by programming. We then describe how classroom research led us to investigate the
idea of having students learn by teaching agents. Next, we describe our current, and future,
approaches to TA’s where a student teaches an agent that is a virtual person. We conclude
with a discussion of our current research on the development of TA environments.

2. Learning by Teaching

A belief in the value of learning by teaching is widespread. One example involves
graduate students who become teaching assistants in areas like statistics and note that teaching
helped them really learn. The literature relevant to learning by teaching includes reciprocal
teaching [2], small group interactions, self explanation [3], and peer-assisted tutoring [4].
Much of this literature refers to the fact that tutors often learn as much as, if not more than,
their tutees [5]. Nevertheless, strong empirical evidence on this point is difficult to find. Some
benefits of learning by teaching seem to be that teachers have to anticipate what their students
need to learn, that teachers are often confronted by “naive questions” that make them rethink
their own understanding, that teachers need to organize their knowledge in clear, consistent,
and communicable ways, and that teachers have opportunities to notice the importance of
different behaviors for people’s abilities to learn. Presumably, when students take the role of
teacher, they partake of these benefits. Moreover, interacting with another individual has a
motivational component that may not be found in interactions with inanimate instructional
materials. People, for example, are more motivated to make sure they get it right if they have
the responsibility of teaching it to someone else.

3. Learning by Programming

Learning by programming and the metaphor of computer agents provide opportunities
that may yield benefits similar to those of learning by teaching. This work may be divided
into two broad classes: research on the benefits of learning by programming, and research on
techniques that make it possible for agents to learn.

There is a substantial history to the question of whether learning to program has
general intellectual benefits that extend beyond programming [6]. In the context of agents, the
idea of learning by programming was emphasized by Papert [7] who helped students learn by
teaching a logo turtle (cf. [8]). The ability to improve domain independent thinking skills
(e.g., planning) through programming has received mixed support. Consequently, there has
been a shift towards domain specific knowledge that students learn as they program the
domain knowledge into agents. This idea includes programming lego toys and robots to
interact with one another explicitly [9], programming computer agents to collaboratively learn
from one another [10], creating micro worlds, and creating software to help others learn topics
such as mathematics [11].

Another instructional method is to place the learner in the role of simulation designer.
In this method the goal is to define a model by identifying the major factors in a system and to
identify rules that govern those factors. Repenning and Sumner’s AgentSheets [12], for
example, makes it easy to create SimCity type simulations. Factors are represented as agents
who each have a local set of rules that define their behavior. The design process resembles an

informal inquiry process where students generate a hypothesis of how a system works, then
they translate this hypothesis into an agent’s rule base. Students acting as designers learn
about the underlying principles of a situation by evaluating how an agent acts with other
agents when running the simulation. The design process of hypothesizing, implementing and
testing provides an excellent model for learning.

Other work relevant to teachable agents comes from research on how to make agents
that can learn. For example, the Persona project at Microsoft ([13]) has focused on agents that
learn sophisticated user interactions, communication and social skills. Recent architectures
have focused on agents that can learn from examples, advice and explanations [14][15]. These
agents learn new knowledge through a range of techniques including natural language,
monitoring users actions (demonstration), or learning through mistake correction. Our
teachable agents could use similar approaches, but our end goal is different. Our teachable
agents only need to “appear” that they are learning from the user. We are creating teachable
agents that support student learning, not learning agents.

4. Learning environments that promote action, reflection and refinement.

Opportunities to teach and to program have both demonstrated potential for facilitating
student learning. Our goal is to bring these ideas together to design TA computer
environments. Our entrance into agent technologies followed a different path from that of
research into computer applications or research into learning by teaching per se. Instead, we
have come to TAs by way of classroom research where we have found it important for
students to have opportunities to develop and assess their understanding and to interact with
their peers. The following reviews several key features of our SMART project (SMART
stands for “scientific and mathematical arenas for refining thinking) that lead to the design
features and principles of our teachable agent project.

4.1 Complex Learning Activities and Opportunities for Frequent Assessments

One way to facilitate learning is to organize activities around anchoring problems that
integrate and motivates multiple domain concepts [16][17][18]. Instruction begins with the
presentation of a complex challenge. For example, in the video-based Jasper Adventure,
Rescue at Boone’s Meadow (RBM), students need to design a plan to rescue an injured eagle
found in the mountains. Students and teachers identify subgoals for completing the challenge.
Each subgoal creates a need to learn specific domain concepts. For example, students need to
learn about rate-time-distance relationships for various vehicles (e.g., an ultralight and a car) to
determine the optimal route and vehicle combination. Anchoring instruction in a larger
problem-solving context helps students understand the value of new knowledge and how to
apply it.

To help students develop and self-assess their understanding of concepts, we often
provide simulations. We use the larger context of the challenge to help make the simulation
more meaningful to students. For example, AdventurePlayer, is a planning simulation that
compliments RBM. Students experiment with different plans and receive feedback on the
plan’s success. The larger context of RBM provides an interpretive framework for
understanding the feedback and for making decisions about learning goals. This helps students
(and teachers) determine whether they need to revise their understanding.

4.2 Introducing a Teachable Agent

Another way that we have helped students develop the abilities to solve a challenge is
with a feature called, Kids on Line [19]. Kids on Line is a direct precursor of teachable
agents. Students watched videotapes of students (actors we hired) as they explained their
incomplete ideas on how to solve a challenge. The students critique the Kids on Line and
provided suggestions for how to improve. Students (and teachers) found this activity
extremely motivating, and they had many suggestions for how to improve the Kids on Line.
When asked years later, students often spontaneously referred to the value of Kids on Line.

4.3 Representing and Working with Domain Knowledge using Smart Tools

Anchors provide familiar contexts that help students grasp the meaning of new ideas
and skills. It is important, however, that student knowledge be given a chance to generalize.
We do not want students to learn how to solve a specific rate-time-distance (RTD) problem
about the time it takes to fly a plane to a particular location, we want them to be able to solve
classes of RTD problems. Thus, we introduce students to the idea of SmartTools. SmartTools
refer to the representational methods experts use to organize and make sense of complex
information. For example, graphs can quickly illustrate the relationship of a dependent
variable and an independent variable. Many of the “anchor” stories we have created attempt
to set up situations that motivate the value of representational tools. For example, in one
anchor, students must be prepared to make quick computations in real time to help potential
clients of a travel firm. At first, they discover that unaided arithmetic can be too slow.
Afterwards, they learn that graphs and tables can be tremendous aids. Students receive
opportunities to invent their own SmartTools and to learn about tried and true conventions.

Overall, our work in classrooms indicates that students learn well when they have an
opportunity to learn in anchored problem-solving contexts that include 1) scaffolds and
frequent opportunities for assessment, 2) when they interact with models of behavior, and 3)
when they can create SmartTools to generalize their knowledge. As a group, these ideas have
evolved into the concept of helping students learn by teaching agents to solve particular sets of
problems. One reason we moved to agent technology is because we found students do not
always get sufficient opportunities to exercise and test their understanding when working on
large projects. In this light, computer environments make an excellent complement to project-
based instruction because they can provide increased opportunities for individual exploration.

5. Designing Teachable Agents Environments

Our TA environments fold our classroom research into work on programming to learn.
For example, we have found that teaching someone else can be very motivating. Therefore,
the agents that students teach are virtual humans. A recent classroom study helps to clarify the
potential of teachable agents. In this study, students began their inquiry by meeting a cartoon
character named “Billy Bashinall” , they watched him attempt to perform in an environment
that required knowledge of ecosystems and water quality. The challenges for the students
consisted of teaching Billy so he could perform correctly when tested. The students eventually
teach him about water quality, how to assess it, and how pollution affects dissolved oxygen
and hence life. To meet these challenges, they did research , and were able to observe the
effects of this teaching on his behavior. Figure 1 helps clarify this process. It shows drawings

that represent snippets from an 8 minute video anchor that introduces students to Billy
Bashinall.

A particularly interesting aspect of this study was that the students showed great
perseverance in their attempts to teach Billy. They used resources and revised their own
understanding for several weeks without flagging interest. For example, we gave students
repeated multiple choice tests. We told the students they were using these tests to determine
whether they were ready to teach Billy. Our measures indicate that students did not view the
tests as tests, but instead embraced them as opportunities to assess their own preparedness.
And, as expected, they showed strong learning gains.

6. Creating Teachable Agent Environments: Computer Science Issues

In the preceding example, Billy was not computerized. He was simply a scripted
cartoon character shown on video. Classrooms of fifth through seventh grade students voted
on the knowledge that Billy should receive, we tallied their votes, and then showed one of a
few “canned” Billy behaviors based on the majority of votes. The level of interactivity was
low, but this study provides important information about the design of TA’s. It indicates that
students did not need complete realism or interactivity to enjoy and benefit from teaching
virtual agents. The students did not feel the need to create Billy from the bottom up, and they
were willing to treat a cartoon character with the intent they might bring to teaching a real
human. Our next goal is to create a more interactive TA environment.

Adding interactivity to our environment involves designing small simulations where a
TA performs. The first step is to identify the knowledge of a domain and construct a working
simulation. We then convert the standard simulation into the TA framework. The TA
framework moves the student’s interaction away from directly manipulating the variables that
control the simulation to providing input that instructs the TA on how to decide what
adjustments to make to these variables. Figure 2 provides an overview of one method for
accomplishing this outcome.

Adding TA’s to a simulation does not necessarily represent an application of machine
learning. Just like the larger context helped students view the non-interactive Billy as a “real”
agent worth teaching, the challenge context reduces the degrees of freedom a TA must have to
seem teachable to students. The challenge context defines the boundaries of the amount of
domain knowledge an agent needs to know and the knowledge the students need to convey.
TA’s can greet students already possessing most of the knowledge they need including domain
knowledge, knowledge of how to interact with the simulation, and knowledge of how to plan
and solve key aspects of the problem. Students only need to provide a little knowledge to
make the TA work.

 Billy Bashinall is ready to turn in his group’s report on
water monitoring. He tells his friend, Sally, that he’s confident his
group’s report is good enough because “five pages is always good
for a ‘C’ in Mr. Hogan’s class.”

 Billy’s negative attitude comes to the attention of the Dare
Force, a group of individuals who learned the hard way that it pays
to work hard in school. They have dedicated their lives to helping
(daring) others do well.

 The Dare Force interviews Billy about his understanding of
water quality, including the use of indicator species such as
macroinvertebrates, and relationships between pollution and
dissolved oxygen. Many of the interviews take the form of showing
Billy visual scenes from actual river monitoring projects and asking
him to explain what’s going on.

 Billy starts out over-confident. He answers some questions
correctly but also displays a number of preconceptions that need to
be repaired (e.g., a healthy stream is clear and bug-free). Billy also
chooses various tools to help with water monitoring that will not
work well. The Dare Force makes it clear to Billy that he has a lot
of learning to do (without specifying his exact strengths and
weaknesses.) Billy finally agrees and asks for help.

 The Dare Force asks students in the classroom to teach Billy
and help him reinterpret his data. When they feel they are ready,
students can have Billy return to the Dare Force context and see
how well he fares.

Figure 1. An Introduction to a Teachable Agent and Its Problem Environment

User
(student)

Simulation
Decision/

Explanation

Explain actions, ask questions

Visual representation of simulation

Teachable Agent
Knowledge

Base

Disposition
(learning
attitude)

Interface

e.g. SMART
 tools

variable
s

Instructing a teachable agent may take several different forms. One method of
instruction centers around an agent who doesn’t have the tools to make decisions about how to
formulate a plan. Students could fill out a SmartTool that allows the TA to make decisions
and calculations. This method of designing SmartTools is one approach we are exploring for
converting the AdventurePlayer software to a TA design. The new version of the
AdventurePlayer program provides multiple interfaces that a student can use to teach Billy.
For example, students must teach Billy how to derive time parameters by constructing a graph
that shows different time over distance slopes for various rates of travel. To teach him, they
choose the frame of a line graph which presents two axes. It is their task to enter relevant
information including axes labels (miles, hours, etc.), unit increments (10’s, 100’s, etc.), and
lines indicating the time-distance relationship (e.g., the distance over time slope for a 25 mph
rate). The completed graph becomes a part of Billy’s knowledge base. A complete and
correct graph will enable Billy to solve the problem correctly. A graph with incorrect
quantities or quantitative relationships will cause the plane to leave too soon or too late in
lawful ways. A graph that is missing the labels can lead to idiosyncratic behaviors. One
possibility is that the program randomly inserts labels of the same ontology but of different
scale (e.g., seconds instead of minutes). The simulation would reflect this insertion, and the
graph would highlight the fact that Billy just guessed and put a value onto the axis himself. A
second possibility is that the program could insert labels that do not maintain ontology (e.g.,
pounds instead of minutes). How this manifests itself in the simulation will depend on the
specific simulation (e.g., it may misinterpret pounds as the amount of gas needed for a given
distance). Determining the best forms of feedback and instruction is a topic for continued
research.

Once students have taught Billy, they may place him back into the simulation
environment. The simulation environment provides mini-assessments (specific condition
and/or configuration of the simulation). These assessments offer small, manageable
simulations where students can “debug” Billy under relatively controlled circumstances. Billy
is introduced to a specific problem to solve. Students can see Billy’s behaviors and whether
his solution works. This provides feedback that helps students determine what Billy (and they)
have yet to learn correctly. The challenge of debugging Billy can be made more or less
difficult by varying the number of “free parameters” that he must fix to make the simulation
work.

A problem with many attempts to help students learn by programming is the “overhead
problem”-- learning to program often gets in the way of learning important mathematical or
scientific content. In the hands of teachers who know the relevant content knowledge and
have the programming skills, programming projects involving real and computer agents have
resulted in successful content-based learning [20]. However, the burden on teachers to
monitor and structure students’ learning experiences is very large [20]. The fact that our TA
environments are focused on specific goals for content and skills makes the “overhead
problem” much less severe. Students can program Billy by using graphs, timelines, and other
“SmartTools” that they need to learn to understand the domain.

Figure 2 shows TAs have a dispositional component. This component determines the
consistency of the behavior and learning of the agent in plausible ways; for example, the agent
may jump to a quick, reasonable solution (a brief search in its knowledge space), or it may
strive slowly for a precise solution (an exhaustive search). Students may see short cartoons of
Billy solving various simple problems. One cartoon may show Billy responding very quickly

and confidently. Another may show him checking his answers five times. They have to
choose which cartoons contain the dispositions that they would like Billy to develop. In this
case, probably neither because when they put Billy into a mini-assessment, neither will enable
Billy to use his knowledge in an optimal manner. For the former disposition, he may answer
fast, but randomly make stupid mistakes. For the latter disposition, he may always get the
precise answer but take forever. One can imagine many other dispositions such as simply
refusing to do the task, or asking for clarification on a faulty graph before entering the mini-
assessment.

We want students to understand that dispositions have a large influence on success,
regardless of one’s knowledge state. Thus, in our computational representation of Billy we
have separated his disposition “module” from his knowledge “module.” We are currently
exploring different ways to represent dispositional information and have it interact with
knowledge to create performances. This represents something of a switch from the Platonic
paradigm that dominates Artificial Intelligence. In this paradigm, correct knowledge leads to
correct behavior. In our paradigm, correct knowledge may be deployed poorly if an agent has
a poor disposition. Moreover, a poor disposition may make it difficult for the agent to learn.
We believe that making disposition variables explicit in TA environments should have
interesting consequences on students’ ability to reflect on their own attitudes and those of their
peers.

7. Conclusion

Teachable agents provide a method to facilitate learning in a motivating and natural
way for students. The introduction of a virtual human agent captures students’ attention and
motivates them to help this virtual agent learn new knowledge to accomplish a goal. Our
instructional approach emerges from what we know about classroom learning including the
value of an anchoring context for making learning meaningful, the need for multiple
opportunities for assessing and revising one’s knowledge, and the importance of promoting
generalization. Students interact with teachable agents in the larger context of a meaningful
challenge. Teachable agent simulations provide an excellent mechanism for students to apply
what they know and receive feedback. Asking students to teach agents with SmartTools
promotes generalization. The focus of our activities with teachable agents relate more to how
humans represent knowledge rather than to how computers represent knowledge. This
perspective opens new doors for exploring various computer science techniques for
representation, accessing and displaying knowledge to facilitate human learning. We offered
several example of teachable agents ranging from low interactivity to very high level of
interactivity and complex representations of agents and their knowledge base. We are
continuing to explore interesting challenges that capitalize on teaching agents and to explore
new methods for virtual characters to interact with the human counterparts.

References

[1] Bransford, J. D., & Schwartz, D. L. (in press). Rethinking transfer: A simple proposals
with educational implications. Review of Research in Education. Washington, DC.

[2] Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension
monitoring activities. Cognition and Instruction, 1, 117-175.

[3] Chi, M. T. H., Bassok, M., Lewis, M., Reimann, M. & Glaser, R. (1989). Self-
explanations: How students study and use examples in learning to solve problems. Cognitive
Science, 13, 145 182.

[4] Fuchs, L. S., Fuchs, D., Karns, K., and Hamlett, C. L. (1996). The relation between
students ability and the quality of effectiveness of explanations. American Educational
Research Journal, 33, 631-644.

[5] Webb, N. M. (1983). Predicting learning from student interaction: Defining the interaction
variables. Educational Psychologist, 18, 33-41.

[6] Nickerson, R. S. (1983). Computer programming as a vehicle for teaching thinking skills.
Thinking, The Journal of Philosophy for Children, 4, 42-48.

[7] Papert, S. (1980). Mindstorms. New York: Basic Books.

[8] Ableson, H. and diSessa, A. (1980). Turtle geometry: The computer as a medium for
exploring mathematics. Cambridge, MA: MIT Press.

[9] Kafai, Y., & Resnick, M. (Eds.). (1996). Constructionism in practice. Mahwah, NJ:
Lawrence Erlbaum & Associates.

[10] Dillenbourg, P. (Ed.). (in press). Collaborative learning: Cognitive and computational
approaches. New York: Elsvier Press.

[11] Harel, I., and Papert, S. (1991). Constructionism. Norwood, NJ: Ablex.
[12] Repenning, A., & Sumner, T. (1995). Agentsheets: A medium for creating domain
oriented visual languages. Computer, 28, 17-25.

[13] Ball, G., Ling, D., Kurlander, D., Miller, J., Pugh, D., Skelly, T., Stankosky, A., Theil,
D., Van Dantzich, M., & Wax, T. (1997). Lifelike computer characters: The persona project at
Microsoft research. In J. M. Bradshaw (Ed.), Software Agents (191-222). Menlo Park, CA:
AAAI/MIT Press.

[14] Huffman, S. B., and Laird, J.E. (1995). Flexible instructable agents, Journal of Artificial
Intelligence Research, 3, 271-324.

[15] Lieberman, H. and Maulsby, D. (1996). Instructible agents: Software that just keeps
getting better. IBM Systems Journal, 35(3&4), 539-556.

[16] Cognition and Technology Group at Vanderbilt. (1997). The Jasper Project: Lessons in
curriculum, instruction, assessment, and professional development. Mahwah, NJ: Lawrence
Erlbaum Associates.

[17] Cognition and Technology Group at Vanderbilt. (1998). Designing environments to
reveal, support, and expand our children’s potentials. In S. A. Soraci & W. McIlvane (Eds.),
Perspectives on fundamental processes in intellectual functioning, Vol. 1 (pp. 313-350).
Greenwich, CT: Ablex.

[18] Sherwood, R., Petrosino, A., Lin, X. D., and the Cognition and Technology Group at
Vanderbilt. (in press). Problem based macro contexts in science instruction: Design issues and
applications. In B.J. Fraser & K. Tobin (Eds.), International handbook of science education.
Dordrecht, Netherlands: Kluwer.

[19] Vye, N. J., Schwartz, D. L., Bransford, J. D., Barron, B. J., Zech, L. and Cognition and
Technology Group at Vanderbilt. (1998). SMART environments that support monitoring,
reflection, and revision. In D. Hacker, J. Dunlosky, & A. Graesser (Eds.), Metacognition in
Educational Theory and Practice. Mahwah, NJ: Lawrence Erlbaum & Associates.

[20] Littlefield, J., Delclos, V., Lever, S., Clayton, K., Bransford, J., & Franks, J. (1988).
Learning logo: Method of teaching, transfer of general skills, and attitudes toward school and
computers. In R. E. Mayer (Ed.), Teaching and learning computer programming (pp. 111-
135). Hillsdale, NJ: Lawrence Erlbaum Associates.

