
A MODEL-DRIVEN SOFTWARE COMPONENT FRAMEWORK FOR
FRACTIONATED SPACECRAFT

Abhishek Dubey(1), Aniruddha Gokhale(1), Gabor Karsai(1) , William R. Otte(1),

Johnny Willemsen(2)
(1)Institute for Software-Integrated Systems, Vanderbilt University,

1025 16th Avenue South, Nashville, TN 37212, USA,
+1(615)343-7472,{dabhishe,gokhale,gabor,wotte}@isis.vanderbilt.edu

(2)Remedy IT, 2650 AC Berkel en Rodenrijs, The Netherlands,
jwillemsen@remedy.nl

Keywords: Space Computing, software components
ABSTRACT

Fractionated spacecraft operated as a re-purposable multi-application platform for
varying missions poses a number of challenges to software developers: in addition to
providing specific functions (like sensor data processing) the software (1) has to
manage scarce computational and communication resources, (2) has to provide a
framework for managing faults (both in the hardware and the software), (3) has to
provide the required quality of service (QoS) to components implementing the
services, and (4) has to provide the proper security isolation between users to
ensure the confidentiality of information flows. Arguably, such challenges can be
addressed by a platform-based architecture where a reusable and highly
configurable software platform provides services to varying software applications that
implement specific functions. The F6 program (supported by DARPA) is developing
such an Information Architecture Platform (IAP) that aims to be a generic, reusable,
and open-source software infrastructure for building fractionated space systems. The
F6 hardware platform consists of two or more satellite modules that communicate via
wireless links, and at least one module has (mostly) continuous ground connectivity.

The F6 IAP incorporates a suite of state-of-the-art software technologies that include
both design-time and run-time elements. The essential architectural principle for F6
IAP software applications is that they consist of actors constructed from reusable
software components. An actor is a unit, similar to processes in other operating
systems: it has a guaranteed share of the CPU resource, has access to the
communication resources with provisioned QoS, is a unit for fault containment and
management, and has security labels for all information flows it participates in.
Actors of an application can be distributed across the modules, or be co-located on
one module.

Components that make up an actor are reusable units of software code with well-
defined execution and interaction semantics. The supported interaction mechanisms
include both point-to-point (synchronous and asynchronous remote method
invocations) and many-to-many publish/subscribe communications. Work performed
by a component is broken up into individual non-preemptible but time-bounded
operations that are triggered either by interaction-related events or by the expiration
of timers. The scheduling of component operations can follow different paradigms:
first-in-first-out with or without priority, and earliest deadline first. By design,
component operations do not block each other and prevent deadlocks and race
conditions.
While the core abstractions for application writers are the actor and components,
they are constructed using a middleware layer that is built upon an operating system

layer. The middleware layer implements the generic functions of the software
component framework (patterned after the DDS4CCM standard) and the support for
component interactions (publish/subscribe based on DDS, and synchronous and
asynchronous remote method invocation based on CORBA). The operating system
layer of the F6IAP, implements low-level services typical of operating systems.

Although the F6IAP describes the actor and their components and the OS,
developing, deploying and configuring the actors and their components is fraught
with both accidental and inherent complexities. The accidental complexities arise
from the tedious and error-prone nature of the process used to (a) compose
components to form actors, (b) deploy the actors in the nodes of spacecraft modules,
and (c) configure the actors for their QoS properties. The inherent challenges stem
from multiple sources. First, F6OS does not provide any notion of an operating shell,
which means that command-line based deployment and configuration of applications
is not feasible. Second, intermittent and highly fluctuating network connectivity
implies that ground-controlled orchestration of applications on the fractionated
spacecraft is not an option. Third, scheduling and admission control of actors on the
F6OS is based on runtime availability of resources and security policies. Owing to
such factors, significant autonomy is desired in handling the lifecycle of actors and
their components. Manual approach is neither feasible nor would it provide the
stringent assurances on correctness properties for the mission critical applications.

Designing and constructing distributed applications for such a complex and powerful
software platform is therefore extremely challenging: there are many accidental and
inherent complexities that developers have to cope with. These challenges can be
addressed by a model-driven software development environment (MDE) that
application developers can use to build components and then compose them to
architect and configure applications. The MDE is based on a domain-specific
modeling language that allows (1) modeling of components, actors, and applications
together with their interfaces and interactions, (2) how the applications are to be
deployed on the platform, (3) security labels and their association to component
information flows, (4) QoS properties and resource needs of the application and its
components, and (5) hardware platform architecture and configuration. Note that
component implementation is not modeled – this can be implemented in C++ or in
another model-based tool (like Simulink/Real-time Workshop) that is capable of
producing executable code. Configuration files and glue code are generated from the
domain-specific models, and the code is compiled and linked to implementation code
to form binaries for components, which are then deployed on the platform using the
mechanisms provided. The models also permit design-time analysis: system
integrators can make admittance decisions based on the models. Such analysis is
needed to decide if the resource needs of the applications can be satisfied on the
space-based platform.

Currently a reference implementation of the F6 IAP is being created, based on
several open source packages: Linux (for F6OS), ACE/TAO and OpenDDS (for the
middleware), and GME (for the modeling environment). This paper outlines the
capabilities of the F6IAP software component framework and its supporting model-
driven development environment and it illustrates how it could be applied in a variety
of software development tasks for various missions.

