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Abstract—This paper recalls a non-linear constructive

fre

method, based on controlling cascades of conic-systems as it
E» onf

i Yy

applies to the control of quad-rotor aircraft. Such a method w,
relied on the physical model of the system to construct high- —>
performance, modest sampling period Ts = .02 s) and low-
complexity digital-controllers. The control of fixed-wing air-  Fig. 1. Proposed quad-rotor control system [6].
craft, however is not nearly a straight forward task in extending

results related to the control of quad-rotor aircraft. Although

fixed-wing aircraft and quad-rotor aircraft ultimately share

the same kinematic equations of motion, fixed-wing aircraft order to derive Lyapunov control algorithms which rely on
are intimately dependent on their relationship to the wind backstepping techniques. All the above papers, and others

reference frame. This additional coupling leads to additional tain fairly detailed del hich ide thei I
equations of motion including those related to the angle-of- contain lairly detaiied models which guide their overa

attack, slide-slip-angle, and bank angle. As a result a more control design.
advanced non-linear control method known as back-steppingis  As depicted in Fig. 1 we demonstrated how to use two
required to compensate for non-passive non-linearity’'s. These pp controllers (denoted as PD Cont. in Fig. 1) to control

back-stepping controllers are recursive in nature and can even . . . - .
address actuator magnitude and rate limitations and even the attitude and inertial position of a quad-rotor aircrafte

include adaptability to unknown lift and drag coefficients. This  inner-most loop controller is a 'fast’ PD attitude conteslin
paper presents a non-adaptive back-stepping controller which which attitude is described by Euler anglesThe attitude

is aimed to verify a fixed-wing aircraft model not subject to  controller design is initially justified by assuming thaeth
actuator limitations (in order to simplify discussion). The back- controller and dynamics are passive. Next, we further assum

stepping controller proposed is less complex then previously . . R
proposed controllers, exhibits similar response characteristics that the resulting attitude controller is 'fast’ enoughttise

while being robust to both steady head wind shear and discrete- €an close the loop with a second PD inertial controller (the
time wind gust disturbances. inertial position is denoted). In order to compensate for the
rotor-thrust lag effects, [7], an additional lead compéoisa
| INTRODUCTION was usgd to'mlnlmlze this non-ideal effect (denoted as Lead
Comp. in Fig. 1). Second, the rotors can only apply a
Quad-rotor helicopters are agile aircraft which are liftedixed range of thrust (denoted(7.) in which 7. denotes
and propelled by four rotors. Unlike traditional helicaste the corresponding thrust command vector) due to motor
they do not require a tail-rotor to control yaw and can Us@river voltage limits. In order to address thrust actuator
four smaller fixed-pitch rotors. Smaller rotors allow theseatyration [1] [2] we limited the range of attitude commands
vehicles to achieve higher velocities before blade flapping, our inner-loop PD controller in terms of pitch and roll to
effects begin to introduce instability and limit perfornean  the interval[— =, =] using the saturation function which is

However, without an attitude control system it is difficult i jenoted asrc()4i’n4Fig. 1. In addition, we chose to limit the

not impossible for a human to successfully fly and maneuveraximum velocities by adding a position rate change limiter
such a vehicle. Thus, most research has focused on sm@kpicted as 'Rate Limiter in Fig. 1) to the desired indrtia
unmanned aerial vehicles in which advanced embedde@sition set-point (denoted as). The rate change limiter
control systems could be developed to control these aircrafnciudes an additional second-order pre-filter applied;to

In [1] a Lyapunov-like control approach is used to develop & order to minimize overshoot. A similar filter is applied to
non-linear inertial controller which relies on robust sk&p  the yaw set-point), as well.

results involving control elements with nested saturation In order to control fixed-wing aircraft the problem be-

blocks [.2]’ [3]. [4] shows .that a Sif“p'.e' model—independen&omes quite more challenging. The fundamental difference
quatermion-based proportional derivative (PD) contrghier- between control of a quad-rotor aircraft and a fixed-wing

forms quite well in controlling attitude as compared ©yircraft is that the body forces for the fixed-wing aircraft

other more involved non-linear pontrollers. In [3], IMage,q intimately dependent on the wind velocity vector. This
baseql wsua! SEno control a_llgorlthms are pre_sented Wh' pendence on the wind velocity vector, greatly complgate
exploit passivity-like properties of the dynamic model Neontrol design. In particular, the passivity-based arguse
OContract/grant sponsor (number): NSF (NSF-CCF-0820088) used to construct a high performance control law for a quad-
Contract/grant sponsor (number): Air Force (FA9550-06314). rotor aircraft do not map over directly to the control of fixed

Iy




wing aircraft. However, backstepping control techniques, e
which are closely related to passivity-based techniques, a —T,e
tempt to exploit much of the physical properties of a dynamic

system by canceling out non-ideal affects in a very system- //////////////

atic manner to render the system to behave as a cascade qfy =K,T, ////////////
z s

passive integrators with nested proportional feed-baoksgo
[8]. Some of the recent literature which uses back-stepping
control designs to control fixed-wing aircraft include the
pioneering work in [9] which was systematically presented i —T,e.
[10] to tackle the generalized aircraft velocity-headanyle-
flight-path-angle control problem. One difficult problem in
control of fixed-wing aircraft is getting a sufficient set of
non-linear equations to describe the system, in which [10]
provides one of the most complete accounts, which are
recalled here (while clarifying some minor confusion rglgt e
drag-coefficients to body-forces). mgep

The main contributions of this work include: i) a concise
description of the key equations of motion in order to depelo
a sufficient model to simulate fixed wing aircraft, ii) a gealer
non-linear backstepping control law (without adaptatioor,
rate limitation) to quickly verify f|xeq-wmg aircraft mote . Fig, 2. UAV with depiction of inertial and body frames.
and better understand and appreciate the more generaliz
result presented in [10], iii) a simple yet effective cohtro
strategy is presented for fixed-wing aircraft using only a

small-angle assumption of the system description, Whicgelated to the control and verification of a Cessna A-37

allows most of the key-equations of motion in tact but gseatl _ragof?frl]y, atUrtutedkStates A|_r F(:rcetz H_gr;]ttattac dk_tglrcrafnﬂ
simplifies the controller presented in [10] while maintaipi arrcraft has to track aggressive test gt conditions as-su

close to the same range in performance, iv) an imprové@%ﬂzfd n tSectlond\él_—% Wh'(t:h Ialch|eves Ckzsg .trascklr:g ar\ﬁ
control law is proposed and verified to demonstrate excelle P u; nhess oa nf]?t ! 'Z contro a]:/vtﬁresgg_? ml fecc;og k_
robustness to discrete-time wind gust disturbances. which uses a hitered version ot the additional feed-bac

Section Il introduces the key kinematic equations of mot_erm used in Theorem 1 to render orthogonal the effects of

tion which are common to both a quad-rotor aircraft and g(x)' Finally, conclusions are presented in Section VIl.
fixed-wing aircraft. Section Il presents the remainingadst

in order to develop our model to simulate and control a
fixed-wing aircraft. Section Il also presents the simpiifie
aerodynamic equations of motion which result from taking a et 7 = {en,em,ep} (North-East-Down) denote the

small-angle assumption, and choosing to design the contigkrtial frame, andA = {e,, ¢,,e.} denote a frame rigidly
law to keep the side-slip anglé = 0. Section IV presents attached to the aircraft as depicted in Fig. 2. Ledenote
how to determine the trim conditions of a fixed-wing aircraffnertial position,, denote the vector of Euler angled =

in steady-state flight. Section V then introduces the resmler b, 0, 1/J]T in which ¢ is the roll,  is the pitch and
backstepping control techniques which includes Theorem‘E; is the yaw. R() € S0(3) is the orthogonal rotation
which is a generalized non-adaptive control law to achievg,atrix (RTR = I) which describes the orientation of the
asymptotic stability and tracking of a set of desired trajecyjrframe in whichR(5) describes the rotation matrix from
tories applied to the most-outer control loop of triangulaghe jnertial frame to the body frame as is the convention used
systems. Also in Section V we present a less complex contrp| [11], [12]. The rotation matrix allows coordinates réfat

law in Theorem 2 which does not attempt to render a positivg) the inertial frame such as inertial angular velocity to

feed-back termG(z) orthogonal and states that if the keycoordinates relative to the body frame such as the angular
feed-back gains are large-enough asymptotic stability Capocity w as follows

still be achieved. Section V-A presents an asymptotically

stable control law which exploits back-stepping technigjue wr = R"(n)w.

and a classic passive control arrangement [6] to achieve

near perfect tracking of the desired velocity trajectdlyt).  In addition the time derivative of the rotation-matrix depe
Section V-B presents the simplified back-stepping contran the angular velocity as follows:

law for the velocity flight-path and velocity heading angles

Section V-C presents the simplified back-stepping control R(n) = —(wx)R(n)

law for the angle of attack, slide-slip, and bank-angle mant

The simplified angular velocity control system is preseited In which (wx) is the cross-product which can be
Section V-D. Section VI presents detailed simulation ressul implemented using the following-skew-symmetric matrix

z

€p
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(—(wx) = (wx)T) operation: (Cy) and lift (C) coefficients (with respect to the stability
axis) such that

0 —r g
w=[pqr]", (wx)=|r 0 —p fs =aS[-Cps,Cy,—C]"
¢ r 0 Jo = Rps(a) fs
The standard equations of motion are as follows: cos() 0 —sin(a)| |—Cps
C' = vy fr=aS . 0 1 0 Cy
i = f1 = mgep + RT(0) s ) sin(e) 0 cosa —-Cr
Io= —-wxTw+T @) In which « is the angle-of-attack [13]. The angle-of-attack

] « and side-slip anglgd, unlike pitch# and yaw+), do not

= Jnw. () relate the orientation of the body-frame to the inertiakfie
In which for a quad-rotor aircraft the body-forge = —Te.. but depend on non-linear ratios of the body-velocitigs=
Which results in a cascade structure, where the inertiagfordt: v, w]'.
(fr) depends on the orientation as described by the Euler

X LW, uw—wi
anglen. (3) relates the frame angular velocityto the rate o = tan W YT
change of the Euler anglg which depends on the frame v Vi + oV
control torquel’ = [v.,7y,7-]". Each control torque is [ =sin™? v 8= Vieosd

applied about each corresponding frame axis and positive
torque follows the right hand rule. This cascade structu§ote, that for simplicity of discussion we shall assume the
is an overall non-passive structure which has many passiwind-velocity v,, relative to the inertial frame is considered
elements. The overall approach in designing a controller f@ero. However, it is noted that all aerodynamic drag and lift
this system will be to take advantage of the passive elemergtfiects are captured in simulation by taking = R(n)(vr—

to design a ‘fast’ passive attitude controller. The closedy.,), determining the corresponding aerodynamic-forces and
loop dynamics of the attitude controller will be fast enougr@pplying them to the equations of motion. For simulation
to ignore in order to implement a ‘slower’ passive inertiawe assume the stability-drag-coefficients dependaors,
position controller which will command the desired attitud aileron anglej,, fixed-incidence anglé;, elevator anglé.,

in order to reach a desired inertial position relative to th@nd rudder anglé. as follows:

origin of the inertial frame { = [X,Y, Z]7). In the inertial C Ol Cro 4 Cry 6
frame, X is the relative distance from the origin along the C’?/S _ Cl;aﬂ n Do Oy Din®f
ep axis,Y is the relative distance from the origin along the o CLﬁa Cro+ C(:L' 5
en axis, andZ is the relative distance from the origin along ¢ e
theep axis. Note thatZ < 0, Z < 0 corresponds to the UAV 1 0 Cpec 0 p
above the inertial origin and flying upward. toy [Cveb 0 Cyib) g

Using the shorthand notatiar). = cosz ands, = sinz, 0 CLeC 0 r
the rotation matrixR(n) is related to the Euler angles as Cps. 0 0 de
follows [11, Section 5.6.2]: +1 0  Cys, Cys. | |0

Clrs. 0 0 Sy
CoCyp CoSy —Sp
R(n) = [5450Cy — CpSy  S6S9Syp + CoCy  CoS4 (4) in which b is the wing-span and is the mean aerodynamic
CySOCY + S¢Sy  CpSeSy — SpCyp  COCH- chord. In a similar manner, the body torques are determined

— A = T.
The matrix.J(n) is the inverse of the Euler angle rates matrix™> followsl" = gS[bCy, eCom, bCwl™:

[E}a5(n)]~! [11, Section 5.6.4] such that C Cipf Cho
1 singtanf cos¢tand g’” - CC’W*O‘ + | Cmo gcmin‘sf
Jm) =10 cose —sing |. ) n ngl no
0 ot p | Cwb 0 Cubip
‘ ‘ +57 0 Cmgc 0
1. FIXED-WING AIRCRAFT MODEL ©LCmb O Crb] |7
The equations of motion for a fixed-wing aircraft are iden- 0 Cis, Cis | [0
tical as those given for a quad-rotor aircraft. The fundatalen + | Cms. 0 0 da
difference is that the body-forcgs and the control-torques L 0 Cus, Cns. | |0r

are intimately dependent on engine-thrust, and the velocityt will be helpful to use the more compact notation:
reference-frame. The body-forgg is typically determined )

from the aircraft-stability force§s = [fsu, fsy, fs2]' Which — p _ S diag(b, ,b) |C T Cro + LC ow + Crgd
depend on the dynamic-pressufe= $pV? (p density of ( ) L F(e,6) Fo oy ™t re

air, V.= \/U}TI = y/vdvs, vy = R(n)vy), the aircraft’s in whiché = [4., d,,d,]T. Typically, the matrixCr., has the
reference are& and the respective dra@’'(;), side-force stabilizing property of being negative-definite, and can be




easily verified using the Sylvester criteria: following equations of motion are used to guide controller

design:
Cr,, is negative-definite if and only if .
Cip, Cong, Cor < 0 and mV = Frcos(a)cos(f) — D +mg, (6)
(Chp + C1p)? < 4C1,Chyr. mV [ = —Frcos(a)sin(8) — C +mgs —mVry  (7)

) i ) _ mV cos(f)a = — Frsin(a) — L + mgs
The torque applied to the fixed-wing aircraft has three v ‘ .
components, a disturbance comporEnta stabilizing com- +mV (gcos(B) — pssin(3))

ponentI’,, and an actuator componeh in which: In which w; = [ps, gs, 7|7 are the body angular velocities
with respect to the stability axis, = Rg/sw:

(8)

'=T4+T,+T;

Iy = g5 diag(b, ¢, b)[Cr(a,p) + Cro] Ds cos() 0 sin(a)] [p
_p(VS _ q| = 0 L0 q
L, = 4 diag(b, & b)Cruw T —sin(a) 0 cos(a)| |7

I's = @S diag(b, ¢, b)Crsd . .
s = g diag(b, & b)Crs —D,—C,—L are the respective forces with respect to the

Finally, the inertia for most fixed-wing aircraft, due to the Wind-axis in whichf, = [-D,—~C,—L]" and are related to
symmetry of their bodies along the x-axis in the x-y-plairthe stability force vectorf; as follows (f,, = R, /sf5):
implies thatl,,, = 0 and their symmetry along the z-axis in

the y-z-plain impliesl,. = 0. Therefore, the inertia-matrix =D Teos(8) sin(B) 0] (=Cp,
has the following general form: _(Lj =qs —Slg(ﬁ) COSO(ﬁ) (1) C(}/
- —CL

Iw:v 0 _[wz . . .
The effective gravity termg, g», g3 depend on attitudey

= _(I)m I%y I(z)z and 3 as follows:
in which I,,,I,,.I..,—1,. > 0. These equations are g1 = g(h) [—cacssg + (855¢ + Sacscy)col
sufficient to develop a fairly complete simulation of the g2 = g(h) [cosecs + (caSo — SaCoCs)Sa)
o_Iynamlcs_ r_elated to flxed-wmg aircraft [14] and the respec- g3 = g(h) (cacocy + saso) .
tive coefficients can be obtained from the UIUC Applied
Aerodynamics Group web site [15]. If we introduce two additional terms: velocity flight-path
Gravitational dependency on altitule= | Z| are modelled angle~ and velocity heading anglg (from the north) in

as follows: which

(h) = i ’ .1 (V13

) Yo R+h —7 =sin (7)

1
in which R = 6356 x 103 meters is the radius of the earth =sin™" [—cacgsg + (59 + sacacs)co]

and g, = 9.80665 m/s?. In addition air-densityp(h) and gng
speed of sound(h) is computed as follows:

-1 vr1
T(h)=T,—Lxhx1073 X =cos l%
( ) M xg(h) U%l + ’U?Q
T h TRXL
Po(h) = Fo ( 7(’ )> =sin* [;}122
P:(h) VU1
p(h) = W x T'(h) Finally, noting that the bank-angle has the following rela-
tionships:

a(h) = \/7 X w x T(h)

in which R = 8.31432 J/(mol-Kelvin), M = 28.9644
gm/mol, T, = 288.15 Kelvin (standard temperature}, = — cos— L {(Cace% + Sase)}
101325 Pascals (standard pressuré),= 6.5 Kelvin/km, cos7y

~ = 1.4 gas-constant for air.

Most fixed-wing aircraft controllers focus on maintaining
desired velocityy” and appropriate angle of attackin order
to maintain a given altitude. In addition, in order to acleiev g1 = —g(h)sin(y)
a desired heading they focus on controlling a given bank- — g(h) sin(y) cos(7)
angle (1) relative to the velocity vector which should not 92=9 H 7
be confused with the attitude roll angle)( As a result, the g3 = g(h) cos(p) cos(7).

—in-! [cosgcs + (caSe — SaCoCy)Sa]
H cosy

then the expressions for the effective gravity terms can be
Aritten in the following compact form:



Finally, we recall the equations of motion far, x, and & = _Ma + (1 _ p(h)CLqC) a4+ Afa(z)

. % 4
[10], [13], [14], [26]: 1 " " (15)
y=— %cos(’y) + W[C sin(p) + L cos(p) 9) Afo(z) =— %[QS(CLU + CLindy + Crs,0c)
+ Fr(sin(a) cos(u) + cos(a) sin(B) sin(u))] — mg(h) cos(p)]
) 1 ) f=p+ar+Af,(x) (16)
X =y (=€ cos(u) + Lsin(p) (10) Af,(x) :LV[QS(C’Y cos(y1) + Cp sin(y))
+ Fr(sin(a) sin(u) — cos(a) sin(3) cos(u))] m + Prasin(u)]
[t :%[—Ctan(’y) cos(u) + L(tan(f) + tan(y) sin(u)) B=- fr = QS(TSX};B i CDs)ﬁ +(-1+ %)T
+ Pr(sin(e) sin(y) tan(v) + sin(e) tan(3) Flat bp(h)Cyp N
~ cos(a) sin(B) cos(y1) tan(7))] dm (17)
g Ps
— 17 tan(B) cos(7) cos(u) + cos() Afs(z) :%[qS(CYO + Cys,64 + Cys,6,)
- + mg(h) sin(u)]
Our primary goal is to provide a flight-control system which Iiv=—-wxIw+T, (18)

allows a group of aircraft to hold a formation in order to
refuel in a quick and efficient manner. We shall take a two-
pronged approach in developing a formation control system

by developing an inertial navigation controller for eachrns . )
and couple it to an outer-loop controller to maintain the !N order to determine the appropriate thrust, angle-of-

formation. The focus of this paper will be to develop arfttack, etc. for our initial simulation parameters we do the

appropriate inertial navigation controller. Most sucgelss following:

formation control papers neglect the effects pfbecause 1. Given:V,h )

an inner-loop controller keeps = 0 [14], [16]. As shown 2. Assumery = x =f=pu=9=x=d ===
in [9] # can be effectively controlled using a non-linear V = 0, in additionCy, is typically zero, therefore =
back-stepping controller which determines the respective © = d, = ¢, = 0 and sincex is small assumeos(a) = 1,
body-angular-velocity about the stability z-axis Likewise sin(a) = «, finally we assume&”;, = C,,, = 0 (typical).
a similar controller can be designed to conteolwhich 3. Observe, from (8) and (9) imply that= 0 and that our
determines the respective body-angular-velocity aboat th assumptions imply thaty +I',, +T's = 0.

stability y-axisq = ¢,. Finally, it should be readily evident 4. Solve forFr, «, d. from the following equations:
that a similar controller can be designed to conjrolhich _ o

determines the respective body-angular-velocity aboat th Fr =5 (Cpac + Cps.0¢) = G5 (Cpo + Cpindy)
stability x-axisp,. Without much loss of generality we can ~ £7@ + @5 (Crae + Crs.0¢) = = 45 (Cro + CLindy)

T, =T, +T4+T5.

IV. FIXED-WING AIRCRAFT TRIM CONDITIONS

assume thaty, v are small and for the3 controller, 3 is +mg(h)
small. This allows us to greatly simplify the equations of Crns.0¢ + Crna@ = —Crop — Crnind 7
motion, reduce computational complexity, and still captur

most of the non-linear dynamics for flight control. V. CONTROL SYSTEM DESIGN

mV = Fp — 7S(Cpo + Cpinds) + Afy(x) (12) Bagkstepping cgntrol techniques'pioneered by [9] and sys-

Cpoé tematically formalized by [10] provide a systematic manner

Afy(z) = —gS |:CDaOé + (q) q+ CD5655:| —mg(h)y to quickly get a working non-linear control system based on
2V the physical model of the aircraft. Therefore if the airtraf

my = ,l[mg + @S (Cy sin(p) — Cp cos(p)) — Fr cos(p)al] model is correctly implemented and the control design,

4 based on the physical model of the aircraft is implemented

miy = (0-5p(h)VSCLa + FT> cos(p)a + Afy(z) (13) correctly a stable aircraft velocity’, flight-path angley,

4 and heading-anglg will be created. Since we have a fairly
1 . : del of a fixed-wing aircraft, adaptation is not
Af,(x) = —=[mg+ gS(Cy sin(u) — Cr(x) cos accurate mode g | p
f(@) mg +g5(Cy sin(y) p(@) cos(u))] necessary. Therefore we wish to implement a simplified
CLqc back-stepping controller similar to the controller presen

CrL(x) = CLo+ CLinds + q) + CLs, de , bping P
r(@) o Lin®f < ov )1 Lo Ce in [17, Theorem 1] [10, Theorem 2] (except that we do
1 not use adaptation nor do we consider actuator limitations

X = W[QS(CY cos(p) + Crsin(p)) + Frsin(p)a]

. I
X = cos(u) {mv[qSC’L + Fra]tan(u) +

in order to simplify discussion) which can be applied to
gSCy 14 our fixed-wing aircraft model in order to verify that the
mV (14) model is correct. In fact the following control law can be




applied systematically to any non-linear system which caanough and the eigenvalues f@(x) are bounded then the

be realized in the following triangular form. previously mentioned Lyapunov function can be rendered
Assumption 1: Assume that we have a non-linear systermegative definite.

¥ with m n-dimensional state vectof§;(z), z; € R” j € Theorem 2. Denote the difference between the desired

{1,...,m} = = [z],...,z]]T which can be described by state-trajectoryr,q and actual state; asi; = (r; — zd)

the following triangular set of ordinary differential edigms: in addition let \,,..(GT(x) + G(z)) denote the maximum
eigenvalue of the matrix@{" () + G(x)) in which

_ |0 diag{Gi(z), Ga(2), ..., Gm-1(2)}]

iy =F1(z) + G1(x)22
By =Fy(x) + Ga(z)7s G()

0 0
. - The non-linear systent described by Assumption 1 with
Em—1 =Fm_1(2) + Go1(x)xm, real scalar control gaing,,...,k, > 0 in which the
i =Fn () + G (2)u. minimum real gainkmin > 3Amax(G'(z) + G(z)) and

e , , implements the following control law:
In addition it is assumed tha; (x) is known and the inverse

for G;(x) (denotedG;  (x)) exists for allj and . U =G (@) (—Fn(2) — km@m + Gmd)

Theorgm 1. Denote the difference bgtween the desired , . =Gl (@) (= Fr1(2) = k1 @m1 + &(m_1)a)
state-trajectoryr ;4 and actual state; asz; = (z; — zjq)-
The non-linear systenX. described by Assumption 1 with f=

the following controllerky, ..., &k, > 0: 3q :GQ—I(J:) (= Fo() — kodia + di2q)
u =G, @) (= Fp () — k@ + Timd Tog =G () (—Fy(2) — k121 + d14)
T N
= G (2)Em1) is globally asymptotically stable such thidin, . 4 (t) =
Tmd :G;1_1($)(_mel(m) - kmflimfl + i'(rnfl)d 0.
—GT () Em—2) Proof: First we observe that by applying the proposed
. ' control law we can described the error dynamics in the
= following compact form (in whichi: = [, ",..., &7 ]T):
w34 =Gy (@) (~Fa(@) = kaity + doa = G (2)1) i = —diag{k,... kn}3 + G(2)2

—1 A .
72 =C1 (@) (ZFi(@) = Fady + d10) Again we choose the following Lyapunov functidr, ()
is globally asymptotically stable such thiin, ... ;(t) = such that
0. . _ Vi(#) = 2373 > 0
Proof: First we observe that by applying the proposed 2
control law we can described the error dynamics in thi which the derivative is easily computed to be:
following compact form (in which = [, ", ..., 2] |7):

& = —diag{ki, ..., kn}i+ G(z)z o _ N
Cla) = G O (a which is negative-definite for alik # 0 when ki, >
.(x) =G) -G (2) Amax(GT (z) + G(x)). The following property holds because
Gla) = 0 diag{G1(z),G2(2),...,Gn-1(2)} we observe that the matrix:
0 0

Vi(2) = 2" (— diag{k:1,... knI} + G(2)) &

o . —diag{k1I,...,knI} + G(x) is negative definite iff
We note that the matrixi(x) has the important property
that it is skew symmetric{(z) = —GT(z)) therefore if we  the eigenvalues 01%(—2 diag{k1l,...,kmI} + G +G)

choose the following Lyapunov functioVi,, (&) such that are negative.

N 1 1. . 1
in which the derivative is easily computed to be: ~diag{kI, ... knI} + §PAGT+GP‘1)
. ~ ~T . ~ ~
Vi(2) =2" (- diag{ky, ..., kn} + G(x)) 2 in which the eigenvalues are as follows

AT 1- ~
& diagih,. . k)2 <0 —ding{k11, ..., kmI} + ~Agr o

for all £ # 0 whenk; > 0. The final inequality is a direct 2

result of the skew-symmetry property 6f(z). B Which are clearly negative &, > A\nax (G (z) + G(2)).

We observe that although this result is quite general, it ]

is typically not necessary to introduce the additional feedMe also observe that the resulting controller dynamics are

back term—GT(x) in order to fully-cancel the effects of such that#,, converges to zero asymptotically as long as

G(z) in order to renderV () negative definite. For the k,, > 0, and the remaining error terms depend only on the

special case when all the feed-back gains< R are large cascaded error input preceding them with a strictly-output



error dynamics which result from their respective negativeas follows:

error-state-feedback loop. Therefore as long as the maximu mV gSCy o
singular-value ofG(x) is bounded, the error outputs will be Hd = 3SCL + Fra [— myv_ Ry x + Xd]
bounded as well. We will test our control-system with and m Af(2)

without this additional feed-back term which includ@éx). = rser [_ e %]
In general we get better tracking of and x4 whenG(x) ot

is introduced, however, when discrete-time wind gusts are X=KN=-xd): 7=y —7)-

introduced the control system which does not inclééler) i, order to simplify controller design, we recall tha —
in the feed-back term appears to more gracefully handle sug‘} = 0, thereforewsq = [uq,aq,0]T. The corresponding

a disturbance. error dynamics forz; are as follows

&1 = —diag{k,, kY@, + diag{G1(z),0}&,.

A. Velocity Control ! th byds {G1(), 032
From (12) it is readily apparent that velocity controlC. Angle of Attack, Side-slip, and Bank-angle Control
system can be implemented by determining an appropriateLet z, = [u,a,3]" be a vector containing the bank-
thrust command in order to maintairi therefore we pro- angle i, angle of attacka, and slide-slip angles. A
pose the following control system. All controllers will be differential equation relating:, to =, the angular veloc-
implemented as discrete-time controllers at a samplingger ity » = 23 and force-disturbance vectod f,, (z) =
Ts. In order to preserve conic-properties of our discretetim[Afu(x)’Afa(x)’Afﬁ(m)]T based on (16), (15), and (17)
controllers, we will use théPESH-Transform for synthesis s a follows:
18], [19]. Using the following back-stepping control law .
Elg]), [ ] g g pp g Ty = FQ(Q?) + GQ(CI?)Z‘;),
Fy(x) = Ag, (x)2 + Afo, (2)
Fr+3SCra Fr —qS(Cyg+ Cps)
mV ’ mV

Fr =3S(Cpo + CDinéf) - Afv(a?) — meV(t) + FTc(t).
(19) A, (xz) = —diag {07
the dynamics involving the velocity of the fixed-wing airftra

are as follows 1 OC ) a
o 0 1 — P~Lac 0
s Fre(t) Ga(r) = )
V(t) = —w V) +— (a + 7”22’1)) 0 (_1 + 7@;&7)

which results in a strictly-output-passive system. Th&ef  \ote thatw — w3, wy = T34 IS NOW the control input, there-

the following steady-state tracking and strictly-positieal  fore we implement the following back-stepping controller
controller ¢y > 0) in terms of the Laplace-Transforms proposed in Theorem 1:

complex argument and desired velocity referend@(t) can . A )
be used to computér.(t) wy =Gy~ (x)[=F2(x) — kap + dod
4 T ST 177
Frus) i, diag{G (), 0}(7, 0[]
Va(s) = V(s) = mky s With the following desired trajectory determined forthe
error dynamics forro are as follows:

&g = —koiy 4+ Go(z)d — diag{G] (x),0}[2],0]".

The resulting strictly-output-passive system dynamiasash
that the system will tracky(¢) at steady-state while remain-

ing asymptotically-stable )
D. Angular Velocity Control

V(t) = —kv V(t) + kv Va(t). Using Theorem 1 to guide our control design we design
our most inner-loop control law for the angular velocity
B. Flight-Path and Velocity Heading Angle Control controller. We note that the angular velocity dynamics from
T (18) can be expressed as
Let z; = [x,7]", further approximating:os() = 1 and )
sin(u) = p we further simplify (14) and (13) in order to i3 = F3(z) + Gs(z)u
assume the following model fa; in which 23 = w, F3(z) = I 'w x Iw, u = ', and
< = -1 i i
1 = Fy(2) + G1 () 2o Gs(x) - I=*. Therefore, the following control law is
chosen:

QSCY Af"/(m)]T

R@) =" — T, = —IF(2) — kol + Iig — IG] (2)5
) 7SCrL + Fra VSCro F I's=T.— (T, +1T
Gl(x):dlag{q L % T 7(p 5 L +T‘F/>} B (Fy +T4) B
m N m m 1 0 Cus, Cis,
T2s = [, 0] §= (S) Cms, 0 0 Ls
4 0 Cn5a Cn&,

Using Theorem 1 for our outer-loop control design we .
determine the desired control sub-vectory components W= (w—wq)



This control law results in the following system of equation
describing the resulting angular velocity error dynamics

o = —k,& — G (2)is.

Taking the derivative of the desired trajectory tering can
introduce quite a bit of noise and be sensitive to the samgplin
rateT, therefore the trajectory-derivatives are approximated
using the following transfer-function and then implemehnte
for the discrete-time case using tHRESH-Transform:

V(0 (mis)

. . s
Zjq(s) ~ diag {N]T

z;4(s), N; =10 typical.
“s—i—l} Jd() J

VI. SIMULATION AND VERIFICATION

In simulating our proposed control law we set; =
0 because we found that cascading three derivative terms
related to the desired trajectories was to aggressive aatont
law to attempt without trying to apply some rate-limiting
technique to the system such as those proposed by [177
All other controllers were implemented as discussed anc
performed quite satisfactory without little need for cahtr
gain tuning. The aircraft we chose to simulate is the Cessni
A-37 Dragonfly, a United States Air Force light attack
aircraft whose properties are summarized in Table I.

Fig. 3.

TABLE |
AIRCRAFT MASS, INERTIA, GEOMETRIC, AND DRAG PARAMETERS

V,(0(deg)

m (kg) Ixx (kg'm2) Iyy (kg'm2) Izz (kg-rr12) _Ixz (kg'm2)
2,835 10,833 1,515 15, 185 317

b (m) z (m) S (m?)

10.302 1.667 16.908

Cpa Cpo Chin Cpg Cps,

0.384 0.048 0 0 0

CrLa Cro CLin CrLq Crs,

5.15 0.2 0 4.1 0.5

Cys Cyo Cyyp Cyr (Cys,. Cys,.)
-0.346 0 -0.0827 0.3 0, 0.2)

Cig Clo Cip Ci (Cis,. Cis,.)
-0.0944 0 -0.442 0.0926 (-0.181, 0.015)
Cnﬁ Cno Cnp Cnr (Cnéar Cné,«)
0.1106 0 -0.0243 -0.139 (0.0254, -0.0365)
Cma Cmo C’mi n Cmq Cm Se

-0.7 0.025 0 -14.9 -1.12

A. Test Flight Conditions

An aggressive flight path is chosen in order to fully
verify the effectiveness of our proposed control law and tes
our fixed-wing aircraft model. The corresponding desired
velocity V4(t), velocity flight-path angley,(¢) and velocity
heading angleyq(t) trajectories are depicted in Fig. 3 and
Fig. 4 respectively. All controllers tested used the follogy
gainsk, = 0.5, ky = ko = k3 = 1. Using the control
law proposed in Theorem 1 the resulting aerodynamic angle:
224(t) and angular velocitiess(t) are depicted in Fig. 5
and Fig. 6 respectively. Note that the corresponding anfgle Rig. 5.
attack wheny = 0 corresponds closely to the trim conditions
predicted in Section IV and plotted in Fig. 7.

1t (deg)

160

150

N
N
3

-
@
S

-
IS
S

100
0

I I
20 40 60 80 100 120 140
ts)

L
160 180 200

Desired velocity trajectoryy(¢).

X0 (deg)

I I L I _30
0 20 40 60 80 100 120 140 160 180 200
t(s)

Fig. 4. Desired velocity flight-path angtg (¢) and velocity heading angle
xd(t) trajectories.

[o,B](deg)

I I L I I 2
20 40 60 80 100 120 140 160 180 200
t(s)

Resultingz (t) to achieve nominal flight trajectories (no wind).
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Fig. 8. Nominal velocity tracking errofV;;(t) — V'(¢)) and control thrust

Fig. 6.
Fr(t).

control system fory and x tracks the desired trajectories as
depicted in Fig. 9. Similar tracking performance is achieve
when the aircraft is subject to a steady wind shear model
[21], however, when an additional discrete wind-gust [&L] i
applied at 100 seconds with a magnitJdes, 5] (m/s) over
a distancel0b results in significant oscillations which take
over twenty seconds to settle. Significantly, better robust
ness to the discrete wind-gust disturbance is achieved with
the less complex controller proposed in Theorem 2 whose
error tracking performance is depicted in Fig. 10. The gust
disturbance is quite significant as can be seen from the angle
of-attack, slide-slip-angle and bank-angle response&ep
in Fig. 11. The wind gust applied to the aircraft caused the
angle-of-attack to drop from-0.5° to —2.0° in less than
one second which corresponds to a decrease in the lift force
from 25 kN to 5 kN. Although the controller proposed in
B. Controller Tracking Performance Theorem 1 has a Ipnger set.tlir_lg time then the' less complex
] . controller, the maximum deviation from the desired setapoi
The velocity control system worked with near perfecor ~ s less. Such a result suggests that by filtering the
tracking except when the desired control thrust was less thaggditional controller term-GT(z)# could still reduce the
zero. In order to account for such an unfeasible velocit}facking error while reducing settling time. In particulae
set-point a classic anti-windup compensation scheme Wagply the modified control law:
used to limit the integrator [20]. In particular the control
law proposed in Section V-A was modified as follows:

Frp, = @S(Cpo + Cpindy) — Afy(x) — mw.V + Fr.
FT = sat(FTp, O, Fmax)
a=Fr— Fr,

a, 3, (degrees)

0
200

15 | |
50 100 150
Velocity (m/s)

Fig. 7. Trim conditions for Cessna A-37.

u :Gr;;l (x)(*FnL(x) - kmj7m + j7md - ym—l)

Thm—1 = — Ym-1 + Gr 1 (2)Em—1
Tmd =G 1 (2) (= Frn—1(2) = km—1&m—1 + &(m_1)d
= - ym—2)
V= —wV + iﬂ TfYm—2 = = Ym-2 + Gy o(®)Em—2
m
FTC(S) — de(S) S+ we
— = mkKy .
Va(s) = (V(s) + V(s)) s
The resulting control outpuf and tracking errof/(t) —

Va(t) are depicted in Fig. 8. From Fig. 8 it is clear that nearly

perfect tracking ofi4(¢) is achieved unless actuator satura-
tion occurs, in which the anti-windup control law preservesvhich achieves improved disturbance rejection and trackin

stability while quickly regaining desired velocity conitro as can be seen in Fig. 12 and reduces the deviation in angle-
when saturation is no-longer present. When the aircraft f-attack as seen in Fig. 11 which reduces the overall force-
not subject to either headwind or gust type disturbances, thleviation applied to the aircraft. Finally Fig. 14 indicate

234 =G5 ' (7) (—Fa(x) — kado + F2q — Y1)
T = —y1 + G (2)31
Tod :Gfl(.’ﬁ) (—Fl(l') - kllﬁl + i’ld)
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error. Fig. 11. Resultingzz(t) to achieve flight trajectories when subject to
steady wind shear and a gust at 100 s using control law fronorEne 2).
4 T T 2
05 T T T T T T T T T 2
2-', ] 1
ofy . 0 3 2
:‘, = =
2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ o
0 20 40 60 80 100 120 140 160 180 200
t(s)
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from Theorem 2).

Fig. 12. Flight-path angley and velocity heading anglg tracking error

) ) ~ when subject to steady wind shear and a gust at 100 s using Vetpro
that the velocity controller works exceptionally well in control law.

maintaining desired velocity in spite a significant wind gus
disturbance.

VII. CONCLUSIONS o 2

We have presented a simplified back-stepping control law
which does not use adaptation in order to verify fixed-wing
aircraft models. In doing show we showed that this control g
law is quite robust to controlling the aircraft in both stgad
winds and significant discrete wind-gusts. In addition, the b
controller performs exceptionally well as compared to more
complex adaptive back-stepping controllers. In particula
assuming a small angle assumption ®@ng and y, greatly
simplifies the control laws while still getting similar ramg
and performance as compared to the controller implemente:
in [10]. Careful inspection of the proof for Theorem 1, for . e S SRS U U SR o N s
example will show that although back-stepping controllers R R g o row meome
can invert functions such atn(z) which may be embedded
in the G(x) description do not necessarily lead to perfeckig. 13. Resulting2(t) to achieve flight trajectories when subject to
cancellation of their effects which result in the idealizedteady wind shear and a gust at 100 s using improved control law
negative definite Lyapunov functions presented. However,

30
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Fig. 14. Resulting” and Fr- to achieve velocity trajectory when subject [19]
to steady wind shear and a gust at 100 s.

[20]

arguments similar to those given in Theorem 2 are sufficient
to state that if the gains are large enough these non-ideal
effects are typically compensated sufficiently to maintain [21]
negative definite function. Theorem 2 led to a more robust
controller which led us to propose a filtered version of
Theorem 1 which resulted in our best controller as presented
in Section VI-B.
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