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Abstract— This paper recalls a non-linear constructive
method, based on controlling cascades of conic-systems as it
applies to the control of quad-rotor aircraft. Such a method
relied on the physical model of the system to construct high-
performance, modest sampling period (Ts = .02 s) and low-
complexity digital-controllers. The control of fixed-wing air-
craft, however is not nearly a straight forward task in extending
results related to the control of quad-rotor aircraft. Although
fixed-wing aircraft and quad-rotor aircraft ultimately share
the same kinematic equations of motion, fixed-wing aircraft
are intimately dependent on their relationship to the wind
reference frame. This additional coupling leads to additional
equations of motion including those related to the angle-of-
attack, slide-slip-angle, and bank angle. As a result a more
advanced non-linear control method known as back-stepping is
required to compensate for non-passive non-linearity’s. These
back-stepping controllers are recursive in nature and can even
address actuator magnitude and rate limitations and even
include adaptability to unknown lift and drag coefficients. This
paper presents a non-adaptive back-stepping controller which
is aimed to verify a fixed-wing aircraft model not subject to
actuator limitations (in order to simplify discussion). The back-
stepping controller proposed is less complex then previously
proposed controllers, exhibits similar response characteristics
while being robust to both steady head wind shear and discrete-
time wind gust disturbances.

I. INTRODUCTION

Quad-rotor helicopters are agile aircraft which are lifted
and propelled by four rotors. Unlike traditional helicopters,
they do not require a tail-rotor to control yaw and can use
four smaller fixed-pitch rotors. Smaller rotors allow these
vehicles to achieve higher velocities before blade flapping
effects begin to introduce instability and limit performance.
However, without an attitude control system it is difficult if
not impossible for a human to successfully fly and maneuver
such a vehicle. Thus, most research has focused on small
unmanned aerial vehicles in which advanced embedded
control systems could be developed to control these aircraft.
In [1] a Lyapunov-like control approach is used to develop a
non-linear inertial controller which relies on robust stability
results involving control elements with nested saturation
blocks [2], [3]. [4] shows that a simple, model-independent
quaternion-based proportional derivative (PD) controller per-
forms quite well in controlling attitude as compared to
other more involved non-linear controllers. In [5], image
based visual servo control algorithms are presented which
exploit passivity-like properties of the dynamic model in
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Fig. 1. Proposed quad-rotor control system [6].

order to derive Lyapunov control algorithms which rely on
backstepping techniques. All the above papers, and others
contain fairly detailed models which guide their overall
control design.

As depicted in Fig. 1 we demonstrated how to use two
PD controllers (denoted as PD Cont. in Fig. 1) to control
the attitude and inertial position of a quad-rotor aircraft. The
inner-most loop controller is a ’fast’ PD attitude controller in
which attitude is described by Euler anglesη. The attitude
controller design is initially justified by assuming that the
controller and dynamics are passive. Next, we further assume
that the resulting attitude controller is ’fast’ enough that we
can close the loop with a second PD inertial controller (the
inertial position is denotedζ). In order to compensate for the
rotor-thrust lag effects, [7], an additional lead compensator
was used to minimize this non-ideal effect (denoted as Lead
Comp. in Fig. 1). Second, the rotors can only apply a
fixed range of thrust (denotedσ(T̄c) in which T̄c denotes
the corresponding thrust command vector) due to motor
driver voltage limits. In order to address thrust actuator
saturation [1] [2] we limited the range of attitude commands
to our inner-loop PD controller in terms of pitch and roll to
the interval[−π

4 ,
π
4 ] using the saturation function which is

denoted asσc() in Fig. 1. In addition, we chose to limit the
maximum velocities by adding a position rate change limiter
(depicted as ’Rate Limiter’ in Fig. 1) to the desired inertial
position set-point (denoted asζs). The rate change limiter
includes an additional second-order pre-filter applied toζs
in order to minimize overshoot. A similar filter is applied to
the yaw set-pointψs as well.

In order to control fixed-wing aircraft the problem be-
comes quite more challenging. The fundamental difference
between control of a quad-rotor aircraft and a fixed-wing
aircraft is that the body forces for the fixed-wing aircraft
are intimately dependent on the wind velocity vector. This
dependence on the wind velocity vector, greatly complicates
control design. In particular, the passivity-based arguments
used to construct a high performance control law for a quad-
rotor aircraft do not map over directly to the control of fixed-
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wing aircraft. However, backstepping control techniques,
which are closely related to passivity-based techniques, at-
tempt to exploit much of the physical properties of a dynamic
system by canceling out non-ideal affects in a very system-
atic manner to render the system to behave as a cascade of
passive integrators with nested proportional feed-back loops
[8]. Some of the recent literature which uses back-stepping
control designs to control fixed-wing aircraft include the
pioneering work in [9] which was systematically presented in
[10] to tackle the generalized aircraft velocity-heading-angle-
flight-path-angle control problem. One difficult problem in
control of fixed-wing aircraft is getting a sufficient set of
non-linear equations to describe the system, in which [10]
provides one of the most complete accounts, which are
recalled here (while clarifying some minor confusion relating
drag-coefficients to body-forces).

The main contributions of this work include: i) a concise
description of the key equations of motion in order to develop
a sufficient model to simulate fixed wing aircraft, ii) a general
non-linear backstepping control law (without adaptation,nor
rate limitation) to quickly verify fixed-wing aircraft models
and better understand and appreciate the more generalized
result presented in [10], iii) a simple yet effective control
strategy is presented for fixed-wing aircraft using only a
small-angle assumption of the system description, which
allows most of the key-equations of motion in tact but greatly
simplifies the controller presented in [10] while maintaining
close to the same range in performance, iv) an improved
control law is proposed and verified to demonstrate excellent
robustness to discrete-time wind gust disturbances.

Section II introduces the key kinematic equations of mo-
tion which are common to both a quad-rotor aircraft and a
fixed-wing aircraft. Section III presents the remaining details
in order to develop our model to simulate and control a
fixed-wing aircraft. Section III also presents the simplified
aerodynamic equations of motion which result from taking a
small-angle assumption, and choosing to design the control
law to keep the side-slip angleβ = 0. Section IV presents
how to determine the trim conditions of a fixed-wing aircraft
in steady-state flight. Section V then introduces the readerto
backstepping control techniques which includes Theorem 1
which is a generalized non-adaptive control law to achieve
asymptotic stability and tracking of a set of desired trajec-
tories applied to the most-outer control loop of triangular
systems. Also in Section V we present a less complex control
law in Theorem 2 which does not attempt to render a positive
feed-back termG(x) orthogonal and states that if the key
feed-back gains are large-enough asymptotic stability can
still be achieved. Section V-A presents an asymptotically
stable control law which exploits back-stepping techniques
and a classic passive control arrangement [6] to achieve
near perfect tracking of the desired velocity trajectoryVd(t).
Section V-B presents the simplified back-stepping control
law for the velocity flight-path and velocity heading angles.
Section V-C presents the simplified back-stepping control
law for the angle of attack, slide-slip, and bank-angle control.
The simplified angular velocity control system is presentedin
Section V-D. Section VI presents detailed simulation results

Fig. 2. UAV with depiction of inertial and body frames.

related to the control and verification of a Cessna A-37
Dragonfly, a United States Air Force light attack aircraft. The
aircraft has to track aggressive test flight conditions as sum-
marized in Section VI-A which achieves close tracking and
robustness to a modified control law presented in Section VI-
B which uses a filtered version of the additional feed-back
term used in Theorem 1 to render orthogonal the effects of
G(x). Finally, conclusions are presented in Section VII.

II. QUAD-ROTORMODEL

Let I = {eN , eE , eD} (North-East-Down) denote the
inertial frame, andA = {ex, ey, ez} denote a frame rigidly
attached to the aircraft as depicted in Fig. 2. Letζ denote
inertial position,η denote the vector of Euler anglesηT =
[

φ, θ, ψ
]T

in which φ is the roll, θ is the pitch and
ψ is the yaw.R(η) ∈ SO(3) is the orthogonal rotation
matrix (RTR = I) which describes the orientation of the
airframe in whichR(η) describes the rotation matrix from
the inertial frame to the body frame as is the convention used
in [11], [12]. The rotation matrix allows coordinates relative
to the inertial frame such as inertial angular velocityωI to
coordinates relative to the body frame such as the angular
velocity ω as follows

ωI = RT(η)ω.

In addition the time derivative of the rotation-matrix depends
on the angular velocity as follows:

Ṙ(η) = −(ω×)R(η)

In which (ω×) is the cross-product which can be
implemented using the following-skew-symmetric matrix
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(−(ω×) = (ω×)T) operation:

ω = [p, q, r]T, (ω×) =





0 −r q
r 0 −p
−q p 0





The standard equations of motion are as follows:

ζ̇ = vI

mv̇I = fI = mgeD +RT(η)fb (1)

Iω̇ = −ω × Iω + Γ (2)

η̇ = J(η)ω. (3)

In which for a quad-rotor aircraft the body-forcefb = −Tez.
Which results in a cascade structure, where the inertial force
(fI ) depends on the orientation as described by the Euler
angleη. (3) relates the frame angular velocityω to the rate
change of the Euler anglėη which depends on the frame
control torqueΓ = [γx, γy, γz]

T. Each control torque is
applied about each corresponding frame axis and positive
torque follows the right hand rule. This cascade structure
is an overall non-passive structure which has many passive
elements. The overall approach in designing a controller for
this system will be to take advantage of the passive elements
to design a ‘fast’ passive attitude controller. The closed-
loop dynamics of the attitude controller will be fast enough
to ignore in order to implement a ‘slower’ passive inertial
position controller which will command the desired attitude
in order to reach a desired inertial position relative to the
origin of the inertial frame (ζ = [X,Y,Z]T). In the inertial
frame,X is the relative distance from the origin along the
eE axis,Y is the relative distance from the origin along the
eN axis, andZ is the relative distance from the origin along
theeD axis. Note thatZ < 0, Ż < 0 corresponds to the UAV
above the inertial origin and flying upward.

Using the shorthand notationcx = cosx and sx = sinx,
the rotation matrixR(η) is related to the Euler angles as
follows [11, Section 5.6.2]:

R(η) =





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ cθsφ
cφsθcψ + sφsψ cφsθsψ − sφcψ cθcφ.



 (4)

The matrixJ(η) is the inverse of the Euler angle rates matrix
[E′

123(η)]
−1 [11, Section 5.6.4] such that

J(η) =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



 . (5)

III. F IXED-WING A IRCRAFT MODEL

The equations of motion for a fixed-wing aircraft are iden-
tical as those given for a quad-rotor aircraft. The fundamental
difference is that the body-forcesfb and the control-torquesΓ
are intimately dependent on engine-thrust, and the velocity-
reference-frame. The body-forcefb is typically determined
from the aircraft-stability forcesfs = [fsx, fsy, fsz]

T which
depend on the dynamic-pressureq̄ = 1

2ρV
2 (ρ density of

air, V =
√

vT
I vI =

√

vT
b vb, vb = R(η)vI ), the aircraft’s

reference areaS and the respective drag (CDs), side-force

(CY ) and lift (CL) coefficients (with respect to the stability
axis) such that

fs = q̄S[−CDs, CY ,−CL]T

fb = Rb/s(α)fs

fb = q̄S





cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cosα









−CDs
CY
−CL



 .

In which α is the angle-of-attack [13]. The angle-of-attack
α and side-slip angleβ, unlike pitch θ and yawψ, do not
relate the orientation of the body-frame to the inertial-frame
but depend on non-linear ratios of the body-velocitiesvb =
[u, v, w]T.

α = tan−1 w

u
, α̇ =

uẇ − wu̇

u2 + w2

β = sin−1 v

V
, β̇ =

V v̇ + vV̇

V 2 cosβ
.

Note, that for simplicity of discussion we shall assume the
wind-velocity vw relative to the inertial frame is considered
zero. However, it is noted that all aerodynamic drag and lift
effects are captured in simulation by takingvba

= R(η)(vI−
vw), determining the corresponding aerodynamic-forces and
applying them to the equations of motion. For simulation
we assume the stability-drag-coefficients depend onα, β,
aileron angleδa, fixed-incidence angleδf , elevator angleδe,
and rudder angleδe as follows:





CDs
CY
CL



 =





CDαα
CY ββ
CLαα



 +





CDo + CDinδf
CY o

CLo + CLinδf





+
1

2V





0 CDq c̄ 0
CY pb 0 CY rb

0 CLq c̄ 0









p
q
r





+





CDδe
0 0

0 CY δa
CY δr

CLδe
0 0









δe
δa
δr





in which b is the wing-span and̄c is the mean aerodynamic
chord. In a similar manner, the body torques are determined
as followsΓ = q̄S[bCl, c̄Cm, bCn]

T:




Cl
Cm
Cn



 =





Clββ
Cmαα
Cnββ



 +





Clo
Cmo + Cminδf

Cno





+
1

2V





Clpb 0 Clrb
0 Cmq c̄ 0

Cnpb 0 Cnrb









p
q
r





+





0 Clδa
Clδr

Cmδe
0 0

0 Cnδa
Cnδr









δe
δa
δr





It will be helpful to use the more compact notation:

Γ = q̄S diag(b, c̄, b)

[

CΓ(α,β) + CΓo +
1

2V
CΓωω + CΓδδ

]

in which δ = [δe, δa, δr]
T. Typically, the matrixCΓω has the

stabilizing property of being negative-definite, and can be
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easily verified using the Sylvester criteria:

CΓω is negative-definite if and only if

Clp, Cmq, Cnr < 0 and

(Cnp + Clr)
2 < 4ClpCnr.

The torque applied to the fixed-wing aircraft has three
components, a disturbance componentΓd, a stabilizing com-
ponentΓω and an actuator componentΓδ in which:

Γ = Γd + Γω + Γδ

Γd = q̄S diag(b, c̄, b)[CΓ(α,β) + CΓo]

Γω =
ρ(h)V S

4
diag(b, c̄, b)CΓωω

Γδ = q̄S diag(b, c̄, b)CΓδδ

Finally, the inertia for most fixed-wing aircraft, due to their
symmetry of their bodies along the x-axis in the x-y-plain
implies thatIxy = 0 and their symmetry along the z-axis in
the y-z-plain impliesIyz = 0. Therefore, the inertia-matrix
has the following general form:

I =





Ixx 0 −Ixz
0 Iyy 0

−Ixz 0 Izz





in which Ixx, Iyy, Izz,−Ixz > 0. These equations are
sufficient to develop a fairly complete simulation of the
dynamics related to fixed-wing aircraft [14] and the respec-
tive coefficients can be obtained from the UIUC Applied
Aerodynamics Group web site [15].

Gravitational dependency on altitudeh = |Z| are modelled
as follows:

g(h) = go

(

R

R+ h

)2

in which R = 6356 × 103 meters is the radius of the earth
and go = 9.80665 m/s2. In addition air-densityρ(h) and
speed of sounda(h) is computed as follows:

T (h) = To − L× h× 10−3

Ps(h) = Po

(

T (h)

To

)

M×g(h)
R×L

ρ(h) =
Ps(h)

1000×R
M × T (h)

a(h) =

√

γ ×
1000 ×R

M
× T (h)

in which R = 8.31432 J/(mol-Kelvin), M = 28.9644
gm/mol, To = 288.15 Kelvin (standard temperature),Po =
101325 Pascals (standard pressure),L = 6.5 Kelvin/km,
γ = 1.4 gas-constant for air.

Most fixed-wing aircraft controllers focus on maintaining a
desired velocityV and appropriate angle of attackα in order
to maintain a given altitude. In addition, in order to achieve
a desired heading they focus on controlling a given bank-
angle (µ) relative to the velocity vector which should not
be confused with the attitude roll angle (φ). As a result, the

following equations of motion are used to guide controller
design:

mV̇ = FT cos(α) cos(β) −D +mg1 (6)

mV β̇ = −FT cos(α) sin(β) − C +mg2 −mV rs (7)

mV cos(β)α̇ = − FT sin(α) − L+mg3

+mV (q cos(β) − ps sin(β))
(8)

In which ωs = [ps, qs, rs]
T are the body angular velocities

with respect to the stability axisωs = RT
b/sω:





ps
q
rs



 =





cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)









p
q
r



 .

−D,−C,−L are the respective forces with respect to the
wind-axis in whichfw = [−D,−C,−L]T and are related to
the stability force vectorfs as follows (fw = Rw/sfs):





−D
−C
−L



 = q̄S





cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1









−CDs

CY
−CL



 .

The effective gravity termsg1, g2, g3 depend on attitude,α
andβ as follows:

g1 = g(h) [−cαcβsθ + (sβsφ + sαcβcφ)cθ]

g2 = g(h) [cθsφcβ + (cαsθ − sαcθcφ)sβ ]

g3 = g(h) (cαcθcφ + sαsθ) .

If we introduce two additional terms: velocity flight-path
angle γ and velocity heading angleχ (from the north) in
which

−γ = sin−1
(vI3
V

)

= sin−1 [−cαcβsθ + (sβsφ + sαcβcφ)cθ]

and

χ =cos−1

[

vI1
√

v2
I1 + v2

I2

]

=sin−1

[

vI2
√

v2
I1 + v2

I2

]

Finally, noting that the bank-angle has the following rela-
tionships:

µ = sin−1

{

[cθsφcβ + (cαsθ − sαcθcφ)sβ ]

cos γ

}

= cos−1

{

(cαcθcφ + sαsθ)

cos γ

}

then the expressions for the effective gravity terms can be
written in the following compact form:

g1 = −g(h) sin(γ)

g2 = g(h) sin(µ) cos(γ)

g3 = g(h) cos(µ) cos(γ).
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Finally, we recall the equations of motion forγ̇, χ̇, and µ̇
[10], [13], [14], [16]:

γ̇ = −
g

V
cos(γ) +

1

mV
[C sin(µ) + L cos(µ)

+ FT (sin(α) cos(µ) + cos(α) sin(β) sin(µ))]
(9)

χ̇ =
1

mV
[−C cos(µ) + L sin(µ)

+ FT (sin(α) sin(µ) − cos(α) sin(β) cos(µ))]
(10)

µ̇ =
1

mV
[−C tan(γ) cos(µ) + L(tan(β) + tan(γ) sin(µ))

+ FT (sin(α) sin(µ) tan(γ) + sin(α) tan(β)

− cos(α) sin(β) cos(µ) tan(γ))]

−
g

V
tan(β) cos(γ) cos(µ) +

ps
cos(β)

(11)

Our primary goal is to provide a flight-control system which
allows a group of aircraft to hold a formation in order to
refuel in a quick and efficient manner. We shall take a two-
pronged approach in developing a formation control system
by developing an inertial navigation controller for each plane
and couple it to an outer-loop controller to maintain the
formation. The focus of this paper will be to develop an
appropriate inertial navigation controller. Most successful
formation control papers neglect the effects ofβ because
an inner-loop controller keepsβ = 0 [14], [16]. As shown
in [9] β can be effectively controlled using a non-linear
back-stepping controller which determines the respective
body-angular-velocity about the stability z-axisrs. Likewise
a similar controller can be designed to controlα which
determines the respective body-angular-velocity about the
stability y-axisq = qs. Finally, it should be readily evident
that a similar controller can be designed to controlµ which
determines the respective body-angular-velocity about the
stability x-axisps. Without much loss of generality we can
assume thatα, γ are small and for theβ controller, β is
small. This allows us to greatly simplify the equations of
motion, reduce computational complexity, and still capture
most of the non-linear dynamics for flight control.

mV̇ = FT − q̄S(CDo + CDinδf ) + ∆fV (x) (12)

∆fV (x) = −q̄S

[

CDαα+

(

CDq c̄

2V

)

q + CDδe
δe

]

−mg(h)γ

mγ̇ = −
1

V
[mg + q̄S(CY sin(µ) − CL cos(µ)) − FT cos(µ)α]

mγ̇ =

(

0.5ρ(h)V SCLα +
FT
V

)

cos(µ)α+ ∆fγ(x) (13)

∆fγ(x) = −
1

V
[mg + q̄S(CY sin(µ) − CL(x) cos(µ))]

CL(x) = CLo + CLinδf +

(

CLq c̄

2V

)

q + CLδe
δe

χ̇ =
1

mV
[q̄S(CY cos(µ) + CL sin(µ)) + FT sin(µ)α]

χ̇ = cos(µ)

{

1

mV
[q̄SCL + FTα] tan(µ) +

q̄SCY
mV

}

(14)

α̇ = −
FT + q̄SCLα

mV
α+

(

1 −
ρ(h)CLq c̄

4m

)

q + ∆fα(x)

(15)

∆fα(x) = −
1

mV
[q̄S(CLo + CLinδf + CLδe

δe)

−mg(h) cos(µ)]

µ̇ = p+ αr + ∆fµ(x) (16)

∆fµ(x) =
γ

mV
[q̄S(CY cos(µ) + CL sin(µ))

+ FTα sin(µ)]

β̇ = −
FT − q̄S(CY β + CDs)

mV
β + (−1 +

bρ(h)CY r
4m

)r

+ (α+
bρ(h)CY p

4m
)p+ ∆fβ(x)

(17)

∆fβ(x) =
1

mV
[q̄S(CY o + CY δa

δa + CY δr
δr)

+mg(h) sin(µ)]

Iω̇ = −ω × Iω + Γc (18)

Γc = Γω + Γd + Γδ.

IV. F IXED-WING A IRCRAFT TRIM CONDITIONS

In order to determine the appropriate thrust, angle-of-
attack, etc. for our initial simulation parameters we do the
following:
1. Given:V, h
2. Assume:γ = χ = β = µ = γ̇ = χ̇ = α̇ = β̇ = µ̇ =
V̇ = 0, in additionCY o is typically zero, thereforep =
r = δa = δr = 0 and sinceα is small assumecos(α) = 1,
sin(α) = α, finally we assumeClo = Cno = 0 (typical).

3. Observe, from (8) and (9) imply thatq = 0 and that our
assumptions imply thatΓd + Γω + Γδ = 0.

4. Solve forFT , α, δe from the following equations:

FT − q̄S (CDαα+ CDδe
δe) = q̄S (CDo + CDinδf )

FTα+ q̄S (CLαα+ CLδe
δe) = − q̄S (CLo + CLinδf )

+mg(h)

Cmδe
δe + Cmαα = −Cmo − Cminδf

V. CONTROL SYSTEM DESIGN

Backstepping control techniques pioneered by [9] and sys-
tematically formalized by [10] provide a systematic manner
to quickly get a working non-linear control system based on
the physical model of the aircraft. Therefore if the aircraft
model is correctly implemented and the control design,
based on the physical model of the aircraft is implemented
correctly a stable aircraft velocityV , flight-path angleγ,
and heading-angleχ will be created. Since we have a fairly
accurate model of a fixed-wing aircraft, adaptation is not
necessary. Therefore we wish to implement a simplified
back-stepping controller similar to the controller presented
in [17, Theorem 1] [10, Theorem 2] (except that we do
not use adaptation nor do we consider actuator limitations
in order to simplify discussion) which can be applied to
our fixed-wing aircraft model in order to verify that the
model is correct. In fact the following control law can be
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applied systematically to any non-linear system which can
be realized in the following triangular form.

Assumption 1: Assume that we have a non-linear system
Σ with m n-dimensional state vectorsFj(x), xj ∈ R

n j ∈
{1, . . . ,m} x = [xT

1 , . . . , x
T
m]T which can be described by

the following triangular set of ordinary differential equations:

ẋ1 =F1(x) +G1(x)x2

ẋ2 =F2(x) +G2(x)x3

... =
...

ẋm−1 =Fm−1(x) +Gm−1(x)xm

ẋm =Fm(x) +Gm(x)u.

In addition it is assumed thatFj(x) is known and the inverse
for Gj(x) (denotedG−1

j (x)) exists for allj andx.
Theorem 1: Denote the difference between the desired

state-trajectoryxjd and actual statexj as x̂j = (xj − xjd).
The non-linear systemΣ described by Assumption 1 with
the following controllerk1, . . . , km > 0:

u =G−1
m (x)(−Fm(x) − kmx̂m + ẋmd

−GT
m−1(x)x̂m−1)

xmd =G−1
m−1(x)(−Fm−1(x) − km−1x̂m−1 + ẋ(m−1)d

−GT
m−2(x)x̂m−2)

... =
...

x3d =G−1
2 (x)

(

−F2(x) − k2x̂2 + ẋ2d −GT
1 (x)x̂1

)

x2d =G−1
1 (x) (−F1(x) − k1x̂1 + ẋ1d)

is globally asymptotically stable such thatlimt→∞ x̂j(t) =
0.

Proof: First we observe that by applying the proposed
control law we can described the error dynamics in the
following compact form (in whicĥx = [x̂1

T, . . . , x̂T
m]T):

˙̂x = −diag{k1, . . . , km}x̂+ Ḡ(x)x̂

Ḡ(x) = G(x) −GT(x)

G(x) =

[

0 diag{G1(x), G2(x), . . . , Gm−1(x)}
0 0

]

We note that the matrix̄G(x) has the important property
that it is skew symmetric (̄G(x) = −ḠT(x)) therefore if we
choose the following Lyapunov functionVL(x̂) such that

VL(x̂) =
1

2
x̂Tx̂ > 0

in which the derivative is easily computed to be:

V̇L(x̂) =x̂T
(

−diag{k1, . . . , km} + Ḡ(x)
)

x̂

= − x̂T diag{k1, . . . , km}x̂ < 0

for all x̂ 6= 0 when kj > 0. The final inequality is a direct
result of the skew-symmetry property of̄G(x).
We observe that although this result is quite general, it
is typically not necessary to introduce the additional feed-
back term−GT(x) in order to fully-cancel the effects of
G(x) in order to renderV̇L(x̂) negative definite. For the
special case when all the feed-back gainskj ∈ R are large

enough and the eigenvalues forG(x) are bounded then the
previously mentioned Lyapunov function can be rendered
negative definite.

Theorem 2: Denote the difference between the desired
state-trajectoryxjd and actual statexj as x̂j = (xj − xjd)
in addition letλmax(G

T(x) + G(x)) denote the maximum
eigenvalue of the matrix (GT(x) +G(x)) in which

G(x) =

[

0 diag{G1(x), G2(x), . . . , Gm−1(x)}
0 0

]

.

The non-linear systemΣ described by Assumption 1 with
real scalar control gainsk1, . . . , km > 0 in which the
minimum real gainkmin > 1

2λmax(G
T(x) + G(x)) and

implements the following control law:

u =G−1
m (x)(−Fm(x) − kmx̂m + ẋmd)

xmd =G−1
m−1(x)(−Fm−1(x) − km−1x̂m−1 + ẋ(m−1)d)

... =
...

x3d =G−1
2 (x) (−F2(x) − k2x̂2 + ẋ2d)

x2d =G−1
1 (x) (−F1(x) − k1x̂1 + ẋ1d)

is globally asymptotically stable such thatlimt→∞ x̂j(t) =
0.

Proof: First we observe that by applying the proposed
control law we can described the error dynamics in the
following compact form (in whicĥx = [x̂1

T, . . . , x̂T
m]T):

˙̂x = −diag{k1, . . . , km}x̂+G(x)x̂

Again we choose the following Lyapunov functionVL(x̂)
such that

VL(x̂) =
1

2
x̂Tx̂ > 0

in which the derivative is easily computed to be:

V̇L(x̂) = x̂T (−diag{k1I, . . . , kmI} +G(x)) x̂

which is negative-definite for all̂x 6= 0 when kmin >
λmax(G

T(x)+G(x)). The following property holds because
we observe that the matrix:

−diag{k1I, . . . , kmI} +G(x) is negative definite iff

the eigenvalues of
1

2
(−2 diag{k1I, . . . , kmI} +GT +G)

are negative.

−diag{k1I, . . . , kmI} +
1

2
(GT +G) =

−diag{k1I, . . . , kmI} +
1

2
PΛGT+GP

−1)

in which the eigenvalues are as follows

−diag{k1I, . . . , kmI} +
1

2
ΛGT+G.

Which are clearly negative ifkmin > λmax(G
T(x) +G(x)).

We also observe that the resulting controller dynamics are
such thatx̂m converges to zero asymptotically as long as
km > 0, and the remaining error terms depend only on the
cascaded error input preceding them with a strictly-output
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error dynamics which result from their respective negative-
error-state-feedback loop. Therefore as long as the maximum
singular-value ofG(x) is bounded, the error outputs will be
bounded as well. We will test our control-system with and
without this additional feed-back term which includesG(x).
In general we get better tracking ofγd andχd whenG(x)
is introduced, however, when discrete-time wind gusts are
introduced the control system which does not includeG(x)
in the feed-back term appears to more gracefully handle such
a disturbance.

A. Velocity Control

From (12) it is readily apparent that velocity control
system can be implemented by determining an appropriate
thrust command in order to maintainV therefore we pro-
pose the following control system. All controllers will be
implemented as discrete-time controllers at a sampling period
Ts. In order to preserve conic-properties of our discrete-time
controllers, we will use theIPESH-Transform for synthesis
[18], [19]. Using the following back-stepping control law
(19),

FT = q̄S(CDo + CDinδf ) − ∆fV (x) −mωcV (t) + FTc(t).
(19)

the dynamics involving the velocity of the fixed-wing aircraft
are as follows

V̇ (t) = −ωcV (t) +
FTc(t)

m

which results in a strictly-output-passive system. Therefore,
the following steady-state tracking and strictly-positive-real
controller (kV > 0) in terms of the Laplace-Transforms
complex arguments and desired velocity referenceVd(t) can
be used to computeFTc(t)

FTc(s)

Vd(s) − V (s)
= mkV

s+ ωc
s

.

The resulting strictly-output-passive system dynamics show
that the system will trackVd(t) at steady-state while remain-
ing asymptotically-stable

V̇ (t) = −kV V (t) + kV Vd(t).

B. Flight-Path and Velocity Heading Angle Control

Let x1 = [χ, γ]T, further approximatingcos(µ) = 1 and
sin(µ) = µ we further simplify (14) and (13) in order to
assume the following model foṙx1

ẋ1 = F1(x) +G1(x)x2s

F1(x) = [
q̄SCY
mV

,
∆fγ(x)

m
]T

G1(x) = diag{
q̄SCL + FTα

mV
,

(

ρV SCLα
2m

+
FT
mV

)

}

x2s = [µ, α]T.

Using Theorem 1 for our outer-loop control design we
determine the desired control sub-vectorx2sd components

as follows:

µd =
mV

q̄SCL + FTα

[

−
q̄SCY
mV

− kχχ̂+ χ̇d

]

αd =
m

ρV SCLα

2 + FT

V

[

−
∆fγ(x)

m
− kγ γ̂ + γ̇d

]

χ̂ = (χ− χd), γ̂ = (γ − γd).

in order to simplify controller design, we recall thatβd =
β̇d = 0, thereforex2d = [µd, αd, 0]T. The corresponding
error dynamics forx1 are as follows

˙̂x1 = −diag{kχ, kγ}x̂1 + diag{G1(x), 0}x̂2.

C. Angle of Attack, Slide-slip, and Bank-angle Control

Let x2 = [µ, α, β]T be a vector containing the bank-
angle µ, angle of attackα, and slide-slip angleβ. A
differential equation relatinġx2 to x2 the angular veloc-
ity ω = x3 and force-disturbance vector∆fx2

(x) =
[∆fµ(x),∆fα(x),∆fβ(x)]

T based on (16), (15), and (17)
is a follows:

ẋ2 = F2(x) +G2(x)x3

F2(x) = Ax2
(x)x2 + ∆fx2

(x)

Ax2
(x) = −diag

{

0,
FT + q̄SCLα

mV
,
FT − q̄S (CY β + CDs)

mV

}

G2(x) =









1 0 α

0
(

1 −
ρCLq c̄

4m

)

0
(

α+
ρCY pb

4m

)

0
(

−1 + ρCY rb
4m

)









.

Note thatω = x3, ωd = x3d is now the control input, there-
fore we implement the following back-stepping controller
proposed in Theorem 1:

ωd =G−1
2 (x)[−F2(x) − k2x̂2 + ẋ2d

− diag{GT
1 (x), 0}[x̂T

1 , 0]T]
.

With the following desired trajectory determined forω the
error dynamics forx2 are as follows:

˙̂x2 = −k2x̂2 +G2(x)ω̂ − diag{GT
1 (x), 0}[x̂T

1 , 0]T.

D. Angular Velocity Control

Using Theorem 1 to guide our control design we design
our most inner-loop control law for the angular velocity
controller. We note that the angular velocity dynamics from
(18) can be expressed as

ẋ3 = F3(x) +G3(x)u

in which x3 = ω, F3(x) = −I−1ω × Iω, u = Γc and
G3(x) = I−1. Therefore, the following control law is
chosen:

Γc = −IF3(x) − kωIω̂ + Iω̇d − IGT
2 (x)x̂2

Γδ = Γc − (Γω + Γd)

δ =

(

1

q̄S

)





0 Clδa
Clδr

Cmδe
0 0

0 Cnδa
Cnδr





−1

Γδ

ω̂ = (ω − ωd)
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This control law results in the following system of equations
describing the resulting angular velocity error dynamics

˙̂ω = −kωω̂ −GT
2 (x)x̂2.

Taking the derivative of the desired trajectory termsẋjd can
introduce quite a bit of noise and be sensitive to the sampling
rateTs, therefore the trajectory-derivatives are approximated
using the following transfer-function and then implemented
for the discrete-time case using theIPESH-Transform:

ẋjd(s) ≈ diag

{

s
NjTs

π s+ 1

}

xjd(s), Nj = 10 typical.

VI. SIMULATION AND VERIFICATION

In simulating our proposed control law we setẋ2d =
0 because we found that cascading three derivative terms
related to the desired trajectories was to aggressive a control
law to attempt without trying to apply some rate-limiting
technique to the system such as those proposed by [17].
All other controllers were implemented as discussed and
performed quite satisfactory without little need for control
gain tuning. The aircraft we chose to simulate is the Cessna
A-37 Dragonfly, a United States Air Force light attack
aircraft whose properties are summarized in Table I.

TABLE I

A IRCRAFT MASS, INERTIA , GEOMETRIC, AND DRAG PARAMETERS.

m (kg) Ixx (kg-m2) Iyy (kg-m2) Izz (kg-m2) −Ixz (kg-m2)
2, 885 10, 833 4, 515 15, 185 317

b (m) c̄ (m) S (m2)
10.302 1.667 16.908

CDα CDo CDin CDq CDδe

0.384 0.048 0 0 0

CLα CLo CLin CLq CLδe

5.15 0.2 0 4.1 0.5

CY β CY o CY p CY r (CY δa
, CY δr

)
-0.346 0 -0.0827 0.3 (0, 0.2)

Clβ Clo Clp Clr (Clδa
, Clδr

)
-0.0944 0 -0.442 0.0926 (-0.181, 0.015)

Cnβ Cno Cnp Cnr (Cnδa
, Cnδr

)
0.1106 0 -0.0243 -0.139 (0.0254, -0.0365)

Cmα Cmo Cmin Cmq Cmδe

-0.7 0.025 0 -14.9 -1.12

A. Test Flight Conditions

An aggressive flight path is chosen in order to fully
verify the effectiveness of our proposed control law and test
our fixed-wing aircraft model. The corresponding desired
velocity Vd(t), velocity flight-path angleγd(t) and velocity
heading angleχd(t) trajectories are depicted in Fig. 3 and
Fig. 4 respectively. All controllers tested used the following
gains kχ = 0.5, kγ = k2 = k3 = 1. Using the control
law proposed in Theorem 1 the resulting aerodynamic angles
x2d(t) and angular velocitiesω(t) are depicted in Fig. 5
and Fig. 6 respectively. Note that the corresponding angle of
attack whenγ = 0 corresponds closely to the trim conditions
predicted in Section IV and plotted in Fig. 7.
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Fig. 3. Desired velocity trajectoryVd(t).

0 20 40 60 80 100 120 140 160 180 200
−6

−4

−2

0

2

4

6

t (s)

γ d(t
)(

de
g)

0 20 40 60 80 100 120 140 160 180 200
−30

−20

−10

0

10

20

30

χ d(t
) 

(d
eg

)

 

 

χ
d

γ
d

Fig. 4. Desired velocity flight-path angleγd(t) and velocity heading angle
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Fig. 5. Resultingx2(t) to achieve nominal flight trajectories (no wind).
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Fig. 6. Resultingω(t) to achieve nominal flight trajectories (no wind).
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Fig. 7. Trim conditions for Cessna A-37.

B. Controller Tracking Performance

The velocity control system worked with near perfect
tracking except when the desired control thrust was less than
zero. In order to account for such an unfeasible velocity
set-point a classic anti-windup compensation scheme was
used to limit the integrator [20]. In particular the control
law proposed in Section V-A was modified as follows:

FTp = q̄S(CDo + CDinδf ) − ∆fV (x) −mωcV + FTc

FT = sat(FTp, 0, Fmax)

ū = FT − FTp

˙̄V = −ωcV̄ +
1

m
ū

FTc(s) −mVd(s)

Vd(s) − (V (s) + V̄ (s))
= mkV

s+ ωc
s

.

The resulting control outputFT and tracking errorV (t) −
Vd(t) are depicted in Fig. 8. From Fig. 8 it is clear that nearly
perfect tracking ofVd(t) is achieved unless actuator satura-
tion occurs, in which the anti-windup control law preserves
stability while quickly regaining desired velocity control
when saturation is no-longer present. When the aircraft is
not subject to either headwind or gust type disturbances, the
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Fig. 8. Nominal velocity tracking error(Vd(t)−V (t)) and control thrust
FT (t).

control system forγ andχ tracks the desired trajectories as
depicted in Fig. 9. Similar tracking performance is achieved
when the aircraft is subject to a steady wind shear model
[21], however, when an additional discrete wind-gust [21] is
applied at 100 seconds with a magnitude[5, 5, 5] (m/s) over
a distance10b results in significant oscillations which take
over twenty seconds to settle. Significantly, better robust-
ness to the discrete wind-gust disturbance is achieved with
the less complex controller proposed in Theorem 2 whose
error tracking performance is depicted in Fig. 10. The gust
disturbance is quite significant as can be seen from the angle-
of-attack, slide-slip-angle and bank-angle responses depicted
in Fig. 11. The wind gust applied to the aircraft caused the
angle-of-attack to drop from−0.5◦ to −2.0◦ in less than
one second which corresponds to a decrease in the lift force
from 25 kN to 5 kN. Although the controller proposed in
Theorem 1 has a longer settling time then the less complex
controller, the maximum deviation from the desired set-point
for γ is less. Such a result suggests that by filtering the
additional controller term−GT(x)x̂ could still reduce the
tracking error while reducing settling time. In particularwe
apply the modified control law:

u =G−1
m (x)(−Fm(x) − kmx̂m + ẋmd − ym−1)

τf ẏm−1 = − ym−1 +GT
m−1(x)x̂m−1

xmd =G−1
m−1(x)(−Fm−1(x) − km−1x̂m−1 + ẋ(m−1)d

= − ym−2)

τf ẏm−2 = − ym−2 +GT
m−2(x)x̂m−2

... =
...

x3d =G−1
2 (x) (−F2(x) − k2x̂2 + ẋ2d − y1)

τf ẏ1 = − y1 +GT
1 (x)x̂1

x2d =G−1
1 (x) (−F1(x) − k1x̂1 + ẋ1d)

which achieves improved disturbance rejection and tracking
as can be seen in Fig. 12 and reduces the deviation in angle-
of-attack as seen in Fig. 11 which reduces the overall force-
deviation applied to the aircraft. Finally Fig. 14 indicates
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Fig. 10. Flight-path angleγ and velocity heading angleχ tracking error
when subject to steady wind shear and a gust at 100 s using control law
from Theorem 2).

that the velocity controller works exceptionally well in
maintaining desired velocity in spite a significant wind gust
disturbance.

VII. CONCLUSIONS

We have presented a simplified back-stepping control law
which does not use adaptation in order to verify fixed-wing
aircraft models. In doing show we showed that this control
law is quite robust to controlling the aircraft in both steady
winds and significant discrete wind-gusts. In addition, the
controller performs exceptionally well as compared to more
complex adaptive back-stepping controllers. In particular,
assuming a small angle assumption onα, β andµ, greatly
simplifies the control laws while still getting similar range
and performance as compared to the controller implemented
in [10]. Careful inspection of the proof for Theorem 1, for
example will show that although back-stepping controllers
can invert functions such attan(x) which may be embedded
in the G(x) description do not necessarily lead to perfect
cancellation of their effects which result in the idealized
negative definite Lyapunov functions presented. However,
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Fig. 11. Resultingx2(t) to achieve flight trajectories when subject to
steady wind shear and a gust at 100 s using control law from Theorem 2).
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Fig. 12. Flight-path angleγ and velocity heading angleχ tracking error
when subject to steady wind shear and a gust at 100 s using improved
control law.
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Fig. 13. Resultingx2(t) to achieve flight trajectories when subject to
steady wind shear and a gust at 100 s using improved control law.
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Fig. 14. ResultingV̂ andFT to achieve velocity trajectory when subject
to steady wind shear and a gust at 100 s.

arguments similar to those given in Theorem 2 are sufficient
to state that if the gains are large enough these non-ideal
effects are typically compensated sufficiently to maintaina
negative definite function. Theorem 2 led to a more robust
controller which led us to propose a filtered version of
Theorem 1 which resulted in our best controller as presented
in Section VI-B.
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