PolicyForge: A Collaborative Environment for
Formalizing Privacy Policies in Health Care

Andras Nadas,
Laszlo Juracz
and Janos Sztipanovits
Institute for Software Integrated Systems
Vanderbilt University
Nashville, Tennessee 37212, USA

{andras.nadas, laszlo.juracz, janos.sztipanovits } @ vanderbilt.edu

Abstract—The vision of PolicyForge.org is that it becomes
an open repository for privacy policies at local, state and
national level; provides collaboration services for discussing,
interpreting, and tracking policies; and by embedding formal
policy models with relevant ontologies, it provides a wide range
of services for authoring, composing, analyzing policy models,
and for exporting executable version of the models for Health
Information Exchange platforms.

Index Terms—Formal Specification, Privacy, Collaborative
tools, Metamodeling, Health information systems.

I. INTRODUCTION AND BACKGROUND

As with all aspects of modern digital life more and more
data is stored, transferred and shared about individuals by
large computer systems with or without adequate the pro-
tection of the privacy of the individual. Electronic Medical
Record (EMR) and Health Information Systems (HIS) have
particularly sensitive privacy concerns that are governed by
policies from several different entities. In the United States
EMR and HIS are governed by a confusing number of laws,
regulations and policies from the federal, state and local
governments as well as institutional policies and business
agreements. The federal statutes include the Health Insurance
Portability and Accountability Act (HIPAA) [1] and the Health
Information Technology for Economic and Clinical Health
(HITECH) Act [2]. Many states have issued different and
sometimes contradicting regulations governing the use and
disclosures of sensitive Patient Health Information (PHI) [3].
Ensuring consistent harmonization of policies across federal,
state, and institutional levels remains a major challenge [4]. To
further complicate the issue, the policies and regulations are
changed and revised from time to time. Ever more stringent
enforcement requirements with increasing penalties for non-
compliance add to the considerable challenge for the develop-
ment of health information systems.

To conquer these problems researchers have been focusing
on formalization of the policies that regulate health informa-
tion systems. All of these formalization strategies can be traced
back to the philosophical framework of Contextual Integrity
[5], that provides a clear definition of what privacy is and
enables the description of it using context dependent transmis-

978-1-4673-6282-5/13 © 2013 IEEE

Mark E. Frisse
and Ann J. Olsen
Vanderbilt University Medical Center
Vanderbilt University
Nashville, Tennessee 37212, USA
mark.frisse @vanderbilt.edu
and ann.olsen @vanderbilt.edu

sion channels and dissemination rules. Based on Contextual
Integrity researchers developed many formalisms that cover
different slices and aspects of the policy formalization problem
[6]-[12]. While all these researchers were successful and made
meaningful contributions, they did not achieve wide adoption
outside the research community. One reason for this is the
lack of a platform where researchers and others can share
their models, results and thoughts while making it available
for others. Another reason for the lack of adoption is that
researchers usually focus on narrow subsets of large problems
and the result of this is the lack of sufficient coverage of
the problem domain to be usable for outside entities. The
particular reason for focusing on a narrow subset in the case
of policies is the problem of translation and formalization of
the natural language policies. One thing the researchers agree
on is that this formalization is a slow and difficult process
[13].

The PolicyForge framework we present can help to scale
these efforts by the introduction of crowdsourcing. Crowd-
sourcing can extend the user base from just computer science
researchers to a broad range of health care professionals, as
well as, Institutional Privacy Officers and their internal policy
development teams, inter-organizational policy development
teams (e.g., for Health Information Exchanges (HIE), clin-
ically integrated networks, Accountable Care Organizations
(ACO), etc.) and legislative and regulatory agency staff at
state, federal and regional levels.

II. DESIGN OF POLICYFORGE

The architecture of PolicyForge, as shown on Figure 1,
will offer an authoritative reference source for policy makers
and users. Its policy repository, the Policy Exchange, captures
standard format policies, policy templates, and ontologies,
includes both the textual and formal representations, their
version history, the various interpretations and open issues and
the provenance information. The Policy Exchange includes a
taxonomy-driven search engine for all artifacts. Policy model-
ing, analysis and export is supported by a wide range of au-
thoring, collaboration, and analysis tools. An essential feature
of PolicyForge.org will be the requirement for the existence

20 SEHC 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Policy Exchange Tools
- templates Projects - viewer
- ontologies — authori
-0 - templates authoring
- policies - ontologies - modeling
B i;sgﬁgr(:fy - policies - comlpqsmon
) - policy sets - analysis
- taxonomic — scenarios - export
search
PolicyForge
- User management - Collaboration HIS, :li’ Aco
- Profiling - Trust management ’

1 !

Collaborative | I Policy sets for
Policy Creation and Analysis Enforcement Points

HealthCare
Organizations

Fig. 1. The architecture of PolicyForge.org.

of formal policy models. While the formalism is not expected
to be standardized, the formal specification of semantics and
methods for translating formal policy models into a common
semantic domain will be required. PolicyForge.org includes
extensive support for security and user management. While
artifacts in the Policy Exchange are public, users and user
groups are able to create projects with restricted visibility and
access control.

A. The Framework

PolicyForge is being developed on the novel cloud based
collaboration framework of VehicleFORGE [14]. The Vehi-
cleFORGE platform is designed to step beyond the software-
only forges. It is designed and maintained to host the Defense
Advanced Research Project Agency (DARPA) Fast, Adaptable,
Next-Generation Ground Vehicle (FANG) series of prize-based
design competitions as part of the Adaptive Vehicle Make
(AVM) portfolio. VehicleFORGE provides the virtual envi-
ronment which enables the management of the competitions,
competitors and the collaboration of geographically distributed
design teams, as well as various cloud-based analysis services
and tools for the design work.

The success of crowdscourcing and the model of distributed
problem-solving and software production was essentially en-
abled by widely popular open-source software forges such
as SourceForge.net in the past decade. Based on the success
of SourceForge.net, their Allura framework was an obvious
choice after investigating the open technologies for the devel-
opment of VehicleFORGE.

B. Policy Modeling Tools

PolicyForge will come with a set of tools that enables the
organization and formalization of health care privacy policies.
There are tools to focus on organization, creation and sharing
of all artifacts related or constructed during the formalization
of privacy policies including policy texts, ontology models,
policy models and scenarios.

1) Artifact Taxonomy: PolicyForge is designed to enable
the sharing and editing of the artifacts connected to a policy
formalization problem. These artifacts are specified and orga-
nized using an Artifact Taxonomy. This taxonomy is extensible
with new artifact types to enable scaling and adaptability to
new formalisms and problem areas. The artifacts are grouped
into three main categories file, document and model as shown
on Figure 2. The file artifacts are stored in PolicyForge but
are not processed or used by any of the tools directly. The
files are stored for reference only to help the users. The
documents are the processable and usable abstractions of the
files. The content of the documents is plain text with mark-ups
to enable simple but universal processing by tools. The most
extensive category of artifacts is the models, which contain
the formal descriptions of the policies, scenarios and concept
ontologies. Policy template models are special artifacts. These
templates are used to define the formal language for the policy
formalisms together with the formal semantics of the language
anchored for different purposes, such as execution, analysis or
verification using scenarios.

Artifact
File
— Supporting Document
Document
Policy Document
Use case Document
Model
— Model Set
— Ontology Model
I Policy Template Model
Logic Template
Policy Template
Relation Template

— Policy Model

Patient Consent Model
Federal Policy Model
State Policy Model
Institutional Policy Model

— Scenario Model
Disclosure Scenario Model
Access/Use Scenario Model

Fig. 2. The Artifact Taxonomy of PolicyForge.org.

2) Policy Text and Ontology Model Authoring: The Policy
Text and Ontology Model Authoring tool enables users to
add or edit the text of the rules and regulations from their
organization(s) to their project in the PolicyForge. The addition
of the policy texts to the PolicyForge is the first step in
the process of formalization. Users can store and arrange
an arbitrary number of policy texts in each project. The
policy texts that are already available in the project can be
browsed and reviewed anytime. The policy texts are copied
from documents already existing outside PolicyForge or users
can opt to upload these documents as references into the cloud
storage of PolicyForge.

Parts of the texts can be marked as members of an ontology
and be highlighted in the text. The marked up text is linked to
the ontology model that is stored in the background together
with the other models. The ontology association can later be
reused during the formalization of the policy. The ontologies
that the user can use to markup the text can also be visualized
as a reference, as well as edited and extended. Beyond editing

the ontology models inside PolicyForge, users can opt to
include ontology models in a standard RDF-OWL format [15].

Policies PolicyForge Modeling Tools Execution/Analysis
Building Blocks Specialization Engine
Ontology
Policy | ..-r""|_Models [™ FORMULA, [}
Text ‘““\\ \ prolog,
N Sl . Etc.
~~~,| Policy
T It Models
Polic emplates Execution
Patt Y BN / .4+ domain
atterns s — ¥ PP specification
Semantic ||=: ="
anchors —1

Fig. 3. The Models and their relation in PolicyForge.

3) Policy Model Construction: The Policy Models are
constructed using Ontology Models and Policy Model Tem-
plates as shown in Figure 3. The Policy Model Templates
are predefined templates or forms that provide a generalized
structure for policy model development. The templates provide
a form-like structure where instantiated ontology terms can be
filled in into each field. The templates provide the structure
and glue to go from Ontology Models to Policy Models.

More formally speaking, the Policy Model Templates pro-
vide a reusable structure with structural semantics enforced
upon specialization of the template into Policy Models. The
operational or denominational semantics are given to the tem-
plates by anchoring their semantics with a formal specification.
This separation of the structural and behavioral semantics
enables use of the same patterns and their instantiated models
in different target domains such us analysis, verification and/or
execution [16].

Policy Models are instantiations of Policy Templates with
entities (actors, classes etc.) derived from Ontology Models
and filled in each field of the template. Each Policy Model
can contain a hierarchy of instantiated templates to describe
details, relations and constraints found inside the policies.
A simple Policy Model example is shown in Figure 4. It
shows a simplified state policy template that is instantiated
to describe a policy saying: “Mental Health Record of a
Mental Health Patient (who 1is classified as a patient from
an Ontology Model) can only be disclosed to a Psychiatrist
(who is classified as a doctor from an Ontology Model) if
there is an established Treatment Relation between the Mental
Health Patient and the Psychiatrist.”

4) Policy Verification and Analysis: The Policy Verification
and Analysis tool enables users to check the consistency of
designated policy sets and analyze the impact of policies on
established scenarios.

Policy Analysis enables users to test a composition of
policies for contradictions and entailment that could cause
problems if the policies are be put into effect. The analysis can
be run on policy model sets. These model sets are artifacts built
hierarchically from policy models and policy model sets. This
hierarchical organization enables the simple extension and

Template - State Policy
requestor | Actor Psychiatristndoctor
(e S (EHe]EL Mental Health Record ||

oGS Mental Health Patientnpatient

constraint éonstraint - Treatment Relation
+o).+ Psychiatrist

doctor
. Mental Health Patient |

patient

Fig. 4. A simple example of a Policy Model in PolicyForge.

specialization of policy sets in different projects using shared
artifacts. The analysis is done by instantiating the analysis
semantics of all the policy models in the policy model set using
their policy templates. The instantiation process generates an
executable verification code that can be run on a compatible
execution environment, such as the widely adopted Prolog or
the novel Formula [17], residing in the PolicyForge cloud.

Policy Verification makes it possible to verify consistent pol-
icy sets against established scenarios of health care activities
such as disclosures, information exchanges or data access. The
scenarios are relatively simple data flow models specialized to
the domain. The data in this model is the health information of
the patient as well as other administrative data elements such
as visit history, appointment schedules and consent documents.
The actors in the data flow model are the patient, the care
provider and other entities that are involved in the communica-
tion or want to have access to the patients data. The actors and
the data are derived from the ontology models similarly to the
policy models. The verification engine first matches the actors
and documents to the similar parts of the policies in the policy
set using the shared ontologies. After the scenario and policies
are composed using the ontologies, the logic expressions from
the semantic anchors of the policy templates are instantiated.
The instantiated logic expressions are then executed and solved
by constraint satisfaction algorithms in the same execution
environments as used for the policy analysis. The result of
the verification can be twofold. First, it can tell whether the
scenario is valid or not in view of the policy set. Second, if
the execution environment has the capability it is also possible
to infer where the contradiction between the policies and the
scenario lies and possibly offer a solution to incorporate into
the scenario to mend the contradiction.

5) Policy Export and Integration: After the Policy Models
are analyzed, verified and tested, they can be exported from
PolicyForge into an HIS to regulate or audit the workflow
and the execution. Similarly to analysis and verification the
semantics of the execution has to be anchored to the Policy
Model Templates from which Policy Models are composed.
Together with the Policy Models the Ontology Models can
also be exported and used as configuration parameters to an
HIE or HIS.

C. Collaboration Tools

1) Projects and Neighborhoods: The organization of the
fundamental forge concepts in PolicyForge is derived from the

22



Allura core. Projects embody the collaboration spaces where
members of a team of users can collaborate. There are tools
available in the Project space for the collaborative design
work. Registered users can create new Projects or acquire
membership in an existing one. Projects are created based on
pre-configured templates but in general, each team controls
how it utilizes the Project for its work. PolicyForge implements
role-based access control. Privileged administrator users of
each project can freely provision new tools and administer
the tools and members of the Project.

PolicyForge supports the concept of Neighborhoods. Neigh-
borhoods are collections of projects, usually representing
institutions or domains with which the teams of the member
Projects are affiliated in the physical world. Neighborhoods
also offer similar collaboration functionalities to the Project
spaces: they can have members, customized roles and selected
tools installed for Neighborhood-level collaborative work.

2) User Management: The framework that the PolicyForge
is being built upon enables very flexible user management.
Each project in the PolicyForge can create Permissions and
User Groups to match its requirements. The tools enabled in
the project can use these groups to determine the permissions
of each user in the project.

3) Message Boards and Ticketing: PolicyForge also comes
with standard forums and message boards as well as an
issue and ticket tracking service. These collaboration tools are
associated to projects and can be read and written by members
of the project, unless the projects administrators open these up
to other projects and members.

D. Policy Exchange

The artifacts in the Policy Forge are only accessible to the
users associated with the project where the artifact was created
unless the artifact is explicitly shared. This feature enables
very flexible control over the access of the artifact by users
outside the working group that created the artifact. The Policy
Exchange tool enables browsing and discovery of the artifacts
that were made available by the projects in the PolicyForge.

All the artifacts in the PolicyForge are organized into a
taxonomy (Figure 2) to enable efficient but flexible discovery
of the artifacts. Each type artifact in the taxonomy may have
unique properties over the general properties it inherits from
their parent type. The properties can also be used to filter the
search results using intelligent filters.

III. CONCLUSION

PolicyForge.org is envisioned to be an open, community-
driven platform, offering an authoritative reference source for
policy makers and users in an online space. It enables both
private and open collaboration among teams and individual
users at many levels (institutional, network, state, federal)
for viewing, reviewing, discussing, developing, interpreting,
comparing, and tracking privacy policies. It integrates policy
tools developed by different communities in a consistent,
widely accessible framework, and brings crowdsourcing ca-
pabilities to the process of authoring, interpreting, analyzing

23

and implementing privacy policies in health care. This com-
plex process require participation from groups of individuals
offering heterogeneous knowledge, input from multiple stake-
holder institutions, and extensive collaboration and consensus
building at local, state and national scales.

ACKNOWLEDGMENTS

The work presented in this paper was funded through
National Science Foundation (NSF) TRUST (The Team for
Research in Ubiquitous Secure Technology) Science and
Technology Center Grant Number CCF-0424422 and Office
of National Coordinator for Health Information Technology
(ONC) Grant Number HHS 90TRO003/1. Its contents are
solely the responsibility of the authors and do not necessarily
represent the official views of the HHS or NSF.

REFERENCES

[1] U.S. Congress, “HIPAA: Health insurance portability and accountability
act,” 1996.

U. S. Congress, “Health information technology for economic and
clinical health (HITECH) act,” February 2009.

J. Pritts, S. Lewis, R. Jacobson, K. Lucia, and K. Kayne, “Report on state
law requirements for patient permission to disclose health information,”
RTI International report, aug 2009.

M. E. Frisse, K. B. Johnson, H. Nian, C. L. Davison, C. S. Gadd,
K. M. Unertl, P. A. Turri, and Q. Chen, “The financial impact of health
information exchange on emergency department care,” Journal of the
American Medical Informatics Association, 2011.

H. Nissenbaum, “Privacy as contextual integrity,” Washington Law
Review, no. 79, pp. 119-158, 2004.

A. Barth, J. Mitchell, A. Datta, and S. Sundaram, “Privacy and utility
in business processes,” in Computer Security Foundations Symposium,
2007. CSF ’07. 20th IEEE, july 2007, pp. 279 —294.

A. Datta, J. Franklin, D. Garg, and D. Kaynar, “A logic of secure systems
and its application to trusted computing,” in Security and Privacy, 2009
30th IEEE Symposium on, may 2009, pp. 221 -236.

P. E. Lam, J. C. Mitchell, and S. Sundaram, “A formalization of hipaa
for a medical messaging system,” in Proceedings of the 6th International
Conference on Trust, Privacy and Security in Digital Business, ser.
TrustBus ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 73-85.
M. Y. Becker, C. Fournet, and A. D. Gordon, “SecPAL: Design and se-
mantics of a decentralized authorization language,” Journal of Computer
Security, vol. 18, no. 4, pp. 619-665, 2010.

R. Craven, J. Lobo, E. Lupu, J. Ma, A. Russo, M. Sloman, and
A. Bandara, “A formal framework for policy analysis,” Imperial College
London, Tech. Rep, 2008.

G. Simko and J. Sztipanovits, “Active monitoring using real-time metric
linear temporal logic specifications.” in HEALTHINF, 2012, pp. 370-
373.

A. Nadas, M. E. Frisse, and J. Sztipanovits, “Modeling privacy aware
health information exchange systems,” in Ist International Workshop on
Engineering EHR Solutions (IWEES). Amsterdam Privacy Conference
2012, 2012.

K. Waterman, “Preprocessing legal text: Policy parsing and
isomorphic intermediate representation,” 2010. [Online]. Available:
http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1112
VechicleForge platform, Institute for Software Integrated Systems, Van-
derbilt University, http://vehicleforge.org/faq.

J, H I. H D. L. M. P. E P-S. L. A. S. Sean Bechhofer,
Frank van Harmelen, OWL Web Ontology Language Reference, W3C,
http://www.w3.org/TR/owl-ref/.

A. Nadas, T. Levendovszky, E. K. Jackson, and J. Sztipanovits, “A
model-integrated authoring environment for privacy policies,” Science
of Computer Programming, vol. Special Issue on Success Stories in
Model Driven Engineering, 2012, submitted.

E. K. Jackson and W. Schulte, FORMULA (Formal Model-
ing Using Logic Programming and Analysis), Microsoft Research,
http://research.microsoft.com/en-us/projects/formula/.

(2]
3

[t

[4]

[5]
[6

=

[7

—

[8]

[91

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]



