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Abstract—Interconnection damping assignment passivity based
control (IDA-PBC) is an emerging control design method which
allows an engineer to systematically design an advanced con-
troller for complex non-linear systems. As a result specific
gain ranges can be determined which can prevent an operator
(adversary) from accidentally (maliciously) setting control gains
which could potentially destabilize the system. However in order
to generate the controller the engineer will have to resort to using
symbolic numerical solvers in order to complete the design. This
can be both a cumbersome and error-prone task which can be
automated. We present initial results of a tool which simplifies
IDA-PBC. In addition many fluid control problems posses tight
operating regions in which pumps degrade over time. As a
result actuator saturation may occur for given set-point profiles
which will lead to integrator wind-up and more oscillatory
behavior. We provide a non-linear anti-windup control-law which
greatly improves system resilience to such degradation. Finally we
demonstrate that IDA-PBC works reasonably well for moderately
large sampling times by simply applying the bilinear transform to
approximate any additional (non-linear) integral control terms.

I. INTRODUCTION

The design of resilient control systems necessitates novel

developments at the intersection of computer science and con-

trol theory. The control of complex dynamic systems is a well-

studied area, but much less is known about how to implement

such control systems that are able to tolerate shortcomings

of non-ideal software and network-based implementation plat-

forms. Additionally, not only implementation side-effects have

to be mitigated, but also potential issues related to security of

the control system. For instance, if an operator’s interface is

compromised, will the attacker be able to set control gains in

such a manner so as to destabilize the system? If an actuator

is degrading or has been compromised, will the operator be

able to quickly identify and quantify such a system fault?

Many processes are highly non-linear and quite difficult to

control, as a result typical linear approximations are often

made and the resulting “safe” operating range is quite narrow.

Interconnection damping assignment passivity based control

(IDA-PBC) is an emerging method to systematically tackle

the design of highly non-linear systems and derive intuitive

control laws typically with many linear control-law elements

and reasonable tuning gain ranges to allow an operator more

flexibility in tuning a given system and to identify system
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degradation, all while being able to safely limit the operator

from accidentally introducing destabilising gains.

Passivity is a mathematical property of the controller im-

plementation, and could be realized in different ways. The

approach described here applies to a large family of physical

systems which can be described by both linear and non-

linear system models [1]–[3], including systems which can

be described by cascades of passive systems such as quad-

rotor aircraft [4]. Most recently IDA-PBC has been shown

to be effective in determining controllers which render non-

minimum phase systems (which are typically very difficult to

control) to be dissipative and asymptotically stable [5], [6].

A classic, but challenging control problem related to process

control is the four tank process which can exhibit both min-

imum and nonminimum-phase behavior by simply changing

valve flow ratios [7], [8]. In [8] it is first shown how to derive a

proportional-IDA-PBC-law to control a less complex two tank

process before deriving a control law for the four tank process.

We continue the study of the two tank process by introducing

an integrator term to account for system uncertainty while

introducing an integrator anti-windup compensator similar to

that used to control thermal systems [9].

Section II provides an overview on IDA-PBC and an ef-

fective way to implement an anti-windup controller in order

to improve system resilience. Section III recalls the system

dynamics used to model the flow for coupled tank systems in

addition it includes the Hamiltonian chosen to generate our

control laws. Section V provides simulated results demon-

strating resilience to actuator degradation and improvement

in reducing oscillations with anti-windup control. Section VI

provides conclusions for this paper.

II. IDA-PBC, INTEGRATOR ANTI-WINDUP & DISCRETE

TIME CONTROL

Our primary concern is to determine a desired state trajec-

tory x∗ which may be a function of a smaller subset of desired

independently-controllable states x∗
c

and a corresponding con-

trol law u = β(x, xI, x
∗) ∈ R

m (x, x∗ ∈ R
n and x∗

c
, xI ∈ R

p

in which p ≤ n is the number of independently controllable

states) for the following input-affine system

ẋ = f(x) + g(x)u (1)

augmented with p additional (non-linear) integrator states xI

to account for system uncertainty such that

ẋI = kI (fI(xc) − fI(x
∗
c
))

= diag{kI1 (fI1(xc1) − fI1(x
∗
c1)) , . . . , kIp

(

fIp(xcp) − fIp(x
∗
cp)

)

}.
N.B. it may not be necessary to introduce p integrators in

order to account for system uncertainty, however, in order to



simplify discussion we will assume that the system studied

is asymptotically stable for each controllable state. This will

typically require an additional integral term in order to account

for system uncertainty and actuator degradation. In addition,

we desire to implement an anti-windup control law which will

improve system resilience when either the control actuator

deteriorates or other system parameters deviate substantially

such that actuator saturation occurs. Finally, we consider a

discrete-time implementation of our control-law in which we

use a bilinear-transform to approximate the integral and anti-

windup control law. Section II-A provides an overview of

IDA-PBC which will allow us to effectively control (non)-

linear systems and achieve large operating ranges while being

able to quantify system degradation. Section II-B presents our

integrator anti-windup compensator which typically improves

system resilience. Finally, Section II-C presents our discrete-

time implementation which we found to work exceptionally

well by allowing large sampling times Ts.

A. IDA-PBC

IDA-PBC is concerned with rendering our input affine

system (1) with augmented integrator control law to have the

following final form in terms of the gradient of the desired

Hamiltonian Hd(x, xI, x
∗):

[

ẋ

ẋI

]

= Qd(x, xI)∇Hd(x, xI, x
∗) (2)

in which Qd(x, xI) ∈ R
(n+p)×(n+p) is negative

definite (Qd(x, xI) < 0) and the operation ∇ =
[ ∂
∂x1

, . . . , ∂
∂xn

, ∂
∂xI1

, . . . , ∂
∂xIp

]T. In order to guarantee that

x = x∗ and xI = 0 at steady-state (for the ideal model-

matching case) the control law β(x, xI, x
∗) should guarantee

that:

∇Hd(x = x∗, xI = 0, x∗) = 0 necessary

∇2 Hd(x = x∗, xI = 0, x∗) > 0 a sufficient condition.

Although not required for controller synthesis, many physical

systems, such as robotic systems Qd = Jd − Rd in which

Jd = −JT

d is a skew-symmetric matrix representing the under-

lying network structure of the system whereas Rd = RT

d ≥ 0
describes the damping in the system [10]. Such observations

may prove useful in choosing an initial Hamiltonian to begin

control design, however, by choosing Qd to simply be a con-

stant negative definite matrix an engineer can systematically

determine a controller β(x, xI, x
∗) as originally described in

[8] and summarized here (in which we add some additional

discussion on determining x∗ from x∗
c

while improving upon

the discussion in introducing additional integrator terms).

1) Recall that the introduction of p additional (non-linear)

integrators results in an augmented state-space description

in order to account for system uncertainty:

[

ẋ

ẋI

]

=

[

f(x)
kI (fI(xc) − fI(x

∗
c
))

]

+

[

g(x)
0

]

u.

2) Select a candidate Hamiltonian H(x, xI) which depends

on additional scaling terms ki, i ∈ {1, . . . , n} such that

[

ẋ

ẋI

]

= Qd ∇H(x, xI) =

[

f(x)
kI (fI(xc) − fI(x

∗
c
))

]

in which Qd ∈ R
(n+p)×(n+p) is a constant matrix.

3) Determine the conditions on ki and kI such that Qd is

negative definite. We do this by verifying that the negative

of the Hermitian of Qd (−He{Qd} = − 1
2 (QT

d + Qd)) is

positive definite using Sylvester’s Criterion (the determi-

nants of the leading principal submatrices of −He{Qd}
are positive).

4) Determine a matrix P ∈ R
(n+p)×m having columns

spanning the null-space of g⊥Qd (g⊥QdP = 0 and

normalized such that g†QdP = −I) in which g⊥(x) ∈
R

(n−m)×(n+p) is the maximum rank left annihila-

tor of g(x) such that g⊥(x)[g(x)T, 0T]T = 0 and

g†(x) ∈ R
m×(n+p) is the left-inverse of g(x) such

that g†(x)[g(x)T, 0T]T = I (P is used to compute the

characteristic z = PT[xT, xT

I
]T).

5) Denoting x̃ = [(x − x∗)T, (xI − 0)T]T, z̃ = PTx̃

and choosing the desired Hamiltonian Hd to be of the

following form:

Hd(x, xI, x
∗) = H(x, xI) +

1

2
z̃TQz̃ + lTz

in which Q ∈ R
m×m Q = QT > 0. The corresponding

gradient is

∇Hd(x, xI, x
∗) = ∇H(x, xI) + PQPTx̃ + Pl.

When x = x∗ and xI = 0 the gradient simplifies to

∇Hd(x = x∗, xI = 0, x∗) = ∇H(x = x∗, xI = 0) + Pl

which we use to determine l and the uncontrolable parts

of x∗ which are not part of x∗
c such that ∇Hd(x =

x∗, xI = 0, x∗) = 0. In addition we verify that the

corresponding Hessian is positive definite for x = x∗

and xI = 0

∇2 Hd(x = x∗, xI = 0, x∗) = ∇2 H(x = x∗, xI = 0)+PQPT.

6) Finally we determine our control law β(x, xI, x
∗):

β(x) = g†
{

Qd ∇Hd(x, xI, x
∗) −

[

f(x)
kI (fI(xc) − fI(x

∗
c
))

]}

β(x, xI, x
∗) = g†

{

QdP
(

QPTx̃ + l
)}

Since P was normalized such that g†QdP = −I then our

final control law has the following simplified form:

β(x, xI, x
∗) = −Kpx̃ + u∗

in which Kp = QPT, u∗ = −l.



B. Integrator Anti-Windup Compensator

In [8] the authors addressed integrator wind-up issues by

simply setting ẋI = 0 if β(x, xI, x
∗) > umax or β(x, xI, x

∗) <

umin. Unfortunately this ad hoc solution caused the simulation

to halt when evaluating their control law for the two tank and

four tank processes when actuator saturation occurred. When

the overall system to be controlled is asymptotically stable

a more effective approach is to introduce an additional feed-

back term which attempts to approximate the system dynamics

as if saturation has not occurred [9]. Since the integrator

dynamics can not describe the case when x < 0 we will use a

linear approximation of the system with respect to the desired

trajectory components x∗. In addition the matrix g(x) for the

systems studied do not depend on x. We denote the Jacobian

of f(x) as A(x) such that

A(x) =









∂f1(x)
∂x1

. . .
∂f1(x)
∂xn

...
...

...
∂fn(x)

∂x1
. . .

∂fn(x)
∂xn









.

Specifically we modify the integrator dynamics as follows:

ẋI = kI (fI(xlinc) − fI(x
∗
c)) , xlinc = x̄c + xc

in which xlinc is further constrained to gaurantee that fI(xlinc)
is valid (ie. if fI(xlinc) =

√
xlinc then if xlinc < 0 set

xlinc = 0). x̄c are the appropriate components of x̄ which

are determined from the following dynamic relationship

˙̄x = A(x∗)x̄ + gū

ū = u − sat(u, umin, umax), u = β(x, xI, x
∗)

sat(u, umin, umax) =











u if umin ≤ u ≤ umax,

umin if u < umin,

umax otherwise.

We observe that for the linear time-invariant (LTI) case

that if exact knowledge of the plant dynamics are given such

that both A(x)x = f(x) and the exact saturation model is

known then the closed-loop dynamics considered for stability

are identical to those considered when actuator saturation is

not considered. Therefore stability is unaffected using our

proposed control scheme for the LTI case. Analysis for the

non-linear case is clearly much more involved and worthy

of future study. However, for the non-linear tank processes

studied, using the jacobian A(x) to approximate the plant

dyanmics was sufficient to prevent integrator wind-up while

maintaining stability.

C. Discrete-Time Implementation

Observing the final control-law for β(x, xI, x
∗) and noting

the form for the actuator anti-windup structure in computing ˙̄x
and ẋI. Most of the control components consists of a standard

matrix multiplication and the corresponding (non-linear) inte-

gral terms can be approximated by applying either a matched

pole-zero or bilinear transform [11]. The bilinear transform is

preferred because it preserves the passivity properties of the

integration term which typically allows for longer sample and

hold times than if a matched pole-zero method was used. Thus

reducing communication bandwidth and typically reducing

sensitivity to time delay jitter. We note that the integer k

shall be related to time t and sampling rate Ts > 0 as

follows k = ⌊ t
Ts
⌋ for all t ≥ 0. Specifically, our discrete-

time implementation is as follows:

u(k) = β(x(kTs), xI(k − 1), x∗(k))

ū(k) = u(k) − sat(u(k), umin, umax)

˙̄x(k) = A(x∗(k))x̄(k) + gū(k)

x̄(k) = x̄(k − 1) +
Ts

2
[ ˙̄x(k) + ˙̄x(k − 1)]

xlinc(k) = x̄c(k) + xc(kTs) ∈ [xmin, xmax]

ẋI(k) = kI [fI(xlinc(k)) − fI(x
∗
c(k))]

xI(k) = xI(k − 1) +
Ts

2
[ẋI(k) + ẋI(k − 1)]

in which u(t) = u(k), t ∈ [kTs, (k + 1)Ts). It is of future

interest to implement an observer for the plant-subsystem in

order to preserve dissipative properties in the discrete-time

setting [12]. Such an observer set-up could potentially lead

to a one-to-one mapping between the continuous-time and

discrete-time implementation in regards to satisfying discrete-

time stability for a given set of gain constraints.

III. IDA-PBC OF COUPLED TANK SYSTEMS

A classic problem in the process control laboratory is to

learn how to control the height of columns of water for either

a coupled two tank [13] or four tank process [7]. Each problem

is particularly interesting in that there are only half as many

actuators (pumps) as there are tanks of water whose heights

there are to control. Therefore each process is under-actuated

in which only half of the tanks heights can be independently

controlled and in particular for the four tank process it is

unclear how to systematically apply methods such as back-

stepping control to the process [14]. However, as [8] has

demonstrated IDA-PBC shows to be a promising tool to handle

such a complicated system. In applying IDA-PBC to the four

tank process we discovered some additional restrictions are

required on the independent controllable states xc and the

control gains ki and kI. Since we are particularly interested in

implementing a resilient integrator anti-windup compensator

Section III-A recalls the coupled two tank process model

which [8] modified to split the flow into both the upper and

lower tanks. We will extend the discussion on the control

of this system by considering an additional integral term to

account for model uncertainty. Section III-B will recall the

coupled four tank process model.

A. Two Tank Process

The two tank process consists of a single gear-pump which

provides volumetric flow of a fluid from a bottom-reservoir

proportional to the control input u whose flow is then split

such that ideally γu is sent to a lower-tank with cross-sectional

area A1 and drain-orifice area a1 which drains back into the

bottom-reservoir. The remaining (1 − γ)u amount of fluid is



sent to the upper-tank with cross-sectional area A2 and drain-

orifice area a2 which drains back into the lower-tank. The

heights of the fluid in lower and upper-tanks is denoted x1 and

x2 respectively. Using Torricelli’s Law the system dynamics

have the following form

[

ẋ1

ẋ2

]

=

[

−a1

√
2gx1+a2

√
2gx2

A1

−a2

√
2gx2

A2

]

+

[

δγγ

A1
1−δγγ

A2

]

kuu. (3)

For simplicity of discussion ku and δγ are nominally con-

sidered to be equal to one, however we will perturb these

values in order to consider effects including pump degradation

(ku < 1) and uncertainty in the flow-ratio γ ∈ (0, 1) such that

0 < kγ < 1
γ

. It should be clear from (3) that only the height

of one of the tanks can be independently controlled. We will

control the height of the lower-tank x1 = xc and determine

x∗
2 based on our desired height x∗

1 and the system dynamics.

In order to account for system uncertainty we include the

following integral control term:

ẋI1 = a1

√

2g
(

√

x∗
1 −

√
x1

)

. (4)

The corresponding Hamiltonian used to generate our controller

is

H(x) =
2

∑

i=1

2

3
kiai

√

2gx
3
2

i + kI1a1

√

x∗
1xI1. (5)

Which results in:

Qd =





− 1
A1k1

1
A1k2

0

0 − 1
A2k2

0
kI1

k1
0 −kI1

k1





which is positive-definite iff 0 < k1 <
(4−A1kI1)A1k2

A2
, 0 <

k2 < ∞ and 0 < kI1 < 4
A1

; and the remaining control related

terms P = [k1, k2(1 − γ), k1]
T, l = −a1

√
2gx1 and x∗

2 =
a2
1(1−γ)2

a2
2

x∗
1.

B. Four Tank Process

The four tank process consists of: i) lower-tanks Tank 1 and

Tank 2 with respective fluid height x1 and x2 which we wish to

control xc = [x1, x2]
T; ii) upper-tanks Tank 3 and Tank 4 with

fluid height x3 and x4 such that x = [xT
c , x3, x4]

T; iii) two

gear pumps Pump 1 and Pump 2 generating volumetric flows

u1 and u2 respectively such that u = [u1, u2]
T; iv) Valve 1

which splits the flow to Tank 1 (γ1u1) and Tank 4 ((1−γ1)u1);

v) Valve 2 which splits the flow to Tank 2 (γ2u2) and Tank 3

((1− γ2)u2); and vi) Tank 3 drains into Tank 1 whereas Tank

4 drains into Tank 2. This cross-coupling creates a system

which can be either minimum phase 1 < (γ1 + γ2) < 2 or

nonminimum-phase 0 < (γ1+γ2) < 1. Using Torricelli’s Law

the system dynamics for the four tank process are as follows









ẋ1

ẋ2

ẋ3

ẋ4









=













−a1

√
2gx1+a3

√
2gx3

A1

−a2

√
2gx2+a4

√
2gx4

A2

−a3

√
2gx3

A3

−a4

√
2gx4

A4













+











δγ1γ1

A1
0

0
δγ2γ2

A2

0
1−δγ2γ2

A3
1−δγ1γ1

A4
0











ku

[

u1

u2

]

.

(6)

As was done in [8] we choose the following integral control

states
[

ẋI1

ẋI2

]

=

[

kI1a1

√
2g

(√

x∗
1 −

√
x1

)

kI2a2

√
2g

(√

x∗
2 −

√
x2

)

]

. (7)

and corresponding Hamiltonian

H(x) =

4
∑

i=1

2

3
kiai

√

2gx
3
2

i +

2
∑

j=1

kIjaj

√

x∗
jxIj . (8)

Which results in:

Qd =



















−1
A1k1

0 1
A3k3

0 0 0

0 −1
A2k2

0 1
A2k4

0 0

0 0 −1
A3k3

0 0 0

0 0 0 −1
A3k3

0 0
kI1

k1
0 0 0 −kI1

k1
0

0 kI2

k2
0 0 0 −kI2

k2



















which is positive-definite iff

0 < k1 <
(4 − kI1A1) k3

A3
, 0 < k2 <

(4 − kI2A2) k4

A4

0 < k3, k4 < ∞, 0 < kI1 <
4

A1
, 0 < kI2 <

4

A2
;

and the remaining control related terms

P =

















γ1k1 (γ2 − 1)k1

(1 − γ1)k2 γ2k2

0 (1 − γ2)k3

(1 − γ1)k4 0
γ1k1 (1 − γ2)k1

(1 − γ1)k2 γ2k2

















,

[

l1
l2

]

=





−γ2a1

√
2gx∗1+(γ2−1)a2

√
2gx∗2

γ1+γ2−1

− (γ1−1)a1

√
2gx∗1+γ1a2

√
2gx∗2

γ1+γ2−1



 ,

[

x∗
3

x∗
4

]

=





(1−γ2)
2

2ga2
3

l22
(1−γ1)

2

2ga2
4

l21



 .

N.B. it appears that in [8] the authors incorrectly applied

Sylvester’s Criterion directly to −Qd instead of the negative

of the Hermitian of Qd (−He{Qd}) which resulted in their

clearly incorrect constraints for the controller gains ki and kI

for the four tank process. Finally our analysis revealed that x∗
1

and x∗
2 can not be set completely independent of each other.

Specifically in order for ∇Hd(x = x∗, xI = 0, x∗) = 0 then

(

a1γ2

a2(1 − γ2)

)2

<
x∗

2

x∗
1

<

(

a1(1 − γ1)

a2γ1

)2

if (γ1 + γ2) < 1

(

a1(1 − γ1)

a2γ1

)2

<
x∗

2

x∗
1

<

(

a1γ2

a2(1 − γ2)

)2

if (γ1 + γ2) > 1.

IV. SYMBOLIC ANALYSIS

We created a prototype tool which symbolically derives

the controller expressions using the dynamic model and some

user guidance. We used the MuPAD symbolic analysis tool

available in Matlab [15]. Our tool follows the steps described

in section II in which we highlight some additional details in

regards to our implementation.

1) For each leading principal submatrix −He{Qd}k ∈
R

k×k k ∈ {1, . . . , n + p} we formed the symbolic



determinant expression |−He{Qd}k|. Then use MuPAD’s

solve()command to jointly solve for the control coeffi-

cients ki, kI subject to the constraint that |−He{Qd}k| >

0.

2) The calculation of P is a bit more involved:

a) Use MuPAD’s function linalg::nullspace()to

extract the nullspace basis set for g(x)T , then concate-

nate the resulting list of vectors to construct the matrix

g⊥(x).
b) Compute g† using the Moore-Penrose left psuedoin-

verse g† = (g(x)T g(x))−1g(x)T .

c) Form the matrices g(x)⊥Qd and g(x)†Qd. The matrix

Pnull comes from the basis vectors for the null space of

g(x)⊥Qd. Solving P = −Pnull(g
†QdPnull)

−1 yields

the appropriately scaled matrix P .

V. SIMULATION RESULTS

In evaluating our proposed solution we shall take a closer

look at system performance for the modified two tank process

described in [8]. Specifically we will compare our controller

with the additional integrator and corresponding integrator

anti-windup compensator to the original proportional feed-

back controller presented in [8]. We will see that the integrator

is able to effectively compensate for both actuator degradation

and flow-ratio uncertainty. In addition the integrator anti-

windup compensator works sufficiently well in prohibiting

significant oscillatory behavior when operating at the systems

limits. Next we will compare IDA-PBC performance to the de-

centralized controllers presented in [7] for both the minimum

and non-minimum phase cases. We will see that the IDA-PBC

is both comparable for the minimum phase case while being

vastly superior for the non-minimum phase case.

A. Two Tank Process

For the two tank process the system operating parameters

are as follows: A1 = 50.3 cm2, A2 = 28.3 cm2, a1 = .233
cm2, a2 = .127 cm2, γ = .4, δγ = .75, ku = .75, umin = 0,

umax = 100, x1(0) = 15 cm, x2(0) =
(

(1−δγγ)a1

a2

)2

x1(0),

Ts = 1 second and g = 981 cm/s2. Set-point trajectories

for both the two tank and four tank processes are smoothed

using a discrete-time filter which results from applying the

bilinear transform to the corresponding continuous time-time

filter model Htraj(s) =
ω2

traj

s2+2ζtrajωtrajs+ω2
traj

. We compared

our controller for the two tank process to the controller

presented in [8] which lacks the additional integrator term

xI1 to compensate for model uncertainty. Specifically u =
−[k1, (1 − γ)k2]x̂ + a1

√

2gx∗
1 in which k1 = 10 and k2 =

1.01A2k1

A14
= 1.4206.

B. Four Tank Process

The reference for comparison is the decentralized con-

troller (DC) used to control the four tank process [7].

Specifically two PI-controllers were used such that Ul(s) =

Kl

(

1 + 1
Til

s
)

(X∗
l (s) − Xl(s)), l ∈ {1, 2} in which

(K1 = 3.0, Ti1 = 30) and (K2 = 2.7, Ti2 = 40) for
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Fig. 1. Two tank process x1(t).
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Fig. 2. Two tank process x2(t) and u(t).

the minimum-phase case and (K1 = 1.5, Ti1 = 110) and

(K2 = −.12, Ti2 = 220) for the nonminimum-phase case.

The remaining parameters for the process are as follows: i)

A1 = A3 = 28 cm2, A2 = A4 = 32 cm2, a1 = a3 = 0.071
cm2, a2 = a4 = 0.057 cm2, u1 min = u2 min = 0,

u1 max = u2 max = 100, ku = 0.8; ii) either γ1 = 0.7,

γ2 = 0.6, x1(0) = 12.4 cm, x2(0) = 12.7 cm, x3(0) = 1.8
cm, and x4(0) = 1.4 cm for the minimum-phase case or

γ1 = 0.43, γ2 = 0.34, x1(0) = 12.6 cm, x2(0) = 13.0 cm,

x3(0) = 4.8 cm, and x4(0) = 4.9 cm for the nonminimum

phase case.

For the minimum-phase example (Figs. 3 and 4) the IDA-

PBC parameters are k3 = 100, k4 = 100, ǫ1 = 0.75, ǫ2 =
0.75, ǫI1 = 0.4, ǫI2 = 0.4, Ts = 0.1 s. For the nonminimum-

phase example (Figs. 5 and 6) the IDA-PBC parameters are

k3 = 5, k4 = 5, ǫ1 = 0.75, ǫ2 = 0.75, ǫI1 = 0.75, ǫI2 = 0.75.

In which the remaining controller coefficients are computed

using the following relationships kI1 = ǫI1
4

A1
, kI2 = ǫI2

4
A2

,

k1 = ǫ1
(4−kI1A1)k3

A3
and k2 = ǫ2

(4−kI2A2)k4

A4
.

VI. CONCLUSIONS

From Fig. 6 it is clear that IDA-PBC can achieve superior

tracking performance when compared to the decentralized

controller for the nonminimum-phase four tank process. Un-

like the decentralized controller we evaluated, the IDA-PBC

provides both explicit constraints on allowable controller gains
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Fig. 3. Minimum-phase four tank process x1(t), u1(t).
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Fig. 4. Minimum-phase four tank process x2(t), u2(t).
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Fig. 5. Nonminimum-phase four tank process x1(t), u1(t).
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Fig. 6. Nonminimum-phase four tank process x2(t), u2(t).

and set-point trajectories x∗ which can be enforced at run-time.

We clarified how to correctly determine if Qd < 0 and verified

correct constraints on ki and kI for the four tank process

which were incorrectly determined in [8] which allowed us

to provide new results showing a working controller for the

non-minimum phase four-tank system. We further improved

system resilience by implementing a feasible integrator anti-

windup compensator as demonstrated in the full-scale step

responses of the two-tank process depicted in Fig. 1 and Fig. 2.

The explicit solution for u∗ = −l and the uncontrollable

components of x∗ clearly provide visual indications about

actuator degradation and uncertainty in γ for the coupled

tank processes we studied. Finally, we demonstrated that

the bilinear transform can be used to achieve moderately

large sample times Ts = .1 second which will reduce both

computational and communication demands.
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[8] J. K. Johnsen and F. Allgöwer, “Interconnection and damping assign-

ment passivity-based control of a four-tank system,” in Lagrangian and

Hamiltonian Methods for Nonlinear Control 2006. Springer, 2007.
[9] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. D. Koutsoukos, and

H. Wang, “Feedback thermal control for real-time systems,” in
16th IEEE Real-Time and Embedded Technology and Application

Symposium (RTAS 2010), 2010, p. 10. [Online]. Available: http:
//www2.ee.kth.se/conferences/cpsweek2010/PDF/RTAS/Feedback%
20Thermal%20Control%20for%20Real-time%20Systems.pdf

[10] R. Ortega, A. Van Der Schaft, B. Maschke, and G. Escobar, “Inter-
connection and damping assignment passivity-based control of port-
controlled Hamiltonian systems,” Automatica, vol. 38, no. 4, pp. 585–
596, 2002.

[11] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control

of Dynamic Systems, 5th ed. Prentice-Hall, 2006.
[12] S. Stramigioli, C. Secchi, A. J. van der Schaft, and C. Fantuzzi,

“Sampled data systems passivity and discrete port-hamiltonian systems,”
IEEE Transactions on Robotics, vol. 21, no. 4, pp. 574 – 587, 2005.
[Online]. Available: http://dx.doi.org/10.1109/TRO.2004.842330

[13] K. Astrom and A. Ostberg, “A teaching laboratory for process control,”
IEEE Control Systems Magazine, vol. 6, no. 5, pp. 37–42, 1986.

[14] M. Krstic, P. Kokotovic, and I. Kanellakopoulos, Nonlinear and adaptive

control design. John Wiley & Sons, Inc. New York, NY, USA, 1995.
[15] I. T. MathWorks, “Matlab,” The Language of Technical Computing,

Version 7.8, 2009.


