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Abstract—Proactive overlay software defined networking
(SDN) aim to overcome the limitations with reactive hop-by-
hop approaches for large-scale networks. However, the stateful
nature of XMPP used by proactive overlay SDN approaches
result in scalability issues. To address these concerns, this paper
proposes the use of data-centric publish/subscribe paradigm,
such as the OMG Data Distribution Service (DDS), for proactive
overlay SDNs. To that end this paper makes two contributions.
First, it presents a reference architecture called DDSFlex that
can be used to build open and vendor-neutral, DDS-based
southbound interfaces for proactive overlay SDN. Second, it
describes a solution for realizing a SDN controller that operates in
a distributed manner illustrating the messaging protocol it uses.
Details of existing implementation of our approach are described.

Index Terms—Software Defined Networking, Network Virtu-
alization, DDS publish/Subscribe, OpenFlow.

I. INTRODUCTION

Software-Defined Networking (SDN) [10] has emerged as
a new intelligent architecture for network programmability,
where the control plane logic is decoupled from the forwarding
plane. The control plane embeds all the intelligence and
maintains a network-wide view of the data path elements and
links that connect them, which enables it to perform network
management functions. The SDN community has adopted a
number of northbound interfaces (i.e., between the control
plane and applications) that provide higher level abstractions
to program various network-level services and applications at
the control plane. For the southbound interface (i.e., between
the control plane and network devices), the OpenFlow stan-
dard [15] has emerged as the dominant technology.

Key application areas of SDN include (i) virtual home-
gateways to improve service delivery and home energy man-
agement, (ii) multi-tenancy to enable network slicing in data-
center interconnects, and (iii) traffic-engineering for greater
control, flexibility and manageability of Internet Exchange
Points (IXP) to facilitate the interconnection between service
providers.

Proactive overlay SDNs are a variant of the SDN technol-
ogy developed for large networks to address the scalability
problems evident in the original reactive, hop-by-hop SDN
networks [9], [14]. The overlay property stems from the use of
overlay networks with multiple tunnels to create network slices

whose endpoints terminate in a variety of entities, such as
virtual switches or physical edge routers thereby not needing
to contact any of the intermediate core routers and overcoming
the problems with the hop-by-hop approach. The ability to
pre-populate flows over these overlays provides the proactive
capability.

The challenge posed by the proactive overlay approach is
in deciding the technique to use in the control plane of SDN
to program the endpoints of the tunnels that reside in the
forwarding plane. One approach is to leverage the existing
OpenFlow API [15], however, this API is too low-level and
lacks intuitive abstractions that can support compositional
semantics, which in turn forces developers to use error-prone
techniques to link terms in the “match-action” rules [16].
These actions may lead to conflicting behaviors, policies and
representations [5], which makes it difficult to design high-
level abstractions to build reusable applications.

To overcome these issues, some vendors supporting the
proactive overlay approach have adopted higher-level abstrac-
tions at the control plane, such as the Extensible Messaging
and Presence Protocol (XMPP) [9]. However, we believe that
there exist two limitations with this approach. First, XMPP is
a wire protocol and is agnostic to the semantics of the data
being transferred. Second, XMPP is a stateful protocol, which
may be a source of scalability issues.

To address these concerns, we propose a middleware so-
lution that provides the structure and semantics to build
a common, open, vendor-neutral platform and computation-
independent services. In particular, we propose using a pub-
lish/subscribe (pub/sub) middleware [4] since pub/sub supports
an overlay network model natively and its broker-less model
is well-aligned with proactive, overlay SDNs.

In our case a pub/sub middleware that supports a data-
centric information model is most relevant since it has the
expressiveness power to describe the states of network ele-
ments (e.g., creating route instances, exchanging routes and
VPN membership information, managing link status for con-
nection and disconnection) as well as for analytics to corre-
late, visualize and report statistics. From among the different
pub/sub middleware alternatives, we surmise that the OMG
Data Distribution Service (DDS) [18] provides the best option
since it provides a high-level abstraction model that can be



used to describe the information exchanged in the OpenFlow-
based overlay virtual network, and its support for various
quality of service (QoS) policies can be leveraged in enabling
a proactive, overlay SDN.

This paper makes the following two contributions:
• We present the DDSFlex middleware, which is an exten-

sible southbound protocol based on OMG DDS. DDSFlex
is designed to exchange abstract policy between the
network controller and a set of SDN switches capable of
rendering that policy (e.g., packet forwarding, QoS class,
MPLS labels, GRE tunnels, VXLAN ID, etc). DDSFlex
supports a proactive model by using overlay tunnels to
virtualize or “slice” the network – in contrast to the cur-
rent, rigid reactive network – which enables it to support a
combination of fine-grained flows in virtual edge devices
and coarse-grained flows in the physical underlay core
network devices, thereby representing the observable and
controllable state of SDN network elements.

• We present the messaging protocol used by DDSFlex and
describe the current implementation of our middleware-
based solution to proactive overlay SDN.

The remainder of this paper is organized as a follows:
Related work is described in Section II. The architecture of
the DDSFlex is described in Section III. Section IV describes
the messages exchanged and the information model of DDS-
Flex. The conclusions and learned lessons are described in
Section V.

II. RELATED WORK

This section compares related work to our proposed work on
DDSFlex. We focus primarily of related work on middleware
and related concepts for SDN.

SDN does not clearly identify how middleware platforms
would interconnect applications to SDN network and provide
the freedom to developers to define the way they would use it
in SDN. For example, authors in [22] implemented the DISCO
framework as an east-west interface to coordinate federated
SDN controllers using RabbitMQ, which is an open source
messaging broker based on the Advanced Message Queuing
Protocol (AMQP) [26]. AMQP defines both wire protocol
and protocol model that specifies the semantics for DISCO
implementation. Another important aspect is that DISCO
enables the broker to make routing decisions that are usually
left to the application. However, DISCO can be considered
as graph of nodes connected by links. In contrast, DDSFlex
supports self-formed federation that reads and writes topics
over the global data space. DDSFlex can operate as repository
federation in which individual repositories can participate in a
global federation in fully distributed manner. That is, DDSFlex
serves as a mediator between controllers and the OpenFlow-
capable switches, which makes it easier to enhance scalability
and flexibility.

Many middleware implementations for content-based rout-
ing have been developed over the last decade [1]–[3]. The
authors in [25] propose a content-based routing middleware
over overlay networks. The authors in [27] [20] studied the

feasibility of pub/sub content-based overlay design. Similarly,
the work in [11] propose a pub/sub architecture for SDN,
where the controller establishes line-rate content-based match-
ing semantics to disseminate routing information to SDN-
enabled switches. Nevertheless, the most fundamental problem
of content-based routing systems is that they are not suitable
for large-scale, widely-distributed SDN. We argue that data-
centric QoS-enabled pub/sub systems enables loosely coupled,
fully distributed and highly scalable communication that let
them more suitable for widely distributed SDN.

Unlike these approaches, DDSFlex proposes an efficient
matching of advertisement and subscription on pub/sub mid-
dleware to support flexible and programmable network, while
enhancing the expressiveness of content-based routing with
topic-based pub/sub supported by OMG DDS. Thus, with our
reference architecture it is possible to configure the forwarding
tables of switches directly through the middleware using a
software control layer inside the SDN controller running in
general-purpose external computer.

Recently some efforts are exploring the Extensible Messag-
ing and Presence Protocol (XMPP) service as an alternative
or complement to OpenFlow in hybrid SDN networks [13].
The XMPP middleware is used to distribute control plane and
management plane information to end server that serves to
enhance the communication between data centers in overlay
network and physical devices in the underling network. The
disadvantages of XMPP and its related technologies (i.e., ros-
ter, presence and routing functions) exist in different contexts.
In particular, XMPP is considered to be a standard only for
the wire protocol, i.e., XMPP is agnostic in relation to the data
being transferred. XMPP is also stateful which makes it more
difficult to scale because each server needs to know the entire
state in order to serve a request. Typically, the XMPP clients
and servers utilize the domain name system (DNS) to resolve
a server’s domain name into an address they can connect
to. XMPP also demands centralized services to exchange
messages between server-to-server federation, which makes
it inefficient in duplicating messages when distributing them
to multiple destination. This is where utilizing DDSFlex for
message distribution is more beneficial then XMPP. DDSFlex
uses built-in DDS discovery service to allow publishers and
subscribers to dynamically and continuously discover each
other without the need to contact any name servers.

The OpFlex control protocol is introduced in [24] to config-
ure and monitor all connected devices. The OpFlex protocol
is founded in the concepts of declarative policy driven system
to control and program a large set of physical and virtual
network devices. OpFlex is a request-response protocol based
on JSON-RPC [17] where each component sends a request to
query the information from its peer element. However, there
are several disadvantages of RPC with respect to message
passing, since it may incur severe penalty in performance
due to marshaling/unmarshaling of messages (i.e., context
switching increases scheduling costs) and may have to deal
with added complexity in configuration for simple scenarios.

Unlike OpFlex, DDSFlex is able to dynamically program



policy across even multi-vendor networks, which makes the
infrastructure dynamically responsive to the needs of applica-
tions. DDSFlex is fully distributed so there is no single point of
failure in the network during the communication. Additionally,
DDSFlex supports reconfigurable DDS QoS policies which
enables it to manage the use of the bandwidth, network and
memory resources. Likewise, DDSFlex offers QoS policies
to prioritize messages, guarantee QoS properties in the com-
munication (bandwidth usage, delivery semantics, etc) and
control many aspects of the reliability of the messages between
fully distributed and loosely coupled participants. Furthermore,
it provides very compact binary encoding for both protocol
messages and data payload, and supports bounded use of
resources over potentially intermittent links, making it feasible
to reply to messages upon reconnection. That is, DDSFlex
natively fulfills the requirements of the future proactive SDN
communication which makes it the most suitable technology
to satisfy the features they need, such as scalability, reliability,
flexibility, security and real-time data.

III. DDSFLEX ARCHITECTURE

This section presents the DDSFlex architecture which ex-
tends SDN using DDS to promote the concept of proactive,
virtual overlays for SDN, and provide an open, vendor-
neutral and extensible policy framework to exchange abstract
information between the SDN controller and the set of devices
capable of rendering the policy. Figure 1 depicts the DDSFlex
architecture. The rest of the section delves into the design
rationale and details of the DDSFlex architecture.

Fig. 1. DDSFlex Architecture

A. DDSFlex Design Rationale

Before delving into the details of the DDSFlex architecture,
we provide the rationale for the architectural decisions we
made.

Requirement 1: Need for an open, vendor-neutral, exten-
sible solution –: Recall from Section I that we need a solution
that (a) supports the proactive overlay SDN approach, and
(b) provides an open, vendor-neutral approach that supports
intuitive interfaces at a higher-level of abstraction without the
scalability limitations of existing higher-level abstractions. It is
also necessary to provide a dynamically extensible architecture
where network devices can be introduced into the system
without any disruption to the operational system. Moreover,
it is important to provide the users with a generic policy
framework that hides the heterogeneity in the underlying
network devices. Thus, it is desirable to have a common
interface and messaging capability between the control plane
and forwarding plane where new devices can be seamlessly
added. This motivates a middleware-based solution.

Requirement 2: Remain compliant with the SDN archi-
tecture –: The middleware solution must be designed in a
way that is compliant with the decoupled architecture of
SDN where the control plane is decoupled from the data
plane. To that end, DDSFlex supports two key elements: a
DDSFlex agent and a routing agent. DDSFlex relies on a
policy management service that is understood by a physically
centralized but logically distributed set of DDSFlex agents
that exist in the control plane, and a routing agent that exists
in the forwarding plane, which receives these policies and
translates the high-level abstraction information to low-level
configuration/commands understood by the specific switch.
The DDSFlex agent at the control plane communicates di-
rectly with the controller (through the node processes) while
the routing agent implements functionalities related to the
forwarding plane. It comprises interfaces to communicate
with the DDSFlex agent through the DDS Flex protocol to
exchange messages with it as well as with the switches in the
forwarding plane. Thus, this interface must be able to translate
the messages received from the control plane to the matching
rules understood at the switch’s forwarding tables.

Requirement 3: Data-centric pub/sub with QoS –: In the
context of our two-level architecture, two sub requirements
arise. First, since the underlying network can be dynamically
reconfigured (e.g., switch can be added), there is a need for
the control plane to be notified whenever there is a change in
the underlying physical network. Second, despite the potential
for dynamic changes, it is important to provide the user with a
flexible and higher-level of abstraction to program the system
that can handle QoS issues and policies. This motivates the use
of a data-centric pub/sub middleware provided by OMG DDS.
Thus, in DDSFlex the information exchange is performed
by the DDSFlex protocol that provides a built-in discovery
service to match every participant (i.e., DDSFlex agent and
routing agent). This way it is possible for the DDSFlex
reference architecture to render services to vendor-neutral
smart devices while simultaneously providing more flexibility
and programmability to users. The application communication
requirements (such as QoS, link connection to virtual switch,
multi-path splitting to several switches) requires the high-level
abstraction model to configure the forwarding tables of the



virtual switches and to map the low-level configuration to the
physical infrastructure.

B. Overview of OMG DDS

Since OMG Data Distribution Service (DDS) plays a major
role in the DDSFlex architecture, we provide a brief overview
of OMG DDS standard. The OMG DDS standard adopts
a data-centric, topic-based publish/subscribe communication
model. A topic is the atomic unit that can be shared between
data publishers and subscribers. Topics are fully defined by
their names and types, and define the data structure which
publishers and subscribers write and read within a DDS Global
Data Space. DDS provides flexibility and a modular structure
by decoupling: (1) location, via anonymous publish/subscribe,
(2) redundancy, by allowing any numbers of readers and
writers, (3) time, by providing asynchronous, time-independent
data distribution, (4) and message flow, by providing data-
centric connection management.

Publishers and subscribers discover each other automatically
and match whenever they have compatible topics and QoS
policies. Topic samples are exchanged between peers within
the global data space according to a contract established in the
discovery phase. DDS can use multiple topic samples called
instances that are differentiated by their associated unique key.
Topic samples can be configured with a wide range of DDS
QoS capabilities imposed by peers. The underlying DDS data
dissemination is fully decentralized and adopts a peer-to-peer
un-brokered service model, which eliminates single points of
failure for brokers. For additional details on DDS, we refer
the reader to our prior work on supporting DDS in wide area
networks [8] or other published literature on DDS.

C. DDSFlex Agent: The Control Plane

Figure 2 shows the internal structure of the DDSFlex agent
which comprises four types of nodes (these are essentially
software processes): monitor node, policy node, configuration
node and control node. The monitor node collects information
related to the health of the system including faults, errors, etc.
The policy node includes a policy decision point and policy
enforcement point both connected to a policy data store. The
configuration node communicates with the orchestration layer
via REST APIs to the applications. It also communicates with
other configuration nodes through distributed synchronization
services provided by the built-in discovery mechanisms and
with the policy node through a request-response model.

1) Control Node: The control node (illustrated in Figure 2)
communicates with all other nodes since it is responsible for
communicating the high-level abstraction model to the routing
agent via the DDSFlex protocol (explained in Section IV. It
receives configuration states from the configuration node using
content-based filtered topics supported by DDS, which contain
the forwarding rules it will send to the routing agent to install
new rules in the forwarding plane.

Additionally, it exchanges network route information with
other distributed control nodes and routing agents, and sends

Fig. 2. Internal components of the DDSFlex Agent

forwarding policies into the policy database to enable intelli-
gent decision making without resorting to the controller every
time a new flow arrives. The control node holds a global
snapshot of the network and the link states which helps it in
performing the best route selection. Hence, the SDN controller
would be able to configure overlay tunnels based on the high-
level information provided by the configuration node and the
policy management service inside the DDSFlex agent. At the
forwarding plane, the routing agent will be able to collect
route information provided by the classical route advertiser of
the BGP protocol from the switches, or even VLAN tags and
virtual routes inside a data center tenant. These low-level data
are then published to the control plane and the orchestration
layer through the DDSFlex agent.

2) Configuration Node: The configuration node commu-
nicates with the orchestration in the northbound interface
via REST APIs. Examples of orchestration include cloud
infrastructure, such as OpenStack, CloudNaaS or even any
other cloud computing platform that is able to manage data
center infrastructure (i.e., IaaS). REST interfaces could be used
as well to install configuration states, such load balancing,
at the high layers. Furthermore, the configuration node can
communicate with the policy node to query the optimal policy
to apply for the purpose of network function virtualization in
the orchestration or even apply a specific policy decision to
the network device through the control node.

3) Monitoring, Analysis and Troubleshooting: The DDS-
Flex agent performs flexible and robust monitoring built atop
a DDS pub/sub model. It enables data dissemination to the
monitor node that gathers statistics, faults, and errors from
the underlying layers. Figure3 shows the internal structure
of the monitor node. A monitor node supervises the net-
work resources and communicates with applications using
northbound REST interfaces. The REST APIs are used to
query the statistics and analysis, and retrieve the operational
states of the network provided by the DDSFlex agent. Also,



the monitor node advertises the DDSFlex agent using the
distributed management module, which in turn uses the built-
in DDS discovery service (i.e, built-in topic entities) to collect
data from the network.

Fig. 3. Monitoring node

The monitor node uses the data collector to communicate
with the policy management module through the content-
filtered topic interface. That is, the monitoring service uses
filter expressions to select data samples of interest using
SQL like expression to store the information in the database.
Moreover, the data collector subscribes to two kind of mes-
sages: asynchronous events received from the notification
handler module for the purpose of reporting logs, statistics,
and events and traces, and synchronous messages whereby a
policy management handler can send a message to the resource
mapping handler.

4) Policy control: A flexible policy abstraction is required
to interact safely and scalably with BGP. Instead of supporting
numerous policies, the abstraction policy layer should combine
policies from multiple participants to generate a set of rules
that apply the BGP routes without flooding the rules and
flow tables. For example, since each autonomous system uses
a BGP speaking router (also called BGP advertiser) at the
forwarding plane and BGP server for exchanging routing
information at the control plane, each current AS specifies
a complex set policies to forward/drop/update/modify traffic.

The development of policy control raises many important
aspects for how the management and services are supported
and delivered by the distributed DDSFlex agents. It is also
useful to express delegation of authority and conflict resolution
when resources are shared as well as to help SDN controllers
to decide how to setup and manage flows. Policy control
functions ensure that the DDSFlex agent can continue to
honor guaranteed service delivery to end-users. They also
determine how network resources are allocated as well as
how individual subscribers can take into account network flow
control and application-oriented flow. To this end, the policy
node in Figure 2 can infer policies from applications using
northbound interfaces through the configuration node as well
as from the southbound interfaces using the control node.
The policy module provides a high-level abstraction to specify

how packet forwarding/updating policies should be effected.
The policy abstraction is built atop Pyretic [6] to express
more flexible policies that resolve conflicts and by composing
different policies into a single set of matching rules in the
network devices.

Figure 4 depicts the internal structure of the policy man-
agement service inside the policy node. The configuration
node uses the policy control functions to ensure that resources
in the orchestration layer will be available to meet critical
network needs. Furthermore, the DDSFlex agent could support
some of packet classification from the DDS transport priority
QoS policy. These policies can map the requirements of the
applications into specific differentiated class of services (CoS)
that enable action-matching directly. Examples of mapping
DDS QoS policies into network packet classification were
described in our prior work involving DDS over large-scale
overlay network [7], [8]. The DDS transport_priority QoS
policy is a hint to the infrastructure used to set the priority
of the underlying transport used to send data in the DSCP
field for DiffServ.

Fig. 4. Policy Service

D. Routing Agent: The Data Plane

As depicted in Figure 5, the routing agent is a user space
process available on each instance of an OpenFlow capable
switch and acts as a local translator at the forwarding plane.
It is responsible for exchanging control states (e.g., MPLS
label, BGP Network Layer Reachability Information (NLRI),
bandwidth usage, etc.) between the DDSFlex Agent in the
control plane and the network devices in forwarding plane
through the DDSFlex protocol.

The routing agent receives high-level configuration infor-
mation from the DDSFlex agents and translates them to a
low-level details (i.e., QoS, VLAN tags, etc.) understood by
the switches in the overlay. It installs the forwarding states
in the group tables within the switches. Moreover, it carries
and reports the analytics, heath states, errors and statistics
from the forwarding plane to the distributed DDSFlex Agents.
Additionally, the routing agent interfaces with the orchestra-
tion layer to provide network function virtualization. Thus, the
routing functions virtualized within in the orchestration layer
are provided to the router through the routing agent.



Fig. 5. Internal view of the routing agent inside OpenFlow capable switch

E. Securing Flow Forwarding in DDSFlex

As DDSFlex would interconnect hundreds of SDN con-
trollers and devices at different scales where data are shared
between participants among shared data spaces, security is
one of the leading challenges in SDN networks because its
programmable aspect presents a complex set of problems to
cope with. Additionally, as security is minimally specified
in SDN, the increasing number of DDoS and malware at-
tacks, spam, and phishing activities will change the dynamics
around securing SDN infrastructures. Therefore, data security
will involve more sophisticated encryption and authentication
mechanisms to prevent hackers and recover packets from
failure. Also, DDSFlex should ensure that all participants
are authenticated and have the necessary credentials before
entering the DDS domain. It should also ensure some level
of security to provide data integrity, pedigree, confidentiality,
and non-repudiation. For example, it should be able to provide
a fine-grained group-based access control in a DDS domain,
e.g., role-based and policy-based access control. We describe
how DDSFlex can address these concerns.

To that end, DDSFlex can leverage the Security Model
(SM) described by the OMG DDS specification [19] to en-
sure simple access and interoperable security policies without
compromising the flexibility scalability, performance, QoS-
awareness, and robustness offered by the DDS platform.
Additionally, DDSFlex can use the DDS security model and
its Service Plugin Interface (SPI) to build a fine-grained secure
system that grants permissions to DDS domains, Topic or even
data object instances within the Topic. For example, DDSFlex
should ensure that messages exchanged with the routing
agent will not be altered by DDoS and malware attacks. In
addition, because the DDSFlex reference architecture is fully
distributed, the communication between DDSFlex agents will
be exposed to multiple vulnerabilities that would change the
behavior of the system. Therefore, subjecting our reference
architecture by a high-level DDS native security policies will
improve the integrity and the security of the system.

F. Benefits accrued using DDS

Multiple benefits are accrued using DDS to realize DDS-
Flex, which are described below. First, the asynchronous and
anonymous pub/sub communication supported by DDS is ideal
for DDSFlex agent anonymity. In particular, the DDSFlex
agent does not have to reply on the existence of other DDSFlex
agents to act or setup communication, so agent modules can
be created dynamically at any time and at any node without
using a specific order; that is, DDS is suitable for intermittent
connectivity scenario, because its aspect of plug & play of
system nodes and its dynamic and automatic discovery of the
nodes/services.

Second, DDS provides a local caching mechanism specified
by the discovery protocol, the Real Time Publish Subscribe. In
particular, when publishers push topic samples to the remote
peers, the latter maintain a copy of them in their local cache.
Thus, subscribers can continue performing query operations
from their local cache without generating any network traffic,
mainly for efficient use of network resources. Additionally,
DDS supports topic-based filtering capabilities to optimize
the use of resources, such as bandwidth, by sending the
most relevant data samples to subscribers. For example, DDS
publishers do not send topic instances that not match some
filtering criteria imposed by the subscriber.

Third, DDS provides built-in data isolation, known as
domain and partitions, to operate in a scalable fashion. In
particular, DDSFlex agents belonging to different partitions
can easily be separated from one another in their isolated
domains, or even allow a coordinator agent to communicate
within different slices and/or domains. Additionally, DDS can
check whether DDSFlex agents are still alive and exchanging
DDS topics within the same global data space and partitions.
For example, DDS Liveliness QoS policy can be used to
monitor the states of DDSFlex agents and discover the new
agents joining the domain, or even can check whether discov-
ery messages are being sent periodically between agents. This
is useful in checking if the physical devices are alive or dead.

Finally, DDS defines a set of scheduling policies (e.g.,
latency budgets), timeliness policies (e.g., time-based filters to
control data delivery rate), temporal policies to determine the
rate at which periodic data is refreshed (e.g., deadline between
data samples), priority policies (e.g., the transportation of the
messages can be regulated with the respect of their importance
and priorities, and other policies that affect how data is
treated once in transit with respect to its reliability, urgency,
importance, and durability.

IV. DDSFLEX MESSAGING PROTOCOL

In this section we will describe the messaging protocol
and message types supported by DDSFlex to enable flow
forwarding over the proactive overlay SDN. Three kinds of
messages are supported and described in this session: discover,
configuration, and monitoring messages.

DDSFlex uses the programming model and API of the OMG
DDS specification to describe different policies and informa-
tion exchange between entities. Thus, for every message kind



in DDSFlex, we use a DDS Topic to define the message type.
Among the three message kinds, the configuration messages
will receive the highest scheduling priority to ensure that
control flow is processed in the controller before any other
flow. It also will receive the highest DDS QoS transport
priority to ensure that data will be protected against dropping
when it traverses the network devices.

A. Discovery of Peers

When setting up flow forwarding in the proactive overlay
SDN approach, it is important to identify the tunnel endpoints,
and thereby the DDSFlex entities, such as DDSFlex agents and
routing agents. This requires discovery of such entities.

DDSFlex relies on the underlying discovery mechanism,
such as OMG DDS’ Real-Time Publish-Subscribe (RTPS)
protocol, to enable : i) different participants to learn about each
other (i.e., by sending participant declaration messages, also
known as participant DATA sub-messages); and ii) DataWrit-
ers and DataReaders exchange information (i.e., such as QoS,
type types, etc.) to match each other (i.e., by sending publica-
tion/subscription declarations in DATA messages also known
as publication DATAs and subscription DATAs). For this we
will need a session management protocol that enhances the
DDS discovery process, which is part of our future work.
Discovery messages are sent periodically (i.e., regulated by a
heartbeat) to check the liveliness of different DDSFlex entities
whereby there is no need to send ping messages to check the
reachability of the entities.

Listing1 shows a snapshot of the discovery topic exchanged
during the discovery phase between DDSFlex agents and
routing agents. This Listing depicts some information that
would be used during the discover process: for example, the
"sender" would describe the IP address (also it may be MAC
address in the context of layer 2 participant) of publisher,
the "sender_ID" would be a "VLAN ID" of a participant or
any other membership information that can uniquely identify
a participant within its group. Also, the discovery process
uses DDS QoS policies regarding the DDS specification. For
example, "LivelinessQoS" would ensure automatic discovery
of entities. Moreover, the discovery process would introduce
a session management protocol to ensure that communication
will established end-to-end. To that end, we introduce a novel
in-bound session management protocol. It creates a DDS
session between remote entities. The session management is
similar to DDS over SIP as described in our prior work [8],
but it differs from it in couple of things: i) DDS/SIP session is
out-of-the-bound protocol so control traffic and data traffic are
sent over two different channels, where session management
in this case is "in-the-bound" whereby control flow and data
flow are in the same channel; ii) the DDS/SIP protocol used
a centralized server (also called registrar to maintain a local a
care of address), which is in contrast to this approach where
there is not single server.

Listing 1. Built-in participant Discovery
<?xml version="1.0"?>
<-- Discovery topic -->

<struct name="discovery">
<member name="sender" type="string"
key="true"/>
<member name="sender_ID" type="string" />
<member name="receiver" type="string"/>

<!-- DDS QoS policies ... -->
<member name="LivelinessQoS" type="string"/>
<member name="DurabilityQoS" type="string"/>
<member name="TopicDataQoS" type="string"/>
<member name="GroupDataQoS" type="string"/>
<!-- more DDS QoS policies ... -->
<!-- Session Management -->
<member name="scope_announce" type="sequence">
<member name="register_context" type="sequence">
<member name="session" type="sequence"
key="true"/>

</struct>

In listing1, the field "scope_announce" describes the an-
nouncement of the session from participant to all other par-
ticipants. The "scope_announce" is a sequence of fields that
would include the forwarding path, the session heartbeat, the
PDP data, and more. Please note that session management
protocol is not in the scope of this paper.

B. Network Configuration Operation

Once the peers are discovered it is important for the
DDSFlex agent to configure all the identified routing agents
with information pertaining to the flow. Listing 2 illustrates
a network configuration topic that would be used by the
DDSFlex agent to populate the Routing Information Base
(RIB) of the routing agent.

Listing 2. Configure BGP Path
<?xml version="1.0"?>
<struct name="bgp_advertise">
<member name="sender" type="string"
key="true" />
<member name="receiver" type="string"/>
<member name="sender_id" type="long"/>
<member name= "node" type="string" />
<member name="instance-id" type="long">
<--! BGP Network Layer Reachability
Information (NLRI) -->
<member name="nlri" type ="string">
<!-- Label for label switch routers (LSRs) -->
<member name="label" type="long">
</struct>

C. Monitoring messages

With any networking technology, there is a need for net-
work management to deal with failures and collect different
kinds of statistics. DDSFlex introduces new possibilities for
network management and monitoring capabilities to improve
performance, reduce the bottlenecks in the network, and enable
debugging and troubleshooting of the control traffic. DDSFlex
supports this requirement through the monitoring message.
Listing 3 shows an example of topic data that would be used
by DDSFlex to query the state of an SDN switch through
the routing agent. This topic message provides the required



information about the fault, statistics, errors, and health of
the network device. This message can include the information
about the sender of that request (e.g., IP address, VLAN
tag), the entity which sent the report and other information
including statistics, faults, and errors, etc.

Listing 3. Query Network Statistics
<?xml version="1.0"?>
<struct name="report_sate">
<member name="sender" type="string"
key="true" />
<member name="sender_id" type="long"/>
<member name="receiver" type="string"/>
<member name= "node" type="string" />
<member name="statistics" type="" >
<member name="faults" type="">
<member name="health" type="">
</struct>

D. Implementation Details

Prototyping our ideas was not an easy task since it is not
readily possible to install OMG DDS in today’s Openflow-
enabled switches. Yet we had to validate our ideas. Therefore,
we decided to implement our ideas inside a SDN emulation
environment. To that end we chose the Mininet SDN emulation
environment [12] and the RTI Connext [23] as DDS distribu-
tion to demonstrate how DDSflex agent can be incorporated
in SDN and how it can be used for the dynamic controller and
switch interaction.

Mininet is a network emulator available in the Linux OS
used to rapidly realize large networks inside a single machine,
such as a laptop. It uses lightweight OS virtualization fea-
tures, such as processes and network namespaces, to make
a single system look like a complete network. It is within
this emulation environment that Mininet provides a set of
tools to experiment with SDN capabilities and entities, such
as the controller, switches and hosts. It uses the Openflow API
for the southbound interface for communication between the
controller and switches. Mininet also comes preinstalled with
Open vSwitch (OVS) [21].

We implemented two different ways of incorporating DDS-
flex in the SDN controller and switches. In the first approach,
we use the tunneling approach to preserve most of the SDN
Mininet architecture. Thus, our attempt is to combine both the
protocols (i.e., Openflow and DDS) to take advantage of their
respective strengths. We use OMG DDS for communication
but use Openflow message structure to format the flow table in-
formation. This is done by converting various Openflow mes-
sages into OMG DDS topics. We use POX for the controller
and Open vSwitch for switch in the Mininet environment. For
this, we modified the POX controller implementation to install
a DDS publisher with a data writer. We also modified the
Mininet switch initialization process by adding a listening end-
point and starting a DDS subscriber listening on that endpoint.
Openflow messages are thus encapsulated within OMG DDS
messages on the publisher side, and on the subscriber side and
decapsulated to retrieve the topic type, which is the Openflow
message structure, which is understandable by the switches.

The tunneling approach may incur overhead due to the
level of indirection. Thus, in our second approach we used
DDS for both communication and exchange of flow table
information thereby replacing Openflow with DDS messaging
altogether. Note, however, that this solution will be incom-
patible with Openflow-only switches. This implementation is
more involved since it requires substantial modifications and
hence this approach is still a work in progress.

V. CONCLUSION

Software-Defined Networking (SDN) is an emerging archi-
tecture that decouples the network control plane from the
forwarding plane, which makes it possible to program the
network control plane independently of the forwarding plane
while abstracting the underlying infrastructure comprising
various kinds of network devices. SDN makes it cost effective
to deploy and manage applications that are dynamic and
have high bandwidth requirements. SDN supports a range of
network management approaches from reactive, hop-by-hop
to proactive, overlay SDNs. In the context of the proactive
overlay approach, it is desirous to support APIs that are
intuitive and provide higher levels of abstraction to program
the control plan while also supporting scalability, performance,
reliability and security in a manner that is open and vendor-
neutral.

To address these requirements, this paper presented a mid-
dleware solution called DDSFlex that uses the OMG DDS
data-centric publish/subscribe paradigm. The solution com-
prises a two-level architecture that aligns with the decoupled
architecture of SDN. The messaging protocol of DDSFlex was
presented along with three different use cases that can benefit
from using DDSFlex.

We have currently prototyped the ideas presented in this
paper in an emulation environment using two different ap-
proaches. A rigorous validation of the framework capabilities
comparing its performance and resilience properties with ex-
isting solutions is needed. A further dimension of research
involves supporting DDSFlex in a hybrid SDN scenario: one
that employs both reactive hop-by-hop at the edge, while
proactive overlays for the core network. We believe that further
architectural changes will need to be made in how end-to-end
tunnels are created. A possibility is by using multiple instances
of DDSFlex that would communicate with each other and will
require east-west interfaces. These dimensions of research are
part of our ongoing research.
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