
INDICES: Exploiting Edge Resources for
Performance-aware Cloud-hosted Services

Shashank Shekhar∗, Ajay Dev Chhokra∗, Anirban Bhattacharjee∗, Guillaume Aupy†, Aniruddha Gokhale∗
∗Vanderbilt University, Nashville, TN 37235, USA and †INRIA-Bordeaux, Bordeaux, France

∗ Email: {shashank.shekhar,ajay.d.chhokra,anirban.bhattacharjee,a.gokhale}@vanderbilt.edu and †guillaume.aupy@inria.fr

Abstract—An increasing number of interactive applications
and services, such as online gaming and cognitive assistance, are
being hosted in the cloud because of its elastic properties and cost
benefits. Despite these benefits, the longer and often unpredictable
end-to-end network latencies between the end user and the cloud
can be detrimental to the response time requirements of the
applications. Although technology enablers, such as Cloudlets
or Micro Data Centers (MDCs), are increasingly being lever-
aged by cloud infrastructure providers to address the network
latency concerns, existing efforts in re-provisioning services from
the cloud to the MDCs seldom focus on ensuring that the
performance properties of the migrated services are met. This
paper makes three contributions to address these limitations: (a)
determining when to reprovision, (b) identifying the appropriate
MDC and its host from among multiple choices such that the
performance considerations of the applications are met, and
(c) ensuring that the cloud service provider continues to meet
customer service level objectives while keeping its operational
and energy costs low. Empirical results validating the claims
are presented using a setup comprising a cloud data center and
multiple MDCs composed of heterogeneous hardware.

Index Terms—Cloud Computing, Cloud latency, Micro Data
Center, Cloudlet, Edge Computing, Fog Computing, Performance
Interference, Resource Management.

I. INTRODUCTION

The cloud has become an attractive hosting platform for a
variety of interactive and soft real-time applications, such as
cloud gaming, cognitive assistance, health monitoring systems
and collaborative learning due to its elastic properties and cost
benefits. Despite these substantial advantages, the response
time considerations of users mandate lower latencies for the
applications. Prior works [1], [2] have shown that in highly
interactive applications, latencies exceeding 100 milliseconds
(ms) may be too high for acceptable user experience. However,
real-world experiments have shown that the latencies expe-
rienced by geographically distributed users of an interactive
service may tend to be on the order of several hundreds of
milliseconds [3]. Consequently, there is a need to bound the
resulting response times within acceptable limits.

For any cloud-hosted interactive application, the key factors
that affect the round trip latencies are the network delay
between the client and the cloud, particularly the roundtrip
delay between the nearest access point of the client and the
cloud, and the time it takes to serve the client request in the
cloud. All other factors, such as the time taken by the thin
client, the time to reach the nearest access point or time for the
load balancer at the cloud front-end are negligible. Thus, any

improvement in round trip latencies must focus on reducing
the network delays and the server processing time.

In recent years, edge computing, cloudlets [4] or Micro Data
Centers (MDCs) [5] have emerged as one of the key mech-
anisms to manage and bound the transit latency ttransit by
supporting cloud-based services closer to the clients. MDCs1

can be viewed as “a data center in a box,” which act as
the middle tier in the emerging “mobile device–MDC–cloud”
hierarchy [4]. MDCs possess key attributes of soft states,
sufficient compute power and connectivity, and proximity to
clients, and conform to standard cloud technologies.

Recent efforts [6], [7] have leveraged the cloud, MDCs
and mobile ad-hoc networks by focusing primarily on cyber
foraging, where tasks are offloaded from mobile devices to
the cloud/MDCs for faster execution and conserve resources
on the mobile client endpoints. Nonetheless, less efforts have
focused on moving tasks from the central clouds to the MDCs.
Those that do, however, have seldom considered the resulting
application performance because these efforts tend to overlook
the fact that servers within the MDC may themselves get over-
loaded, thereby worsening the user experience as compared to
that of a traditional cloud-hosted interactive service. Efforts
that consider performance of MDCs, however, make very
simplistic assumptions regarding their performance models.

In this paper, our focus is on performance of MDCs, specif-
ically the key contributing factors in performance degradation
of MDCs and data centers in general. A fundamental system
property that is often overlooked is performance interference,
which is caused by co-located applications in virtualized data
centers [8], [9]. Performance interference being an inherent
property of any virtualized system, it manifests itself in MDCs
also and therefore must be factored in any approach that is
performance-aware. Thus, we focus on a “just-in-time and
performance-aware” service migration approach for moving
cloud-based interactive services hosted in the centralized cloud
data center to a MDC.

A number of challenges including the heterogeneity in the
hardware, and difficulty in measuring performance interfer-
ences and other system and network performance metrics must
be overcome. We address these challenges in the context of
providing a ubiquitous deployment approach that spans the
cloud-edge spectrum and make the following contributions:

1In the rest of the paper, we will use the term MDC to represent
all emerging mechanisms, such as Cloudlets, Micro Datacenters (MDCs),
Locavore infrastructures, etc.

• We present a technique to estimate the performance
of a cloud application on different hardware platforms
subjected to performance interference stemming from
various co-located applications.

• We formulate server selection as an optimization problem
that finds an apt server among micro data centers to
migrate an application to, so it can meet its performance
needs while minimizing the deployment cost to the ser-
vice provider.

• We describe the INDICES (INtelligent Deployment for
ubIquitous Cloud and Edge Services) framework that
codifies our algorithms for online performance monitor-
ing, performance prediction, network performance mea-
surements, server selection and application migration.

• We show experimental results to validate our claims and
evaluate the efficacy of the INDICES framework.

The rest of the paper is organized as follows: Section II
presents the system model and assumptions; Section III de-
scribes the problem formulation we address in this research;
Section IV delves into details of our solution including the
design and implementation; Section V presents empirical proof
that validates our claims; Section VI compares related work
with our work; and finally Section VII presents concluding
remarks alluding to lessons learned and future work.

II. SYSTEM MODEL AND ASSUMPTIONS

This research is geared towards platform-as-a-service (PaaS)
cloud providers, who seek to meet service level objectives
(SLOs) of soft real-time applications such as online gaming,
augmented reality, virtual desktop etc. by improving appli-
cation response times. To that end they exploit micro data
centers. In doing so, however, cost considerations and energy
savings for the PaaS provider in operating and managing the
resources beyond the traditional data centers are critical issues
while ensuring that such an approach provides an additional
source of revenue to the PaaS provider. In this paper, however,
we do not discuss revenue generation issues.

A. Architectural Model

Figure 1 depicts our architectural model that consists of a
centralized data center CDC, owned by a PaaS cloud provider.
The CDC is connected to a group of micro data centers
(MDCs), M = {m1,m2, ..,mn}. These MDCs are deployed
at the edge, and are either owned by the CDC provider or
leased from an edge-based third party MDC provider. A leased
MDC is assumed to be exclusively under the control of the
that CDC provider.

The CDC contains a global manager gm, which is respon-
sible for detecting and mitigating global SLO violations. We
assume that for all m ∈M , there exist links to the CDC with
a backhaul bandwidth of bm. Each MDC m comprises a set
of compute servers, Hm, that can be allocated to the CDC for
its operations at a specified cost. One of the hosts from Hm

or a specially designated MDC host acts as the local manager
(lmm) for that MDC and is responsible for data collection,
performance estimation, latency measurements and MDC-level

Global Manager
(gm)

H
igh Latency

Centralized Data
Center

Low LatencyMicro Data Center
m1

lm1 lm2

Micro Data Center
m3

lm3

Micro Data Center
mn

lm4

Location
Manager (lm)

. . .

Non Compute
Node

Compute
Node

Fig. 1. Architectural Model

decision making. This decision-making logic is deployed at the
MDC by the CDC provider.

B. Application Model

For this work, we consider a set Apps of latency-sensitive
applications that can be collaborative or single user and
interactive or streaming in nature. Each application a ∈ Apps
is initially deployed in a CDC, with Ua number of users
and is assumed to be containerized inside a virtual machine
(VM). We assume that for a collaborative application a, its
users are located in proximity of each other where they incur
similar round trip latencies, e.g., in a collaborative educational
application [10].

Each application a can be hosted on any active host in CDC,
η ∈ H , where H is the set of all active hosts that provide
virtualization using a hypervisor or virtual machine monitor
(VMM). We let eeda represent the expected execution duration
for which the application will be used by the end-user clients.
An interactive or streaming application comprises multiple
individual interactions between the user and the application.
Each interactive or streaming step of a is assumed to take an
estimated execution time eeta,η on host η; for collaborative
applications, it indicates the time needed for all users to have
completed that step. Finally, for all users u ∈ Ua, let ela,η,u
represent the estimated round-trip network latency and φa be
the application-defined bounds on acceptable response time
for each interactive step of the application. Formally, the SLO
for each application a hosted on host η can be characterized
by:

eeta,η + max
u∈Ua

(ela,η,u) ≤ φa (1)

Over time, a subset PA from the set of applications Apps
are identified by the system as suffering from performance
degradation such that each application p ∈ PA has a subset
of one or more users, U ′p ⊆ Up experiencing SLO violations.
SLO violation can be noticed either by the client-side instru-
mentation capability included with the “app” that the user

installs or via a predictive capability used by the CDC based
on user profile and location.

Our objective is thus to minimize the SLO violations, which
is achieved by identifying and migrating application p to a
MDC host h ∈ Hm that will provide significantly improved
performance. Since any application migration will involve
state transfer, we assume that application p has the snapshot
of current state which has to be transferred as part of the
migration over the backhaul network from CDC to MDC
m. Moreover, cip,h is the initialization cost of the migrated
application p on host hm before the application can start
processing requests on the MDC host. However, once the user-
specific state has been transferred, there is minimal interaction
between the CDC-based server and the MDC-based server for
the remainder of the functioning of application p. For this
paper we do not consider further consolidation of resources
where applications migrate back to the CDC. The transfer cost
transferp,h incurred while transferring application p from
CDC to host h of a MDC, and associated constraint are defined
in the following equations:

transferp,h =
sp
bm

+ cip,h (2)

transferp,h � eedp (3)

where, bm is the backhaul bandwidth, sp is the size of the
snapshot of the application’s state, and eedp is the remaining
expected execution duration of application p’s usage by the
client. Equation 3 is a necessary condition for the motivation
to use the edge and our solution to be relevant. To ensure that
Equation 3 holds, we do not require transferring entire images
of the VM and its containers. Instead, we use a layered file
system architecture at the MDC that is pre-populated with
base images used at the CDC as described in Section IV-D.
This assumption is realistic because we surmise that a MDC is
either owned entirely or leased exclusively by a CDC provider.
We also ensure Equation 3 holds by considering δp as a
tolerance percentage value for the application user before (s)he
starts to observe the improved response time:

transferp,h/eedp ≤ δp (4)

Finally, another critical issue we must account for is that any
migration of a new application from CDC to a MDC should
not violate the SLOs of existing applications in that MDC. To
capture this aspect, let Jh represent the set of all applications
currently running on a MDC host h, eetj,h be the estimated
execution time for each application j ∈ Jh, which must be
updated when we make a decision to migrate p to the same
host, and elj,h,u be their corresponding measured round-trip
network latency. These quantities must satisfy:

∀j ∈ Jh, eetj,h + max
u∈Uj

(elj,h,u) ≤ φj (5)

III. PROBLEM STATEMENT AND ITS FORMULATION

We now formally present the problem statement, which
includes two parts: determining which users are experiencing

SLO violations, and making decisions to migrate the impacted
application from CDC to apt MDC host.

A. Performance Estimation Problem and Challenges

The performance of an application depends on several
factors including the workload, the hardware hosting platform,
and co-located applications that cause performance interfer-
ence [8], [9]. Below we describe their role in the performance
estimation problem:

1) Workload Estimation: For the cloud-hosted interactive
applications of interest to us, we assume that the workload
variation is not significant within a single user session with
the service. However, different sessions may have different
workloads, for example, in an image processing application,
the quality and hence the size of the captured and relayed
image may vary for different client mobile devices. Thus,
we consider each workload as a different application setting,
which is reflected in the application response time.

2) Heterogeneity: Our CDC and MDCs consist of heteroge-
neous hardware and hence each application’s performance can
vary significantly from one hardware platform to another [8].
Therefore, we need an accurate benchmark of performance for
each hardware platform.

3) Performance Interference: Although hypervisors/VMMs
provide a high degree of security, fault, and environment
isolation, the level of isolation is inadequate when it comes to
performance isolation for the following reasons:
• Presence of non-partitionable shared resources: On-chip

resources including cache spaces, cache and DRAM
bandwidths, and interconnect networks are difficult to
partition [11]. Although, Intel has introduced Cache Al-
location Technology [12] to partition the last level cache
(LLC), it is still not widely used and cannot be applied
to older generation servers. The load imposed on these
shared resources by one application is detrimental to all
the cache- and memory-sensitive applications [13].

• Resource overbooking: Resource overbooking is com-
mon in cloud data centers, which precludes strict CPU
reservations and can lead to lower level caches (L1
and L2) getting shared. Overbooking beyond the server
capacity can lead to significant performance issues for
the applications.

B. Cost Estimation and Objective Formulation

The objective of the framework is to assure the SLOs for
all the identified applications p ∈ PA while minimizing
the overall deployment cost. Each MDC host h involves a
monetary allocation cost as it is either leased or could be
leased to other providers if owned by the centralized cloud. In
addition, the running servers have operational costs, such as
need for power and cooling. Thus, the provider wants to use
as few MDC servers as possible and hence the deployment
cost depends on the duration for which the MDC server is on.
This cost T̃h for deploying p ∈ PAh applications on host h
is the extra duration for which the server has to be turned on
and can be represented as:

T̃h =

0, if max
p∈PAh

(eedp) < max
j∈Jh

(eedj),

max
p∈PAh

(eedp)−max
j∈Jh

(eedj), otherwise

(6)
We define a constant αh denoting the cost of powering

on the MDC server, and constant βh denoting the cost for
transferring the state to host h. Their values depend on the
host h and its corresponding MDC. The cost for deployment
on host h is thus defined as:

C(h) = αh ∗ T̃h + βh ∗
∑

p∈PAh

transferp,h (7)

The optimization problem we solve for this research can
then be formulated as:

minimize
h∈H

∑
C(h)

subject to eetp,h + max
u∈Up

(elp,h,u) ≤ φp,

∀j ∈ Jh, eetj,h + max
u∈Uj

(elj,h,u) ≤ φj ,

transferp,h/eedp ≤ δp
(8)

IV. DESIGN OF INDICES

We now present the design of the INDICES framework,
which solves the optimization problem from Equation 8. The
remainder of this section describes the INDICES architecture
and the techniques used to solve the optimization problem.

A. INDICES Architecture and Implementation

Given the scale of the system, a centralized approach to per-
formance prediction and cost estimation for every application
hosted in the CDC/MDC and its clients is infeasible. Thus, we
take a hierarchical approach where individual MDCs with their
local managers and the global manager of the CDC participate
in a two-level decision making as shown in Figure 1.

Each MDC is composed of a management node and several
servers on which the applications residing on virtual machines
execute. Each individual host in the system has a performance
monitoring component that logs the data at the local manager
lmm. The local manager consists of a data collector, latency
estimator, performance predictor and cost estimator.

The performance monitor instruments the host and collects
system level metrics such as CPU, memory and network
utilizations, as well as micro architectural metrics such as
retired instructions per second (IPS) and cache misses. This
information is periodically logged to the local manager for
processing. The performance monitoring framework is based
on the collectd [14] system performance statistics collection
tool. To collect micro architectural performance metrics, we
developed a python plugin for collectd using Linux perf.
This plugin detects if the hardware platform is known, and
accordingly executes code that collects hardware specific per-
formance counter statistics. The information is then forwarded

to the lmm using AMQP message queuing protocol. The lmm

runs a server developed in the Go programming language,
which persists the data in the InfluxDB database, which is
designed specifically for time series data.

B. Estimating Execution Time

The constraints in Equation 8 require an accurate un-
derstanding of the predicted execution time duration of an
application if it were to execute at a MDC, as well as the
execution times of the existing applications executing on the
hosts of the MDCs. Hence, we build an application’s expected
performance profile and in turn its interference profile [15]
when co-located with other applications on different hardware
platforms given the hardware heterogeneity across the CDC
and MDCs. Although prior efforts [13], [16] have used retired
instructions per cycle (IPC) or last-level cache (LLC) miss rate
as the performance indicators, Lo et. al [17] have shown the
limitations of these metrics for latency-sensitive applications.
Thus, we consider execution time as the primary indicator of
performance.

The Interference profile of an application [13], [15], [18],
[19] is a property that identifies the degree to which that
application will (a) degrade the performance of other running
applications on the host – known as pressure – and (b) how
much its own performance suffers due to interference from
other applications – known as sensitivity. Several prior efforts
have used pairwise application execution to estimate their sen-
sitivity and pressure [13], [18], [19], however, these solutions
are not viable for a data center given the significantly large
number of hosted applications. Some other efforts [16] pause
non-critical applications to measure pressure and sensitivity of
live applications, which may not be a realistic solution.

Thus, for a given application p, its performance on a host
with hardware configuration w is modeled by Equation 9,
where Y is the execution time, X is a vector of system-
level metrics that quantify the state of the host, and the
function f1p () models the relation between the state of the host
machine and performance of the application p. Moreover, the
information needed by the second constraint of Equation 8
is obtained through Equation 10, which depicts the change
in the state of the host with hardware configuration w if
application p were to be hosted on it. Equation 10 is an indirect
measure of performance interference since its output can be
used to calculate the change in execution time of an already
running application by plugging the new state vector Xnew

into Equation 9 and solving it for each running application.

Y = f1p (Xw) (9)

Xnew
w = f2p (X

old
w) (10)

Another required step is to identify the right system level
metrics to use. Previous works [8], [15], [20] have identified
several sources of interference including caches, prefetchers,
memory, network, disk, translation lookaside buffers (TLBs),
and integer and floating point processing units. Although

TABLE I
SERVER ARCHITECTURES

Config Hardware
Model

sockets/cores/
threads/GHz

L1/L2/L3 Cache
(KB) Mem Type/ MHz/GB Memory Bandwidth Count

A i7 870 1/4/2/2.93 32/256/8192 DDR3/1333/16 64 *(UNC IMC NORMAL READS.ANY +
UNC IMC WRITES.FULL.ANY) / time in sec 2

B Xeon
W3530 1/4/2/2.8 32/256/8192 DDR3/1333/6 64 *(UNC IMC NORMAL READS.ANY +

UNC IMC WRITES.FULL.ANY) / time in sec 1

C Core2Duo
Q9550 1/4/1/2.83 32/6144/- DDR2/800/8 64 * BUS TRANS MEM.ALL AGENTS *1e9 * CPUFre-

quency / CPU CLK UNHALTED.CORE 1

D Opteron
4170HE 2/6/1/2.1 64/512/5118 DDR3/1333/32 64 * SamplingPeriod * DRAM ACCESSES PAGE.ALL /

time in sec 9

modern hardware architectures provide access to many per-
formance counters, which is not the case with older architec-
tures, to provide a broadly applicable and easily reproducible
approach, we have selected the following metrics:

• System Metrics: CPU utilization, memory utilization,
network I/O, disk I/O, context switches, page faults.

• Hardware Counters: Retired instructions per second
(IPS), cache utilization, cache misses, last-level cache
(LLC) bandwidth and memory bandwidth. In regard
to LLC and memory bandwidth, due to their strong
correlation that we observed during experimentation and
the ease of instrumenting the latter, we have used only
memory bandwidth. Table I lists the hardware counter-
based equations for memory bandwidth, which are de-
rived from [21], [22].

• Hypervisor metrics: Scheduler wait time, Scheduler I/O
wait time, scheduler VM exits. These metrics are the
summation for all the executing virtual machines for the
KVM hypervisor.

By applying standard supervised machine learning tech-
niques on the collected metrics, we estimate the functions in
Equations 9 and 10 using the following sequence of steps:

1) Feature Selection: We adopted the Recursive Feature
Elimination (RFE) approach using Gradient Boosted
Regression Trees [23] as a way to select the optimal set
of features and reduce training time. We performed RFE
in a cross-validation loop to find the optimal number of
features that minimizes a loss function (mean squared).

2) Correlation Analysis: To further reduce the training
time by decreasing the dimensions of the feature vector,
we used the Pearson Coefficient to eliminate highly
dependent metrics with a threshold of ±0.8.

3) Regression Analysis: We have used the off-the-shelf
Gradient Tree Boosting curve fitting method due to its
ability to handle heterogeneous features and its robust-
ness to outliers.

The performance estimation of applications consists of two
phases: (1) Offline Phase and (2) Online Phase. The offline
phase occurs at CDC and concerns with finding estimators
whereas the online phase is performed by the local manager
(lmm) of MDCs to estimate the performance of the target
application and also to estimate the performance degradation
of the running application. The two phases are described next.

1) Offline Phase: Whenever the data center receives a
request for migrating an as yet un-profiled application, it
is benchmarked on a single host with a given hardware
configuration and then co-located with other applications to
develop its interference profile. However, since the number of
profiling configurations can be huge, we select a uniformly
distributed subset of possible co-location combinations for
profiling. The estimators can be found either by following the
above listed three steps or choosing an existing estimator of
some application based on similarity between the projected
performance and the actual performance. We use a hybrid
approach, which first predicts the performance of the new
application and its interference profile using estimators of an
existing application for the same hardware specifications. If
the measured performance and the estimated performance are
within a pre-defined threshold, then we consider the new appli-
cation to be similar in performance to the existing application.
Among all such similar applications, the estimator of the
application with least error is selected for all MDC hardware
configurations. This saves profiling time and cost. However,
if there is no match, the application profile is developed by
performing feature pruning followed by model fitting on each
unique hardware platform maintained by the data center.

2) Online Phase: The learned models are then exported
and forwarded to the MDC local manager lmm for the
available hardware platforms in the MDC for estimating the
performance of any application to be deployed in the MDC.
Since each MDC is small in size and typically illustrates
limited heterogeneity in the supported hardware, the number of
estimation models will be small. On receiving a request from
the global manager gm, the local manager lmm estimates the
performance of an application by feeding the estimator with
presently logged data set using estimation function 9. The
pressure on existing applications Jh on the host h is calculated
by first applying Equation 10 on the target application and then
Equation 9 for existing applications.

C. Network Latency Estimation

The constraints of the optimization problem of Equation 8
require an accurate understanding of the network latencies
incurred by the clients, specifically the worst among all the
clients of each application. To that end we must determine the
clients who suffer SLO violations from Equation 1. In each
client, the instrumented “app” that is installed by the user as
part of the client application periodically reports to gm the

application response time it is observing. To not overwhelm
the gm, such data logging need not occur directly on the gm;
instead it can be logged on an ensemble of servers that then
report to the gm or the application server can itself gather data
and forward the information when SLO violations occur.

Although multiple MDCs may be available for migrating
the impacted application, to satisfy latency concerns, only
those eligible MDCs closer to the end user must be chosen.
To that end, we use the logged performance data from the
clients to extract its IP address in order to determine the
closest MDCs to that client. The extracted client IP address
may not be accurate since often internet users have private
addresses and the reported external address is that of the
network router or one from the pool of network provider’s
addresses in case the connection is via a cellular network.
However, this information is still sufficient for us as we use
the client location to reduce the set of MDCs that we need to
query. The client’s geolocation and consequently its region is
derived from the IP address.

The next step is measuring latencies to the nearby MDCs.
To obtain a reliable latency estimate, we use HTTP-based and
TCP socket-based latency measurement techniques for HTTP-
based and plain TCP-based cloud applications, respectively.
We can easily add additional protocols to this list based
on the protocol used. Subject to the collected information,
the gm forwards to the client app a list of “nearby” MDC
gateway servers that are also the local managers lmm, each
hosting a server for the purpose of latency measurement. The
client then posts n requests to each lmm with a file that it
typically posts to the cloud for processing (e.g. an image for
image processing application) and also the average size of the
response it receives from the application. The server responds
with a response for the same number of bytes. For each of the
n interactions, the client records the elapsed time. The client
app selects the SLO latency (e.g., usually 95th percentile)
from the n latencies for each lmm and reports it to gm. This
approach also accounts for the delay due to bandwidth size as
we transfer the actual request data instead of a ping.

D. State Transfer

The final constraint of Equation 8 requires estimating the
cost of state transfer. The local managers calculate the state
transfer cost using Equation 2 and use it in local decision
making. Once the gm selects the hm for migrating an ap-
plication p, the application state has to be transferred before
the clients can be switched to the new server location. In
this regard, there exist several solutions available for WAN-
scale virtual machine migration [4], [24]–[26]. We leverage
the cloud virtual disk format such as qcow2 features for WAN
migration. The VM disk is composed of a base image and
can contain several overlays on top of it for change sets. The
VM overlay when combined with the base image constructs
the VM that needs to run for serving the clients.

This base image can contain just an operating system such
as Ubuntu or an entire software stack such OpenCV for image
processing. The base image is assumed to be present on MDC

hosts to save on migration costs and can be shared by multiple
VMs. For the target application, overlays are created using
external snapshots. The VM overlay is the state that gets
transferred to hm and is synthesized with the base image for
execution. Equation 2 displays the cost.

Once the application starts running, it informs the gm and
all the application clients are redirected to the new application
URL. This happens for a custom client by forwarding the
new location to the clients which can then use the new
URL for processing. However, for browser-based clients, the
communication with the gm occurs via application server due
to cross-domain restriction and the existing application issues
HTTP-redirect to the new location. In future, we will enhance
our solution to support live migration of VMs using solutions,
such as Elijah cloudlet [27] or the recently introduced Docker
Linux container’s [28] live migration feature.

E. Solving the Optimization Problem at Runtime

The final piece of the puzzle is solving the optimization
problem in Equation 8. The optimization problem described
in III-B cannot be solved offline due to the changing dynamics
of the system, and moreover, being an NP-Hard problem, we
employ a heuristics-based algorithm described in Algorithm 1
that selects aptly suited servers in a MDC while minimizing
the overall deployment cost for the entire system.

Algorithm 1 Deployment Server Selection Algorithm
1: Input← (Apps)
2: for all a ∈ Apps do
3: ta,CDC ← max(Ua) . t is response time
4: if ta,CDC > φa then
5: PA.insert(a)

6: if PA = ∅ then return . Do nothing
7: for all p ∈ PA do
8: eedp ← GetExpectedExecutionDuration(p)
9: clientLoc← GetLocation(max(U ′

p))
10: nearbyMDCs← FindNearbyMDCs(clientLoc)
11: for all m ∈ nearbyMDCs do
12: lmm ← LocalManager(m)
13: elp,lmTransit ← GetLatency(lmm, clientLoc)
14: Hm ← GetServerList(m)
15: for all hm ∈ Hm do
16: transferp,hm ← EstTransDur(hm, p)
17: if transferp,hm/eedp > δp then
18: skip hm . Constraint Violated
19: perfp,hm ← PredictPerfInterf(hm, p)
20: for all j ∈ Jhm do
21: eetj,hm ← EstExecT ime(perfp,hm , j)
22: if elj,hm + eetj,hm > φj then
23: skip hm . Constraint Violated
24: eetp,hm ← EstExecT ime(perfhm , p)
25: if elp,lmTransit + eetp,hm > φp then
26: skip hm . Constraint Violated
27: Cp,Hm .insert(EstCost(transferp,hm , eedp))

28: Cp,m.insert(min(Cp,Hm))

29: minCp,h ← min(Cp,m)

The algorithm consists of two phases. First, we identify
the applications suffering SLO violations (Line 5). In the

second phase we select the suitable server. For the identified
applications in PA, we find the location and address of the
client that suffers the worst latency (Line 9). That location is
used to perform a lookup for nearby MDCs (Line 10). We then
identify the server within the identified MDCs that provide the
best performance. This step is carried out in parallel across
all the identified MDCs (Loop starting at Line 11). The client
measures the latency to the local manager lmm of each nearby
MDC and if it is within the acceptable application response
time threshold φp, then we select that MDC and fetch the
corresponding list of servers (Line 14).

For each such server, we predict the performance inter-
ference and estimate the execution time of the application
p were it to execute on that host (Line 19), and update
the estimated execution time of existing applications J on
that host (Loop starting at Line 20). We then calculate the
cost according to Equation 7 if the constraints defined in
Equation 8 can be met (Line 27). The minimum cost server
is identified for each MDC (Line 28). Finally the minimum
cost server is selected across all identified MDCs (Line 29)
and the application is migrated and clients are redirected to
the migrated application.

V. EXPERIMENTAL VALIDATION

We now present results of evaluating INDICES in the
context of a latency senstive application use case.

A. Experimental Setup

Table I illustrates the hardware platforms and their counts
used in our experiments. The CDC uses Openstack cloud
OS version 12.0.2 where the guests receive their own public
IP addresses. The MDC servers are managed directly by
libvirt virtualization APIs and the guests communicate via port
forwarding on the host. Each machine has Ubuntu 14.04.03
64-bit OS, QEMU-KVM hypervisor version 2.3.0 and libvirt
version 1.2.16. Guests are configured with 2 GB memory, 10
GB disk, Ubuntu 14.04.03 64-bit OS and either 1 or 2 VCPUs.
Since we are not concerned with VM migration within a CDC,
we do not depict the CDC heterogeneity.

We use PARSEC and Splash-2 benchmarks [29] to generate
the training data. As described in section IV-B, to preclude
profiling every new application on all the hardware, we need
some training data. PARSEC targets Chip-Multiprocessors
composing virtualized data centers, and provides a rich set of
applications with different instruction mix, cache and memory
utilization, needed for stressing different system subcompo-
nents. We selected 20 tests from the benchmarks for data
generation and validation. Due to lack of access to servers
in different geographical regions, we used the network em-
ulation tool, netem, and hierarchy token bucket based traffic
control, tc-htb, for emulating the desired network latencies and
bandwidth among the client, CDC and different MDCs.

B. Application Use Case

Our use case is an image processing application that per-
forms feature detection, e.g., facial recognition in computer

vision. We use the well-known Scale Invariant Feature Trans-
form (SIFT) [30] to find the scale and rotation independent fea-
tures. The client-side interface of the application continuously
streams frames from a video or a web camera at a fixed rate of
a frame per 200 milliseconds. The video resolution is 640x360
pixels and average frame size is 56 KB. The server comprises
a Python-based application that receives frames over a TCP
socket, processes it, and responds with the identified features
along with the processing time. The client expects to receive
a response within this duration, implying that 200 ms is the
deadline for the application. Although our use case considers
the performance for a single client connected to the cloud-
hosted application, it can easily be extended to multiple clients
residing in a similar latency region.

When the image processing application is submitted for
hosting in our cloud, we execute it on different hardware
platforms in isolation to find its base execution times. For
hardware platforms A,B,C,D defined in Table I, the base ex-
ecution times, eeta, were measured to be 86, 91, 146, 157 ms,
respectively. Table II displays the emulated ping latency ela
from this client to CDC or different MDCs in the same region
as the client. The table also lists their server composition, and
the measured 95th percentile network latency while sending
TCP/IP and HTTP post requests of 56 KB size and receiving
a response of size less than 1 KB. The expected duration for
which the client needs to perform the image processing, eeda,
was set as 1 hour and the SLO was set to 95%.

TABLE II
CDC AND MDC SET UP FOR USE CASE (SECTION V-B)

Conf Distance Ping Latency
(±20%) ms

TCP la-
tency(ms)

HTTP la-
tency(ms) Servers

1 1 hop <1 2 6 1C + 1D
2 2 hops 5 14 28 1A + 2D
3 Multi hops 20 54 96 1B + 2D
4 Multi hops 30 76 142 1A + 3D
5 Central 50 127 220 1D

C. Evaluating the Performance Estimation Model

We first benchmarked our use case application on hardware
platform D in order to develop its performance estimators.
The threshold to discern applications with similar interference
performance profile, as described in Section IV-B1, was set
to 10% error. However, as illustrated in Figure 2, none of
the existing applications met the criteria. Thus, we decided
not to use any of the existing estimators for the use case
application and benchmarked the application on all hardware
configurations to develop its estimators. Figure 2 confirms that
the estimation errors were high for all the hardware types
requiring us to develop its estimators. We also found that the
mean estimation error for our use case application to be less
than 4% on all the platforms with low standard deviations as
depicted in Figure 3. We can also account for this estimation
error in our response time constraint (Equation 1) for stricter
SLO adherence.

parse
c.s

waptio
ns

parse
c.b

lacksch
oles

parse
c.d

edup

parse
c.f

reqmine

parse
c.b

odytra
ck

parse
c.f

erre
t

parse
c.f

luidanim
ate

Application

0

5

10

15

20

25

30

35

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r Config A

Config B

Config C

Config D

Fig. 2. Estimation of SIFT Profile Similarity with Parsec Benchmark

A B C D
Hardware Configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r

Fig. 3. SIFT Application Performance Estimation Error

D. Evaluating the Server Selection Algorithm

We compare our server selection algorithm results against
two approaches: server selection algorithms based on mini-
mum number of hops and least loaded server (among reachable
MDCs). From Table II we observe that the minimum hop is 1.
There are 2 servers in the minimum hop MDC 1 with hardware
configuration types C and D. We create interference load on
both the servers but ensured that the total load on the server
does not exceed its capacity in terms of memory and vCPUs to
eliminate unrealistic performance deteriorations. For the least-
loaded server algorithm, we considered the server with least
existing allocated resources, i.e. containing only a single VM.
We did not consider a server with no existing load as it results
in acquiring a new server and thus causes additional cost to
the service provider. We found the server of hardware type D
with MDC configuration 4 to be least loaded.

Applying SLO from Equation 1, INDICES found 2 servers
of type A and D from MDC 2 and one server of type B from
MDC 3 to be suitable for which we plot their response times
for eeda of one hour. Figure 4 displays the comparison of
each of the suitable servers found by INDICES against the
least loaded server. We observe that in this scenario, the least
loaded server had 100% SLO violation because of network
latency. However, the servers found by INDICES met their
deadline 100%, 99.38% and 98.94%, respectively, which was
well over the target SLO of 95%. Also, the minimum hop

servers met the deadline only 66.64% and 60.64% of times
due to performance interference shown in Figure 5.

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

0

100

200

300

400

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Least loaded

CDC

INDICES 2D

INDICES 2A

INDICES 3B

SLO

Fig. 4. INDICES vs Least Loaded

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

50

100

150

200

250

300

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Min hop D

Min hop A

INDICES 2A

SLO

Fig. 5. INDICES vs Minimum Hop

Applying Algorithm 1 further, INDICES found the server
of type B from MDC 3 to be most suitable since our objective
is to select the minimum cost server to the service provider if
it can meet the SLO. Thus, it preferred a server which already
had an application that was going to run longer and had better
bandwidth from the CDC server for migration. Figure 6 com-
pares 3 migration scenarios (a) an overlay with the software
stack already present on the target server and the bandwidth is
10 Mbps, (b) same as previous but with bandwidth 1 Mbps, (c)
overlay is not present on the target server and the compressed
file of size 938 MB has to transferred over 10 Mbps bandwidth.
In all the scenarios, the application overlay and configuration
files have to be transferred and the application has to be
initialized. We observe that the server selection takes ≈ 1 sec,
however, the migration and initialization takes 32s, 56s and
190s respectively for a, b and c scenarios. Thus, the overlay
based image transfer should be the preferred methodology
wherever applicable.

VI. RELATED WORK

In this section we compare and contrast our work with
related work along three dimensions: network latency-based

0 50 100 150 200 250 300 350
Time (sec)

0

100

200

300

400

500
R

e
sp

o
n
se

 T
im

e
 (

m
s)

SL
O V

io
la
tio

n
Det

ec
tio

n

Dec
isi

on

Sw
itc

h
Ove

r a

Sw
itc

h
Ove

r b

Sw
itc

h
Ove

r c
a) Response Time - Overlay

b) Response Time - Overlay Lower B/W

c) Response Time - Base

SLO

Fig. 6. Application Switch-Over Performed by INDICES under 3 Different Scenarios

server selection, performance interference-based server selec-
tion and performance-aware edge computing. Unlike our work,
our survey has found that existing works seldom consider all
dimensions holistically.

A. Network Latency-based Server Selection

DONAR [31] addresses the global replica selection problem
using a decentralized, selection algorithm where the underly-
ing protocol solves an optimization problem that takes into
account client performance and server load. Dealer [32] targets
geo-distributed, multi-tier and interactive applications to meet
their stringent deadline constraints by monitoring individual
component replicas and their communication latencies, and
selects the combination that provides the best performance.
Kwon et al. [33] applied network latency profiling and re-
dundancy for cloud server selection while suggesting using
cloudlets. We contend that these efforts consider simplistic
models of server workload and their impact on performance,
and do not cater to edge resource management.

B. Performance Interference-aware Server Selection

Paragon [8] identified the sources of interference that impact
application performance and developed micro benchmarks for
heterogeneous hardware. The system benchmarks applications
and classifies them to find collocation patterns for scheduling.
SMiTe [18] designed rulers for estimating sensitivity and
degree of contention between applications when they are
collocated. Bubble-Flux [16] assures QoS for latency-sensitive
applications by dynamic interference profiling of shared hard-
ware resources and collocating latency-sensitive applications
with batch applications. These works, however, do not apply
to virtualized data centers where the hypervisor places its own
overhead on the resources and impacts performance.

Our prior work [9] designed a performance interference-
aware resource management framework that benchmarks ap-
plications residing in virtual machines and applies a neural
network-based regression mechanism that estimates a server’s
performance interference level. However, hardware hetero-
geneity and per application performance were not considered.

Heracles [17] mitigates performance interference issues for
latency-sensitive applications by partitioning different shared

resources. However, partitioning for resources, such as mem-
ory bandwidth is still not available, and moreover, cache
partitioning is only available on newer hardware which cannot
be applied to existing hardware.

C. Performance-aware Edge Computing

Zhou et al. [7] described a multi attribute decision analysis
algorithm to offload tasks amongst mobile ad-hoc network,
cloudlet and public cloud. Their work performs cost estimation
considering execution time, power consumption, bandwidth
and channel conjunction level which is utilized by the decision
making algorithm. The approach utilizes ThinkAir [6] for
offloading the tasks. However, they target only Java-based
tasks and the solution is not catered to latency-sensitive
applications such as those targeted by us.

Fesehaye et al. [34] described a design to select between
cloudlets and central cloud server for interactive mobile cloud
applications based on the number of hops, mobility and
latency. SEGUE [35] is an edge cloud migration decision
system that applies state-based Markov Decision Process
(MDP) model incorporating network and server states. Both
the approaches have not been evaluated on real systems and
the results are only simulation-based.

VII. CONCLUSIONS

This paper presents an approach for dynamic cloud resource
management that exploits the available edge/fog resources in
the form of micro data centers, which are used to migrate
cloud-hosted applications closer to the clients so that their
response times are improved. In doing so, our algorithm
ensures that existing edge-deployed services are not unduly
impacted in terms of their performance nor are the operational
and management costs for the cloud provider overly affected.
These objectives are met using an online optimization prob-
lem, which is solved using a two-level cooperative and online
process between system-level artifacts we have developed and
deployed at both the micro data centers and centralized cloud
data center. Our experimental results evaluating our framework
called INDICES support our claims.

This work has provided deep insights that require further
research. Some of these include the need for readily available

benchmarks, better approaches to collecting measurements,
workload consolidation across MDCs and CDCs, revenue
generation and energy saving issues, and MDCs that are shared
across different CDC providers. Going forward, we will also
expand on our assumptions and limitations such as trust,
security, workload variations and user mobility.

All scripts, source code, and experimental results for IN-
DICES are available for download from https://github.com/
shekharshank/indices.

ACKNOWLEDGMENTS

This work is supported in part by the AFOSR DDDAS
FA9550-13-1-0227 and NSF US Ignite CNS 1531079. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of AFOSR and NSF.

REFERENCES

[1] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “Gaming in
the clouds: Qoe and the users perspective,” Mathematical and Computer
Modelling, vol. 57, no. 11, pp. 2883–2894, 2013.

[2] R. Kohavi, R. M. Henne, and D. Sommerfield, “Practical guide to
controlled experiments on the web: listen to your customers not to the
hippo,” in 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2007, pp. 959–967.

[3] Y. A. Wang, C. Huang, J. Li, and K. W. Ross, “Estimating the perfor-
mance of hypothetical cloud service deployments: A measurement-based
approach,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp.
2372–2380.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case
for VM-Based Cloudlets in Mobile Computing,” Pervasive Computing,
IEEE, vol. 8, no. 4, pp. 14–23, 2009.

[5] V. Bahl, “Cloud 2020: Emergence of micro data centers (cloudlets) for
latency sensitive computing (keynote),” Middleware 2015, 2015.

[6] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic Resource Allocation and Parallel Execution in the Cloud
for Mobile Code Offloading,” in INFOCOM, 2012 Proceedings IEEE,
March 2012, pp. 945–953.

[7] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya,
“A context sensitive offloading scheme for mobile cloud computing
service,” in Cloud Computing (CLOUD), 2015 IEEE 8th International
Conference on. IEEE, 2015, pp. 869–876.

[8] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in ACM SIGPLAN Notices, vol. 48, no. 4.
ACM, 2013, pp. 77–88.

[9] F. Caglar, S. Shekhar, A. Gokhale, and X. Koutsoukos, “An Intelligent,
Performance Interference-aware Resource Management Scheme for IoT
Cloud Backends,” in 1st IEEE International Conference on Internet-
of-Things: Design and Implementation. Berlin, Germany: IEEE, Apr.
2016, pp. 95–105.

[10] F. Caglar, S. Shekhar, A. Gokhale, S. Basu, T. Rafi, J. Kinnebrew,
and G. Biswas, “Cloud-hosted Simulation-as-a-Service for High School
STEM Education,” Elsevier Simulation Modelling Practice and Theory:
Special Issue on Cloud Simulation, vol. 58, no. 2, pp. 255–273,
Nov. 2015. [Online]. Available: http://dx.doi.org/10.1016/j.simpat.2015.
06.006

[11] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta: quan-
tifying effects of shared on-chip resource interference for consolidated
virtual machines,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM, 2011, p. 22.

[12] “Cache allocation technology improves real-time performance,”
http://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/cache-allocation-technology-white-paper.pdf.

[13] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in 44th annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2011, pp. 248–259.

[14] F. Forster, “Collectd - The System Statistics Collection Daemon.” http:
//collectd.org.

[15] M. S. Islam, M. Gibson, and A. Muzahid, “Fast and qos-aware heteroge-
neous data center scheduling using locality sensitive hashing,” in 2015
IEEE 7th International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE, 2015, pp. 74–81.

[16] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online
qos management for increased utilization in warehouse scale computers,”
in ACM SIGARCH Computer Architecture News, vol. 41, no. 3. ACM,
2013, pp. 607–618.

[17] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Improving resource efficiency at scale with heracles,” ACM Transac-
tions on Computer Systems (TOCS), vol. 34, no. 2, p. 6, 2016.

[18] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “Smite: Precise
qos prediction on real-system smt processors to improve utilization in
warehouse scale computers,” in 47th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2014, pp.
406–418.

[19] W. Kuang, L. E. Brown, and Z. Wang, “Modeling cross-architecture
co-tenancy performance interference,” in Cluster, Cloud and Grid Com-
puting (CCGrid), 2015 15th IEEE/ACM International Symposium on.
IEEE, 2015, pp. 231–240.

[20] C. Delimitrou and C. Kozyrakis, “ibench: Quantifying interference for
datacenter applications,” in Workload Characterization (IISWC), 2013
IEEE International Symposium on. IEEE, 2013, pp. 23–33.

[21] Detecting memory bandwidth saturation in threaded applica-
tions. [Online]. Available: https://software.intel.com/en-us/articles/
detecting-memory-bandwidth-saturation-in-threaded-applications

[22] P. J. Drongowski and B. D. Center, “Basic performance measurements
for amd athlon 64, amd opteron and amd phenom processors,” AMD
whitepaper, vol. 25, 2008.

[23] J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted
regression trees,” Journal of Animal Ecology, vol. 77, no. 4, pp. 802–
813, 2008.

[24] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. De Laat, J. Mambretti,
I. Monga, B. Van Oudenaarde, S. Raghunath, and P. Y. Wang, “Seamless
live migration of virtual machines over the man/wan,” Future Generation
Computer Systems, vol. 22, no. 8, pp. 901–907, 2006.

[25] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live wide-
area migration of virtual machines including local persistent state,” in
3rd international conference on Virtual execution environments. ACM,
2007, pp. 169–179.

[26] T. Wood, K. Ramakrishnan, P. Shenoy, and J. Van der Merwe, “Cloudnet:
dynamic pooling of cloud resources by live wan migration of virtual
machines,” in ACM Sigplan Notices, vol. 46, no. 7. ACM, 2011, pp.
121–132.

[27] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and M. Satya-
narayanan, “Adaptive vm handoff across cloudlets,” Technical Report
CMU-CS-15-113, CMU School of Computer Science, Tech. Rep., 2015.

[28] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[29] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
characterization and architectural implications,” in 17th international
conference on Parallel architectures and compilation techniques. ACM,
2008, pp. 72–81.

[30] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[31] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford, “Donar:
decentralized server selection for cloud services,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 4, pp. 231–242, 2010.

[32] M. Hajjat, D. Maltz, S. Rao, K. Sripanidkulchai et al., “Dealer:
application-aware request splitting for interactive cloud applications,” in
8th international conference on Emerging networking experiments and
technologies. ACM, 2012, pp. 157–168.

[33] M. Kwon, Z. Dou, W. Heinzelman, T. Soyata, H. Ba, and J. Shi, “Use of
network latency profiling and redundancy for cloud server selection,” in
2014 IEEE 7th International Conference on Cloud Computing. IEEE,
2014, pp. 826–832.

[34] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of cloudlets
on interactive mobile cloud applications,” in Enterprise Distributed
Object Computing Conference (EDOC), 2012 IEEE 16th International.
IEEE, 2012, pp. 123–132.

[35] W. Zhang, Y. Hu, Y. Zhang, and D. Raychaudhuri, “Segue: Quality of
service aware edge cloud service migration,” in 8th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2016.

