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Abstract: A constructive method is presented in which Lm
2 -stability can be guaranteed for

networked control of multiple passive plants in spite of random time varying delays and data
dropouts. The passive plants are interfaced to a wave variable based passive sampler (PS) and
passive hold (PH) which allows a passive digital control network to be constructed. A power
junction is used to facilitate the interconnection of multiple passive plants and passive digital
controllers. The power junction preserves passivity by guaranteeing that the overall power input
to the system is greater than or equal to the power leaving the system. There are numerous ways
to implement the power junction including the averaging power junction and the consensus power
junction which are studied in this paper. In particular, a detailed steady state analysis is provided
which relates the corresponding controller inputs to the plants outputs. The construction of our
digital control network is completed by interconnecting the digital controllers to an inner-product
equivalent sampler and zero-order hold (IPESH) which allows us to prove Lm

2 -stability.
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1. INTRODUCTION

The primary goal of our research is to develop reliable
wireless digital control networks Antsaklis and Baillieul
(2007). In the past we have shown numerous results
related to the control of a single continuous time passive
plant with a single digital controller over a network.
In particular we have shown how to create a lm2 -stable
digital control network for a continuous passive plant
(Kottenstette and Antsaklis, 2007, Theorem 4) and built
on this result to show that the controller can be run
in an asynchronous manner (Kottenstette and Antsaklis,
2008b, Theorem 1). We have also shown how a continuous
time stability result (Lm

2 -stability) can be achieved with
a passive digital controller by interfacing a continuous
time passive plant to a passive sampler (PS) and passive
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hold (PH) (Kottenstette et al., 2008, Corollary 1). The
key is to transmit control and sensor data in the form
of wave variables over networks similar to those depicted
in (Kottenstette and Antsaklis, 2007, Fig. 2). The use
of wave variables allows the network controlled system
to remain stable when subject to both fixed time delays
and data dropouts. In addition, if duplicate wave variable
transmissions are dropped, then the network will remain
stable in spite of time varying delays.

Recently we have shown how this framework can be modi-
fied to control multiple discrete-time passive plants over a
wireless network by using a power junction and also guar-
antee lm2 -stability (Kottenstette et al., 2009, Theorem 1).
We noted in (Kottenstette et al., 2009, Section II-B) that
Lm

2 -stability results can also be shown with a power junc-
tion if continuous time plants were interfaced to a PS
and PH. The PS and PH framework, unlike other data-
reduction techniques used in telepresence systems Hirche
and Buss (2007), does not require the user to take digital
waves and convert them back to a continuous-time signal.
Figure 1 shows this proposed configuration. In this paper,



based on this architecture we provide detailed analysis for
different power junctions. In doing so, we introduce the
consensus power junction which is based on a recent work
related to passivity based synchronizing networks which
use continuous time feedback Chopra and Spong (2006).
In addition this paper presents the steady state responses
of the plant outputs in regards to a set of steady state
controller (and plant) inputs.

The power junction is an abstraction to interconnect wave
variables from multiple controllers and plants such that the
total power input is always greater than or equal to the to-
tal power output (Kottenstette et al., 2009, Definition 1).
Interconnecting wave variables in a ’power preserving’
manner has appeared in the telemanipulation literature
to augment potential position drift by modifying one of
the waves um in a passive manner (Niemeyer and Slotine,
2004, Fig. 9). Other abstractions to interconnect wave
variables have also appeared in the wave digital filtering
literature Fettweis (1986). A consensus power junction
will be introduced in the paper which interconnects wave
variables to plants in a manner similar to that discussed
in Chopra and Spong (2006) except: i) a controller can be
explicitly used to steer the plants to a desired set-point
and ii) the information does not need to be transmitted as
a continuous-time waveform.

This paper is a significant refinement of our earlier work
including Kottenstette and Antsaklis (2008a) in which the
power junction first appeared and was significantly refined
in Kottenstette et al. (2009) for the discrete time case.
In this paper we show how the (consensus or averaging)
power junction in conjunction with a PS and PH makes
it possible to allow m digital-controllers to control up
to n − m continuous-time-plants. We prove that such a
network can be shown to be Lm

2 -stable if all the intercon-
nected plants and controllers are strictly-output passive.
This paper, uses the PS and PH in conjunction with the
power junction to construct a digital control system for
multiple continuous time plants and controllers which can
achieve Lm

2 -stability. A complete steady-state analysis for
the averaging power junction (Definition 2) is provided
in this paper. We introduce the consensus power junction
(Definition 3), show that it satisfies the conditions for the
power junction (Lemma 4) and provide a steady state anal-
ysis (Theorem 16). The rest of the paper is organized as
follows: i) Section 2 presents the necessary background and
the main results that demonstrate the design of network
control systems for multiple-continuous-plants intercon-
nected to (multiple)-digital-controllers through the power
junction (Section 2.2) and the PS and PH (Section 2.3)
which are Lm

2 stable (Section 2.4), a detailed steady-state
response analysis (Section 2.5) . Detailed simulations and
proofs are available in an extended version of this paper
Kottenstette and Chopra (2009).

2. NETWORKED CONTROL DESIGN

2.1 Wave Variables

Networks of a passive plant and controller are typically
interconnected using power variables. Power variables are
generally denoted with an effort and flow pair (e∗,f∗)
whose product is power. They are typically used to show

the exchange of energy between two systems using bond
graphs Breedveld (2006); Golo et al. (2003). However,
when these power variables are subject to communication
delays the communication channel ceases to be passive
which leads to network instabilities. Scattering Anderson
and Spong (1988) or their reformulation known as the wave
variables allow effort and flow variables to be transmitted
over a network while remaining passive when subject to
arbitrary fixed time delays and data dropouts Niemeyer
and Slotine (2004).

upk(t) =
1√
2b

(bfpk(t) + edck(t)), k ∈ {m + 1, . . . , n} (1)

vpk(t) =
1√
2b

(bfpk(t) − edck(t)) (2)

vcj(i) =
1√
2b

(bfdpj(i) − ecj(i)), j ∈ {1, . . . ,m} (3)

ucj(i) =
1√
2b

(bfdpj(i) + edpj(i)) (4)

(1) can be thought of as each sensor output in a wave
variable form for each plant Gpk, k ∈ {m + 1, . . . , n}
depicted in Fig. 1. Likewise, (3) can be thought of as each
command output in a wave variable form for each con-
troller Gcj , j ∈ {1, . . . ,m} depicted in Fig. 1. The symbol
i ∈ {0, 1, . . . } depicts discrete time for the controllers,
and the symbol t ∈ R denotes continuous time and the
two are related to the sample and hold time (Ts) such
that t = iTs. (1) and (2) respectively satisfy the following
equality ∀ k ∈ {m + 1, . . . , n}:

1

2
(uT

pk(t)upk(t) − vT

pk(t)vpk(t)) = fT

pk(t)edck(t) (5)

Similarly, (3) and (4) respectively satisfy the following
equality ∀ j ∈ {1, . . . ,m}:

1

2
(uT

cj(i)ucj(i) − vT

cj(i)vcj(i)) = fT

dpj(i)ecj(i). (6)

Denote I ∈ R
ms×ms as the identity matrix. When imple-

menting the wave variable transformation the continuous
time plant “outputs” (upk(t), edck(t)) are related to the
corresponding “inputs” (vpk(t), fpk(t)) as follows (Fig. 1):

[

upk(t)
edck(t)

]

=

[

−I
√

2bI

−
√

2bI bI

] [

vpk(t)
fpk(t)

]

(7)

Next, the discrete time controller “outputs” (vcj(i), fdpj(i))
are related to the corresponding “inputs” (ucj(i), ecj(i)) as
follows (Fig. 1):

[

vcj(i)
fdpj(i)

]

=









I −
√

2

b
I

√

2

b
I −1

b
I









[

ucj(i)
ecj(i)

]

(8)

The power junction indicated in Fig. 1 by the symbol
PJ has waves entering and leaving the power junction as
indicated by the arrows. Waves leaving the controllers vcj

and entering the power junction vj in which j ∈ {1, . . . ,m}
have the following relationship

vj(i) = vcj(i − pj(i))

in which pj(i) denotes the time varying delay in trans-
mitting the control wave from ’controller-j’ to the power
junction. Next, the input wave to the plant vpk is a delayed



Fig. 1. A power junction control network.

version of the outgoing wave from the power junction
vk, k ∈ {m + 1, . . . , n} such that

vpk(i) = vk(i − pk(i)), k ∈ {m + 1, . . . , n}
in which pk(i) denotes the discrete time varying delay
in transmitting the outgoing wave to ’plant-k’. In Fig. 1
the delays are represented as fixed for the discrete time
case (i.e. z−pk). Next, the outgoing wave from each plant
upk is related to the wave entering the power junction
uk, k ∈ {m + 1, . . . , n} as follows:

uk(i) = upk(i − ck(i)), k ∈ {m + 1, . . . , n}
in which ck(i) denotes the discrete time varying delay in
transmitting the wave from ’plant-k’ to the power junction.
Last, the input wave to the controller ucj is a delayed
version of the outgoing wave from the power junction
uj , j ∈ {1, . . . ,m} such that

ucj(i) = uj(i − cj(i)), j ∈ {1, . . . ,m}
in which cj(i) denotes the discrete time varying delay
in transmitting the wave from the power junction to
’controller-j’. In Fig. 1 the delays are represented as fixed
for the discrete time case (i.e. z−cj ).

2.2 The Power Junction

The power junction Kottenstette et al. (2009)[Definition 1]
depicted in Fig. 1 provides a general way to interconnect
multiple plants to multiple controllers, and we shall show
that it can be implemented in numerous ways.

Assumption 1. n systems are interconnected to a power
junction using the corresponding wave variable pairs

(u1, v1), (u2, v2), . . . , (un, vn) as indicated in Fig. 1). The
power-output pairs are denoted (uj , vj), j ∈ {1, . . . ,m}
(in which uj ∈ R

ms is an outgoing wave and vj ∈ R
ms

is an incoming wave to the power junction). The power-
input pairs are denoted (uk, vk), k ∈ {m + 1, . . . , n} (in
which uk ∈ R

ms is an incoming wave and vk ∈ R
ms is an

outgoing wave from the power junction).

The power junction is implemented such that (9) holds.

n
∑

k=m+1

(uT

kuk − vT

k vk) ≥
m
∑

j=1

(uT

j uj − vT

j vj) (9)

In words, the total power-input is always greater than or
equal to the total power-output from the power junction.

Definition 2. Kottenstette et al. (2009)[Definition 2] An
averaging power junction as described by Assumption 1
is implemented such that each lth component (l ∈
{1, . . . ,ms}) of the outgoing waves (denoted vkl

) are com-
puted from the respective lth component of the incoming
waves (denoted vjl

) as follows:

sfv =
|∑m

j=1 vjl
|

∑m

j=1 |vjl
|

vkl
= sfvsgn(

m
∑

j=1

vjl
)

√

∑m

j=1 v2
jl√

n − m
, k ∈ {m + 1, . . . , n}

=
v1l√
n − 1

when m = 1



Similarly, each lth component (l ∈ {1, . . . ,ms}) of the
outgoing waves (denoted ujl

) are computed from the
respective lth component of the incoming waves (denoted
ukl

) as follows:

sfu =
|∑n

k=m+1 ukl
|

∑n

k=1+1 |ukl
|

ujl
= sfusgn(

n
∑

k=m+1

ukl
)

√

∑n

k=m+1 u2
kl√

m
, j ∈ {1, . . . ,m}

= sfusgn(
n
∑

k=2

ukl
)

√

√

√

√

n
∑

k=2

u2
kl

when m = 1.

In addition to evaluating the averaging power junction, we
introduce the consensus power junction.

Definition 3. A consensus power junction in which n sys-
tems are interconnected as described by Assumption 1
is implemented so that the incoming wave from plant n
denoted un(i) is related to the outgoing wave to controller
1 denoted u1(i) as follows

u1(i) = un(i). (10)

If m > 1 then the incoming wave vj(i) is related to the
outgoing wave uj+1(i) to the next controller such that

uj+1(i) = vj(i) j ∈ {1, . . . ,m − 1}. (11)

Next, the final output from the mth controller is connected
to the first plant such that

vm+1(i) = vm(i). (12)

If n > m + 1 then the incoming wave uk(i) is related to
the outgoing wave vk+1(i) such that

vk+1(i) = uk(i) k ∈ {m + 1, . . . , n − 1}. (13)

Lemma 4. The consensus power junction satisfies (9) as
an equality and is therefore a lossless power junction.

2.3 Passive Sampling and Holding.

In Kottenstette et al. (2008) it was shown how a passive
sampler (PS) a passive hold (PH) in conjunction with a
inner-product equivalent sampler (IPES) and zero-order-
hold (ZOH) can be used to achieve a Lm

2 -stable system
consisting of a passive robot and a digital controller. As
can be seen in Fig. 1 we have connected the PS and PH to
each plant, while connecting the (IPES) and zero-order-
hold (ZOH) block to each digital controller in order to
relate rcj(i) to rcj(t) and ecj(i) to ecj(t) in a passivity
preserving manner. Therefore we recall the following set
of definitions:

Definition 5. The passive samplers denoted (PSk) and the
corresponding passive holds denoted (PHk) ∀k ∈ {m +
1, . . . , n} must be implemented such that the following
inequality is satisfied ∀N > 0:

∫ NTs

0

(uT

pk(t)upk(t) − vT

pk(t)vpk(t))dt−

N−1
∑

i=0

(uT

pk(i)upk(i) − vT

pk(i)vpk(i)) ≥ 0. (14)

This condition ensures that no energy is generated by the
sample and hold devices, and thus, passivity is preserved.

One way to implement the PS and PH is to use the
averaging passive sampler and hold.

Definition 6. The averaging passive samplers denoted
(PSk) and the corresponding averaging passive holds de-
noted (PHk) ∀k ∈ {m+1, . . . , n} is implemented such that
for each lth component (l ∈ {1, . . . ,ms}) of the discrete-
time-sampled waves upk(i) ∈ R

ms (denoted upkl
(i)) is

determined from the respective lth component of the
continuous-time wave upk(t) ∈ R

ms (denoted upkl
(t)) us-

ing PSk as follows:

upkl
(i) =

√

∫ iTs

(i−1)Ts

u2
pkl

(t)dt sgn(

∫ iTs

(i−1)Ts

upkl
(t)dt)

(15)
and the continuous-time wave vpk(t) ∈ R

ms is determined
from the discrete-time waves vpk(i) ∈ R

ms in terms of each
of their respective lth components using PHk as follows:

vpkl
(t) =

1√
Ts

vpkl
(i), t ∈ [iTs, (i + 1)Ts). (16)

Using a PS and PH such as the averaging passive sampler
and hold we can now relate continuous time variables to
discrete time wave variables associated with each plant
Gpk, k ∈ {m + 1, . . . , n}. Substituting (5) into (14) results
in the following inequality for each plant
∫ NTs

0

fT

pk(t)edck(t) ≥
N−1
∑

i=0

(uT

pk(i)upk(i) − vT

pk(i)vpk(i)).

(17)
Next, we would like to determine how (17) relates to the
corresponding pair of waves entering and leaving the power
junction (uk(i), vk(i)). In order to do so, we recall that
(Kottenstette and Chopra, 2009, Proposition 7) (which we
shall refer to as Proposition 7) summarizes observations
made in Chopra et al. (2008); Stramigioli et al. (2005);
Kottenstette and Antsaklis (2007, 2008b)) by stating the
necessary time varying delay and data-loss conditons in
order for

N−1
∑

i=0

uT(i)u(i) − vT

d (i)vd(i) ≥
N−1
∑

i=0

uT

d (i)ud(i) − vT(i)v(i)

(18)
to be satisfied for all N > 0. Random data dropouts, and
fixed delays as well as the TCP/IP transmission protocol
will allow (18) to hold, however the UDP protocol could
replicate packets and cause (18) to not hold. Applications
which choose to use UDP can be easily modified to sat-
isfy Proposition 7-IV by simply not processing duplicate
packets.

Corollary 7. All n−m continuous time plant (flows fpk(t)
and effort edck(t)) pairs depicted in Fig. 1 are related to
their respective pair of waves entering and leaving the
power junction (uk(i), vk(i)) such that ∀k ∈ {m+1, . . . , n}

∫ NTs

0

fT

pk(t)edck(t) ≥
N−1
∑

i=0

(uT

k (i)uk(i) − vT

k (i)vk(i))

〈fpk(t), edck(t)〉NTs
≥‖(uk(i))N‖2

2 − ‖(vk(i))N‖2
2

〈fpk, edck〉NTs
≥‖(uk)N‖2

2 − ‖(vk)N‖2
2 (19)

is satisfied if the wave variable communication time-delays
ck(i) = du(i), pk(i) = dv(i) satisfy any of the conditions
listed in Proposition 7.



See (Kottenstette and Chopra, 2009, Appendix A) for an
explanation of the short hand notation used in (19), since
Ts is typically not an integer, we will typically drop the i
or t symbol and use N to refer to extended discrete-time
lm2 norms and NTs to refer to extended Lm

2 norms. In
an analogous manner we can relate the control effort and
flow variables (ecj(i), fdpj(i)) to the power junction wave
variables (uj(i), vj(i) ∀j ∈ {1, . . . ,m} for the m-digital
controllers.

Corollary 8. All m discrete time controller (flows fdpj(i)
and efforts ecj(i)) pairs depicted in Fig. 1 are related to
their respective pair of waves leaving and entering the
power junction (uj(i), vj(i)) such that ∀j ∈ {1, . . . ,m}

‖(uj)N‖2
2 − ‖(vj)N‖2

2 ≥‖(ucj)N‖2
2 − ‖(vcj)N‖2

2

‖(uj)N‖2
2 − ‖(vj)N‖2

2 ≥〈ecj , fdpj〉N (20)

is satisfied if the wave variable communication time-delays
cj(i) = du(i), pj(i) = dv(i) satisfy any of the conditions
listed in Proposition 7.

Which leads us to the following lemma.

Lemma 9. The m discrete time controller (flows fdpj(i)
and efforts ecj(i)) pairs j ∈ {1, . . . ,m} are related to the
n−m continuous time plant (flows fpk(t) and effort edck(t))
pairs k ∈ {m + 1, . . . , n} depicted in Fig. 1 as follows

n
∑

k=m+1

〈fpk(t), edck〉NTs
≥

m
∑

j=1

〈ecj(i), fdpj(i)〉N (21)

if the wave variable communication time-delays cj(i) =
ck(i) = du(i), pj(i) = pk(i) = dv(i) satisfy any of the
conditions listed in Proposition 7.

In order to show Lm
2 stability of our digital control network

depicted in Fig. 1 we need to relate ∀j ∈ {1, . . . ,m} the
discrete-time reference and effort variables associated with
each digital controller Gcj (denoted by the respective tuple
(rcj(i), ecj(i))) to a continuous-time reference and effort
variable counterpart which we denote by the respective
tuple (rcj(t), ecj(t)). In order to make this comparison we
used the inner-product equivalent sampler (denoted IPESj

in Fig. 1) and a zero-order-hold (denoted ZOHj in Fig. 1).
We will refer to the pair of these devices as the inner-
product equivalent sample and hold (IPESH) (Kottenstette
and Antsaklis, 2007, Definition 4), Kottenstette et al.
(2008).

Definition 10. The m-inner-product equivalent sample and
hold’s depicted in Fig. 1 by the pair of respective symbols
(IPESj ,ZOHj) j ∈ {1, . . . ,m} in which the inputs are
denoted by the pair (rcj(t), ecHj(i)) and the outputs are
denoted by the pair (rcSj(i), ecj(t)). The inner-product
equivalent sampler (IPES) is implemented by sampling
rcj(t) at a rate (Ts) such that ∀N > 0:

x(t) =

∫ t

0

rcj(τ)dτ, rcSj(i) =x((i + 1)Ts) − x(iTs).

(22)

The ZOH is implemented as follows:

ecj(t) = ecHj(i), t ∈ [iTs, (i + 1)Ts) (23)

Corollary 11. Using the IPESH as stated in Definition 10
we have that

〈ecj , rcj〉NTs
= 〈ecHj , rcSj〉N holds. (24)

Using the ZOH as stated in Definition 10 we also have the
property that

‖(ecj)NTs
‖2
2 = Ts‖(ecHj)N‖2

2 holds. (25)

Finally Fig. 1 possesses some scalar scaling gains ks ∈ R+

to account for the using the power-junction, PS and PH
and the IPESH, such that for all j ∈ {1, . . . ,m}:

rcj(i) = − ksjrcSj(i) and ecj(i) = − 1

ksj

ecHj(i). (26)

Using Corollary 11 and (26) we have the following

〈ecj , rcj〉N = 〈ecHj , rcSj〉N = 〈ecj , rcj〉NTs
(27)

‖(ecj)N‖2
2 =

1

k2
sj

‖(ecHj)N‖2
2 =

1

Tsk
2
sj

‖(ecj)NTs
‖2
2. (28)

2.4 Lm
2 Stable Power Junction Networks

Fig. 1 depicts m controllers interconnected to n − m
plants using a power junction. It can be shown that this
network will remain Lm

2 -stable when subject to either fixed
delays and/or data dropouts. Furthermore we can show
how to safely handle time varying delays by dropping
duplicate transmissions from the power junction. Refer
to (Kottenstette and Chopra, 2009, Appendix A) for
corresponding definitions or nomenclature.

Theorem 12. For the network controlled system depicted
in Fig. 1, assume all the wave variable communication
time-delays cj(i) = ck(i) = du(i), pj(i) = pk(i) = dv(i)
satisfy any one of the conditions listed in Proposition 7.
Then the system is:

I. Lm
2 -stable if all plants Gpk(epk(t)), k ∈ {m+1, . . . , n}

and all controllers Gcj(fcj(i)), j ∈ {1, . . . ,m} are
strictly-output passive.

II. passive if all plants Gpk(epk(t)), k ∈ {m + 1, . . . , n}
and all controllers Gcj(fcj(i)), j ∈ {1, . . . ,m} are
passive.

A sketch of the proof is provided, a rigorous proof is in
Kottenstette and Chopra (2009). Using Lemma 9 we can
show that

n
∑

k=m+1

〈fpk, rpk〉NTs
+

m
∑

j=1

〈ecj , rcj〉NTs
≥

ǫ[

n
∑

k=m+1

‖(fpk)NTs
‖2
2 +

m
∑

j=1

‖(ecj)NTs
‖2
2] − β (29)

in which ǫ = min(ǫpk,
ǫcj

Tsk2
s
), k ∈ {m + 1, . . . , n} j ∈

{1, . . . ,m} and β =
∑n

k=m+1 βpk +
∑m

j=1 βcj . Thus (29)

satisfies (Kottenstette and Chopra, 2009, Definition 22-
iii) for strictly-output passivity in which the input is the
row vector of all controller and plant inputs [rc1, . . . ,
rcm, rp(m+1), . . . , rpn], and the output is the row vector
of all controller and plant outputs [ec1, . . . , ecm, fp(m+1),

. . . , fpn]. When we let ǫpk = ǫcj = 0 we see that all the
plants and controllers are passive, therefore the system
depicted in Fig. 1 is passive.

2.5 Steady State Response of Networked Control System

It is desired to relate the controller reference inputs {rc1(t)
, . . . , rcm(t)} and plant disturbance inputs {rp(m+1)(t)
, . . . , rpn(t)} to the corresponding controller efforts {ec1(t)



, . . . , ecm(t)} and plant flows {fp(m+1)(t) , . . . , fpn(t)}.
Since our stability results apply to both linear and non-
linear systems we will focus our initial analysis to the
steady-state case limt→∞ fp(m+1)(t). In particular, we de-
termine the steady-state system responses when using ei-
ther the averaging power junction or the consensus power
junction under the following assumptions.

Assumption 13. Each plant, denoted Gpk : epk(t) →
fpk(t) k ∈ {m + 1, . . . , n}, is a single-input-single-output
(SISO) system with a steady-state gain denoted kpk such-
that

fpk(0) = 0, kpk = lim
t→∞

fpk(t)

epk(t)
, epk(t) =

{

0, t < 0

epk, t ≥ 0.

In a similar manner each controller, denoted Gcj : fcj(i) →
ecj(i) j ∈ {1, . . . ,m}, is a SISO system with a steady-state
gain denoted kcj such-that

ecj(0) = 0, kcj = lim
i→∞

ecj(i)

fcj(i)
, fcj(i) =

{

0, i < 0

fcj , i ≥ 0.

Furthermore, for simplicity, all wave variable communica-
tion time-delays ck(i) = du(i) = 1, pk(i) = dv(i) = 1.
To aid with the steady-state analysis we assume for the
PS/PH blocks that

upk(i) =
√

Tsupk(iTs) and (30)

vpk(iTs) =
vpk(i)√

Ts

. (31)

In addition we assume for the IPESH blocks that

rcSj(i) = Tsrcj(iTs) such that

rcj(i) = −ksjTsrcj(iTs) and (32)

ecj(iTs) = ecHj(i) = −ksjecj(i). (33)

Lemma 14. Under the assumptions listed in Assump-
tion 13, the following equations hold for the plants inter-
connected by the power junction control network depicted
in Fig. 1:

upk(i) =
bkpk − 1

bkpk + 1
vpk(i) +

√
Ts2bkpk

bkpk + 1
rpk(iTs) (34)

fpk(iTs) =

√
2bkpk√

Ts(bkpk + 1)
vpk(i) +

kpk

bkpk + 1
rpk(iTs).

(35)

Lemma 15. Under the assumptions listed in Assump-
tion 13, the following equations hold for the controllers
inter-connected by the power junction control network
depicted in Fig. 1:

vcj(i) =
−kcj + b

kcj + b
ucj(i) +

√
2bTskcjksj

kcj + b
rcj(iTs) (36)

ecj(iTs) = −
√

2bkcjksj

kcj + b
ucj(i) +

Tsbkcjk
2
sj

kcj + b
rcj(iTs). (37)

Theorem 16. Under the assumptions listed in Assump-
tion 13, the following state equations can be used to
determine the steady state response of the power junc-
tion control network depicted in Fig. 1 when using the
averaging power junction:

uk(i) =
bkpk − 1

bkpk + 1
vm+1(i − 2) +

√
Ts2bkpk

bkpk + 1
rpk

vj(i) =
−kcj + b

kcj + b
u1(i − 2) +

√
2bTskcjksj

kcj + b
rcj

u1(i − 1) = sfusgn(

n
∑

k=m+1

uk(i − 1))

√

∑n

k=m+1 u2
k(i − 1)

√
m

vm+1(i − 1) = sfvsgn(

m
∑

j=1

vj(i − 1))

√

∑m

j=1 v2
j (i − 1)

√
n − m

.

Likewise the steady-state outputs fpk(iTs) ecj(iTs) are
computed by substituting vpk = vm+1(i− 1) into (35) and
substituting ucj = u1(i − 1) into (37) respectively.

It is a straight forward exercise for the reader to apply
Lemma 14, Lemma 15, Definition 2, and Assumption 13
to verify Theorem 16. For the case of the consensus
junction, a closed form solution can be found as stated
in Theorem 17.

Theorem 17. Consider the case of a single controller and
n − 1 plants. Under the assumptions listed in Assump-
tion 13, using (34), (35), (36) and (37), employing the
consensus power junction, the following steady state equa-
tions hold:

upk(i) =

(

k
∏

l=2

αl

)

β1uc1(i) +

(

k
∏

l=2

αl

)

β2rc1(iTs)

+

k
∑

l=2

(

k
∏

s=l

γs

)

rpl(iTs)

(38)

where αk =
bkpk−1
bkpk+1 , γk =

√
Ts2bkpk

bkpk+1 , β1 = −kc1+b
kc1+b

and

β2 =
√

2bTskc1ks1

kc1+b
and

uc1(i) =
(
∏n

k=2 αk) β2rc1(iTs) +
∑n

k=2 (
∏n

s=k γs) rpk(iTs)

1 − (
∏n

k=2 αk) β1

(39)
The corresponding outputs fpk(iTs) can be obtained by
additionally using (35).

Furthermore, for the special case of a Proportional-Integral
(PI) controller, if bkpk >> 1, ks1 = 1√

Ts
, and all distur-

bances are zero, then fpk(iTs) = rc1(iTs) ∀k.

3. CONCLUSIONS

A constructive method has been presented which allows
the user to construct digital control networks in which
passive plants can be interconnected in a manner such that
Lm

2 -stability is guaranteed. The averaging power junction
creates a highly parallel network. Whereas the consensus
power junction interconnects waves in a series like manner.
The steady-state analysis for the averaging power-junction
predicts consensus when the steady-state gains for every
plant must be the same, and the controllers steady-state
gains must be large. For the consensus power-junction,
consensus is only possible when all bkpk >> 1 and kcj >>
1.
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