
1

DREMS-OS: An Operating System for Managed
Distributed Real-time Embedded Systems

Abhishek Dubey, Gabor Karsai, Aniruddha Gokhale, William Emfinger, Pranav Kumar
ISIS, Dept of EECS, Vanderbilt University, Nashville, TN 37235, USA

Abstract—Distributed real-time and embedded (DRE) systems
executing mixed criticality task sets are increasingly being de-
ployed in mobile and embedded cloud computing platforms,
including space applications. These DRE systems must not only
operate over a range of temporal and spatial scales, but also
require stringent assurances for secure interactions between
the system’s tasks without violating their individual timing
constraints. To address these challenges, this paper describes
a novel distributed operating system focusing on the scheduler
design to support the mixed criticality task sets. Empirical results
from experiments involving a case study of a cluster of satellites
emulated in a laboratory testbed validate our claims.

I. INTRODUCTION

The emerging realm of mobile and embedded cloud com-
puting, which leverages the progress made in computing and
communication on mobile devices and sensors necessitates
a platform for running distributed, real-time, and embedded
(DRE) systems. Ensembles of mobile devices are being used
as a computing resource in space missions as well: satellite
clusters provide a dynamic environment for deploying and
managing distributed mission applications; see, e.g. NASA’s
Edison Demonstration of SmallSat Networks, TanDEM-X,
PROBA-3, and Prisma from ESA, and DARPA’s System F6.

As an example consider a cluster of satellites that execute
software applications distributed across the satellites. One
application is a safety-critical cluster flight application (CFA)
that controls the satellite’s flight and is required to respond to
emergency ’scatter’ commands. Running concurrently with the
CFA, image processing applications (IPA) utilize the satellites’
sensors and consume much of the CPU resources. IPAs
from different vendors may have different security privileges
and so may have controlled access to sensor data. Sensitive
camera data must be compartmentalized and must not be
shared between these IPAs, unless explicitly permitted. These
applications must also be isolated from each other to prevent
performance impact or fault propagation between applications
due to lifecycle changes. However, the isolation should not
waste CPU resources when applications are dormant because,
for example, a sensor is active only in certain segments
of the satellite’s orbit. Other applications should be able to
opportunistically use the CPU during these dormant phases.

One technique for implementing strict application isolation
is temporal and spatial partitioning of processes (see [1]).
Spatial separation provides a physically separated memory
address space for each process. Temporal partitioning provides
a periodically repeating fixed interval of CPU time that is
exclusively assigned to a group of cooperating tasks. Note

that strictly partitioned systems are typically configured with a
static schedule; any change in the schedule requires the system
to be rebooted [1].

To address these needs, we have developed an architecture
called Distributed REaltime Managed System (DREMS) [2].
This paper focuses on the design and implementation of
key components of the operating system layer in DREMS.
It describes the design choices and algorithms used in the
design of the DREMS OS scheduler. The scheduler supports
three criticality levels: critical, application, and best effort.
It supports temporal and spatial partitioning for application-
level tasks. Tasks in a partition are scheduled in a work-
conserving manner. Through a CPU cap mechanism, it also
ensures that no task starves for the CPU. Furthermore, it
allows dynamic reconfiguration of the temporal partitions. We
empirically validated the design in the context of a case study:
a managed DRE system running on a laboratory testbed.

The outline of this paper is as follows: Section II presents
the related research; Section III describes the system model
and delves into the details of the scheduler design; Section IV
empirically evaluates DREMS OS in the context of a rep-
resentative space application; and finally Section V offers
concluding remarks referring to future work.

II. RELATED RESEARCH

Our approach has been inspired by two domains: mixed
criticality systems and partitioning operating systems. A mixed
criticality computing system has two or more criticality levels
on a single shared hardware platform, where the distinct levels
are motivated by safety and/or security concerns. For example,
an avionics system can have safety-critical, mission-critical,
and non-critical tasks.

In [3], Vestal argued that the criticality levels directly
impact the task parameters, especially the worst-case execution
time (WCET). In his framework, each task has a maximum
criticality level and a non-increasing WCET for successively
decreasing criticality levels. For criticality levels higher than
the task maximum, the task is excluded from the analyzed
set of tasks. Thus increasing criticality levels result in a more
conservative verification process. He extended the response-
time analysis of fixed priority scheduling to mixed criticality
task sets. His results were later improved by Baruah et al. [4]
where an implementation was proposed for fixed priority
single processor scheduling of mixed-criticality tasks with
optimal priority assignment and response-time analysis.

Partitioning operating systems have been applied to avionics
(e.g., LynxOS-178 [5]), automotive (e.g., Tresos, the operating



2

P1P2 P3 P1P2 P4 P1P2 P3 P1P2

Hyperperiod

Major frame
Minor frame

Fig. 1: A Major Frame. The four partitions (period,duration) in this frame are
P1 (2s, 0.25s), P2 (2s, 0.25s), P3 (4s, 1s), and P4 (8s, 1.5s).

system defined in AUTOSAR [6]), and cross-industry domains
(DECOS OS [7]). A comparison of the mentioned partition-
ing operating systems can be found in [8]. They provide
applications shared access to critical system resources on an
integrated computing platform. Applications may belong to
different security domains and can have different safety-critical
impact on the system. To avoid unwanted interference between
the applications, reliable protection is guaranteed in both the
spatial and the temporal domain that is achieved by using
partitions on the system level. Spatial partitioning ensures that
an application cannot access another application’s code or data
in memory or on disk. Temporal partitioning guarantees an
application access to the critical system (CPU) resources via
dedicated time intervals regardless of other applications.

Our approach combines mixed-criticality and partitioning
techniques to meet the requirements of secure DRE systems.
DREMS supports multiple levels of criticality, with tasks
being assigned to a single criticality level. For security and
fault isolation reasons, applications are strictly separated by
means of spatial and temporal partitioning, and applications
are required to use a novel secure communication method for
all communications, described in DREMS [9].

Our work has many similarities with the resource-centric
real-time kernel [10] to support real-time requirements of
distributed systems hosting multiple applications. Though
achieved differently, both frameworks use deployment services
for the automatic deployment of distributed applications, and
enforcing resource isolation among applications. However, to
the best of our knowledge, [10] does not include support for
process management, temporal isolation guarantees, partition
management, and secure communication simultaneously.

III. DREMS ARCHITECTURE

DREMS [9], [2], [11] is a distributed system architecture
that consists of one or more computing nodes grouped into a
cluster. It is conceptually similar to the recent Fog Computing
Architecture [12]. Distributed applications, composed from
cooperating processes called actors, provide services for the
end-user. Actors specialize the notion of OS processes; they
have persistent identity that allows them to be transparently
migrated between nodes, and they have strict limits on re-
sources that they can use. Each actor is constructed from one
or more reusable components [13], [11] where each component
is single-threaded.

A. Partitioning Support

The system guarantees spatial isolation between actors by
(a) providing a separate address space for each actor; (b)
enforcing that an I/O device can be accessed by only one

actor at a time; and (c) facilitating temporal isolation between
processes by the scheduler. Spatial isolation is implemented
by the Memory Management Unit of the CPU, while tempo-
ral isolation is provided via ARINC-653 [1] style temporal
partitions, implemented in the OS scheduler.

A temporal partition is characterized by two parameters:
period and duration. The period reflects how often the tasks of
the partition will be guaranteed CPU allocation. The duration
governs the length of the CPU allocation window in each
cycle. Given the period and duration of all temporal partitions,
an execution schedule can be generated by solving a series
of constraints, see [14]. A feasible solution, e.g. Figure 1,
comprises a repeating frame of windows, where each window
is assigned to a partition. These windows are called minor
frames. The length of a window assigned to a partition is
always the same as the duration of that partition. The repeating
frame of minor frames, known as the major frame, has a length
called the hyperperiod. The hyperperiod is the lowest common
multiple of the partition periods.

B. Criticality Levels Supported by the DREMS OS Scheduler

The DREMS OS scheduler has the ability to manage CPU
time for tasks at three different criticality levels: Critical,
Application and Best Effort. The Critical tasks provide kernel
level services and system management services. These tasks
will be scheduled based on their priority whenever they are
ready. Application tasks are mission specific and are isolated
from each other. These tasks are constrained by temporal
partitioning and can be preempted by tasks of the Critical
level. Finally, Best Effort tasks are executed whenever no tasks
of any higher criticality level are available.

Note that actors in an application can have different critical-
ity levels, but all tasks associated with an actor must have the
same criticality level, i.e. an actor cannot have both Critical
tasks and Application tasks.

C. Multiple partitions

To support the different levels of criticality, we extend
the runqueue data structure of the Linux kernel [15]. A
runqueue maintains a list of tasks eligible for scheduling. In
a multicore system, this structure is replicated per CPU. In
a fully preemptive mode, the scheduling decision is made by
evaluating which task should be executed next on a CPU when
an interrupt handler exits, when a system call returns, or when
the scheduler function is explicitly invoked to preempt the
current process. We created one runqueue per temporal parti-
tion per CPU. Currently, the system can support 64 Temporal
partitions, also referred to as Application partitions in the
sequel. One extra runqueue is created for the critical tasks.
These tasks are said to belong to the System partition. The
Best effort tasks are managed through the Linux Completely
Fair Scheduler (default) runqueue and are considered for
execution as part of the System partition when no other tasks
are eligible to run.



3

D. CPU Cap and Work Conserving Behavior

The schedulability of the Application level tasks is con-
strained by the current load coming from the Critical tasks and
the temporal partitioning used on the Application level. Should
the load of the Critical tasks exceed a threshold the system
will not be able to schedule tasks on the Application level. A
formal analysis of the response-time of the Application level
tasks will not be provided in this paper, however, we present a
description of the method we will use to address the analysis
which will build on available results from [4], [16], [17].

The submitted load function Hi(t) determines the maximum
load submitted to a partition by the task τi itself after its
release together with all higher priority tasks belonging to
the same partition. The availability function AS(t) returns for
each time instant the cumulative computation time available
for the partition to execute tasks. In the original model [16]
AS(t) is the availability function of a periodic server. The
response-time of a task τi is the time when Hi(t) intersects
the availability function AS(t) for the first time. In our system
AS(t) is decreased by the load of the available Critical tasks
which, if unbounded, could block the application level tasks
forever. This motivates us to enforce a bound on the load of
the Critical tasks. This bound is referred to as CPU cap.

In DREMS OS, the CPU cap can be applied to tasks on the
Critical and Application level to provide scheduling fairness
within a partition or hyperperiod. Between criticality levels,
the CPU cap provides the ability to prevent higher criticality
tasks from starving lower criticality tasks of the CPU. On the
Application level, the CPU cap can be used to bound the CPU
consumption of higher priority tasks to allow the execution of
lower priority tasks inside the same partition. If the CPU cap
enforcement is enabled, then it is possible to set a maximum
CPU time that a task can use, measured over a configurable
number of major frame cycles.

The CPU cap is enforced in a work conserving manner,
i.e., if a task has reached its CPU cap but there are no other
available tasks, the scheduler will continue scheduling the task
past its ceiling. In case of Critical tasks, when the CPU cap
is reached, the task is not marked ready for execution unless
(a) there is no other ready task in the system; or (b) the CPU
cap accounting is reset. This behavior ensures that the kernel
tasks, such as those belonging to network communication, do
not overload the system, for example in a denial-of-service
attack. For the tasks on the Application level, the CPU cap is
specified as a percentage of the total duration of the partition,
the number of major frames, and the number of CPU cores
available all multiplied together. When an Application task
reaches the CPU cap, it is not eligible to be scheduled again
unless the following is true: either (a) there are no Critical
tasks to schedule and there are no other ready tasks in the
partition; or (b) the CPU cap accounting has been reset.

E. Dynamic Major Frame Configuration

During the configuration process that can be repeated at any
time without rebooting the node, the kernel receives the major
frame structure that contains a list of minor frames and it also
contains the length of the hyperperiod, partition periodicity,

and duration. Note that major frame reconfiguration can only
be performed by an actor with suitable capabilities. More
details on the DREMS capability model can be found in [9].

Before the frames are set up, the process configuring the
frame has to ensure that the following three constraints are
met: (C0) The hyperperiod must be the least common multiple
of partition periods; (C1) The offset between the major frame
start and the first minor frame of a partition must be less
than or equal to the partition period: (∀p ∈ P)(Op

1 ≤ φ(p));
(C2) Time between any two executions should be equal to
the partition period: (∀p ∈ P)(k ∈ [1, N(p) − 1])(Op

k+1 =
Op

k + φ(p)), where P is the set of all partitions, N(p) is the
number of partitions, φ(p) is the period of partition p and
∆(p) is the duration of the partition p. Op

i is the offset of ith

minor frame for partition p from the start of the major frame,
H is the hyperperiod.

The kernel checks two additional constraints: (1) All
minor frames finish before the end of the hyperperiod:
(∀i)(Oi.start + Oi.duration ≤ H) and (2) minor frames
cannot overlap, i.e. given a sorted minor frame list (based on
their offsets): (∀i < N(O))(Oi.start+Oi.duration ≤ Oi+1),
where N(O) is the number of minor frames. Note that the
minor frames need not be contiguous, as the update procedure
fills in any gaps automatically.

If the constraints are satisfied, then the task is moved to the
first core, CPU0 if it is not already on CPU0. This is done
because the global tick (explained in next subsection) used for
implementing the major frame schedule is also executed on
CPU0. By moving the task to CPU0 and disabling interrupts,
the scheduler ensures that the current frame is not changed
while the major frame is being updated. At this point the
task also obtains a spin lock to ensure that no other task can
update the major frame at the same time. In this procedure the
scheduler state is also set to APP_INACTIVE (see Table I), to
stop the scheduling of all application tasks across other cores.
The main scheduling loop reads the scheduler state before
scheduling application tasks. A scenario showing dynamic
reconfiguration can be seen in Figure 2.

TABLE I: The states of the DREMS Scheduler

APP_INACTIVE Tasks in temporal partitions are not run
APP_ACTIVE Inverse of APP_INACTIVE

It is also possible to set the global tick (that counts the
hyperperiods) to be started with an offset. This delay can
be used to synchronize the start of the hyperperiods across
nodes of the cluster. This is necessary to ensure that all
nodes schedule related temporal partitions at the same time.
This ensures that for an application that is distributed across
multiple nodes, its Application level tasks run at approximately
the same time on all the nodes which enables low latency
communication between dependent tasks across the node level.

F. Main Scheduling Loop

A periodic tick running at 250 Hz1 is used to ensure that a
scheduling decision is triggered at least every 4 ms. This tick

1The kernel tick value is also called ’jiffy’ and can be set to a different
value when the kernel image is compiled



4

Fig. 2: Two single-threaded processes run in separate partitions with a
duration of 60ms each. The schedule is dynamically reconfigured so that
each partition duration is doubled. A Critical task is responsible for calling
the update_major_frame system call. Duration of the active partition is cut
short at the point when update_major_frame function is called.

runs with the base clock of CPU0 and executes a procedure
called GlobalT ick in the interrupt context only on CPU0. This
procedure enforces the partition scheduling and updates the
current minor frame and hyperperiod start time (HP_start).
The partition schedule is determined by a circular linked list
of minor frames which comprise the major frame. Each entry
in this list contains that partition’s duration, so the scheduler
can easily calculate when to switch to the next minor frame.

After the global tick handles the partition switching, the
function to get the next runnable task is invoked. This function
combines the mixed criticality scheduling with the temporal
partition scheduling. For mixed criticality scheduling, the
Critical system tasks should preempt the Application tasks,
which themselves should preempt the Best Effort tasks. This
policy is implemented by Pick_Next_Task subroutine, which
is called first for the system partition. Only if there are no
runnable Critical system tasks and the scheduler state is not
inactive, i.e. the application partitions are allowed to run2, will
Pick_Next_Task be called for the Application tasks. Thus, the
scheduler does not schedule any Application tasks during a
major frame reconfiguration. Similarly Pick_Next_Task will
only be called for the Best Effort tasks if there are both no
runnable Critical tasks and no runnable Application tasks.

G. Pick_Next_Task and CPU Cap

The Pick_Next_Task function returns either the highest
priority task from the current temporal partition (or the system
partition, as application) or an empty list of there are no
runnable tasks. If CPU cap is disabled, the Pick_Next_Task
algorithm returns the first task from the specified runqueue. For
the best effort class, the default algorithm for the Completely
Fair Scheduler policy in the Linux Kernel [18] is used.

If the CPU cap is enabled, the Pick_Next_Task algorithm
iterates through the task list at the highest priority index of
the runqueue, because unlike the Linux scheduler, the tasks
may have had their disabled bit set by the scheduler if it
had enforced their CPU cap. If the algorithm finds a disabled

2The OS provides support for pausing all application partitions and ensuring
that only system partition is executed

Fig. 3: Single Threaded processes 1000 and 1001 share a partition with a
duration of 60ms. Process 1000 has 100% CPU cap and priority 70; process
1001 has 20% CPU cap, and higher priority 72. Since process 1001 has a CPU
cap less than 100%, a ceiling is calculated for this process: 20% of 60ms
= 12ms. The average jitter was calculated to be 2.136 ms with a maximum
jitter of 4.0001 ms.

task in the task list, it checks to see when it was disabled;
if the task was disabled in the previous CPU cap window, it
reenables the task and sets it as the next_task. If, however,
the task was disabled in the current CPU cap window, the
algorithm continues iterating through the task list until it finds
a task which is enabled. If the algorithm finds no enabled task,
it returns the first task from the list if the current runqueue
belongs to an application partition.

This iteration through the task list when CPU cap enforce-
ment is enabled increases the complexity of the scheduling
algorithm to O(n), where n is the number of tasks in that tem-
poral partition, compared to the Linux scheduler’s complexity
of O(1). Note that this complexity is incurred when CPU cap
enforcement is enabled and there is at least one actor that has
partial CPU cap (less than 100%). In the worst case, if all
actors are given a partial CPU cap, the scheduler performance
may degrade necessitating more efficient data structures.

To complete the enforcement of the CPU cap, the scheduler
updates the statistics tracked about the task and then updates
the disabled bit of the task accordingly. Figure 3, shows the
above mentioned scheduler decisions when CPU cap is placed
on processes that share a temporal partition. To facilitate
analysis, the scheduler uses a logging framework that updates
a log every time a context switch happens. Figure 3 clearly
shows the lower priority actor executing after the higher
priority actor has reached its CPU cap.

IV. EXPERIMENT: A 3-NODE SATELLITE CLUSTER

To demonstrate the DREMS platform, a multi-computing
node experiment was created on a cluster of fanless computing
nodes with a 1.6 GHz Intel Atom N270 processor and 1 GB
of RAM each. On these nodes, a cluster of three satellites
was emulated and each satellite ran the example applications
described in Section I. Because the performance of the cluster
flight control application is of interest, we explain the interac-
tions between its actors below.

The mission-critical cluster flight application (CFA) (Figure
5) consists of four actors: OrbitalMaintenance, Trajectory-
Planning, CommandProxy, and ModuleProxy. ModuleProxy



5

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
La

te
n

cy
 (

s)
 

Cluster Emergency Response Latency 

Satellite 1

Satellite 2

Satellite 3

SCENARIO 1 
Hyperperperiod = 250 ms 
Application code utilization < 100 % 
Sat 1 Latency : (𝜇 =37.2,𝜎2 =0.19) ms 
Sat 2 Latency : (𝜇 =34.6, 𝜎2 =0.18) ms 
Sat 3 Latency : (𝜇 =33.9, 𝜎2 =0.18) ms 

SCENARIO 2 
Hyperperperiod = 250 ms 
Application code utilization = 100 % 
Sat 1 Latency : (𝜇 =39.1, 𝜎2 =0.14) ms 
Sat 2 Latency : (𝜇 =37.9, 𝜎2 =0.16) ms 
Sat 3 Latency : (𝜇 =37.4, 𝜎2 =0.16) ms 

SCENARIO 3 
Hyperperperiod = 100 ms 
Application code utilization = 100 % 
Sat 1 Latency : (𝜇 =36.3, 𝜎2 =0.14) ms 
Sat 2 Latency : (𝜇 =36.5, 𝜎2 =0.14) ms 
Sat 3 Latency : (𝜇 =36.5, 𝜎2 =0.14) ms 

(a) This is the time between reception of the scatter command by satellite 1 and the activation of the thrusters on each satellite,
corresponding to interactions CommandProxy to ModuleProxy. The three regions of the plot indicate the three scenarios: (1)
image processing application has limited use of its partitions and has a hyperperiod of 250 ms, (2) image processing application
has full use of its partitions and has a hyperperiod of 250 ms, and (3) image processing application has full use of its partitions
and has a hyperperiod of 100 ms. The averages and variances for the satellites’ latencies are shown for each of the three
scenarios.

(b) The engine activation following reception of a scatter command is annotated for the relevant actors for scenario 2 shown
above. The scatter command causes the TrajectoryPlanning to request ModuleProxy to activate the thrusters for 500 ms. Notice
that the image processing does not run while the mission-critical tasks are executing - without halting the partition scheduling.
Also note that the context switching during the execution of the critical tasks is the execution of the secure transport kernel
thread. Only the application tasks are shown in the log; the kernel threads and other background processes are left out for
clarity.

Fig. 4: DREMS Mixed Criticality Demo

connects to the Orbiter space flight simulator (http://orbit.
medphys.ucl.ac.uk/) that simulates the satellite hardware and
orbital mechanics for the three satellites in low Earth orbit.
CommandProxy receives commands from the ground network.
OrbitalMaintenance keeps track of every satellite’s position
and updates the cluster with its current position. This is
done by a group publish subcribe interaction between all
OrbitalMaintenance actors across all nodes.

Additionally, four image processing application (IPA) actors
(one actor per application instance) are deployed as application

tasks. The IPA design allows the percentage of CPU cycles
consumed by them to be configurable. The four IPAs are
assigned to two partitions, such that each partition contains
two IPA actors. A third, shorter, partition runs the Orbital-
Maintenance actor; since it is a periodic task, it updates the
satellite state every second and is not critical in an emergency.

Figures 4a and 4b show the results from three different
scenarios: 1) hyperperiod of 250 ms, with IPA consuming less
than 50 percent CPU. 2) hyperperiod of 250 ms, with IPA
consuming 100 percent CPU and 3) hyperperiod of 100 ms,



6

M1
1 O1

1 O2
1

M1
2 O1

2 O2
2

M1
3 O1

3 O2
3

C1
1 T1

1 T2
1 M2

1

C1
2 T1

2 T2
2 M2

2

C1
3 T1

3 T2
3 M2

3

Task Actor Activity
M1

ModuleProxy
Inform O1 of new state

M2 Activate engine
O1

OrbitalMaintenance
Publish new state

O2 Subscribe to new state
T 1

TrajectoryP lanning
Publish new command

T 2 Subscribe to new command
C1 CommandProxy Inform T 1 of command

Fig. 5: DREMS tasks : ModuleProxy tasks control thruster activation in
Orbiter and state vector retrieval from Orbiter. OrbitalMantenance tasks track
the cluster satellites’ state vectors and disseminate them. TrajectoryPlanning
tasks control the response to commands and satellite thruster activation.
CommandProxy tasks inform the satellite of a command from the ground
network. For these tasks, the subscript represents the node ID on which the
task is deployed. The total latency of the interaction C1

1 → M2
N represents

the total emergency response latency between receiving the scatter command
and activating the thrusters. This interaction pathway is shown in bold.

with IPA consuming 100 percent CPU. As shown in figure 4a,
the emergency response latency over the three nodes was quite
low with very little variance, and did not correlate with either
the image application’s CPU utilization or the application’s
partition schedule. Since we show that the emergency response
has very low latency with little variance between different
application loads on the system, we provide a stable platform
for deterministic and reliable emergency response. As such,
the satellite cluster running the DREMS infrastructure is able
to quickly respond to emergency situations despite high appli-
cation CPU load and without altering the partition scheduling.
Figure 4b demonstrates the proper preemption of the image
processing tasks by the critical CFA tasks for scenario 2.

V. CONCLUSIONS AND FUTURE WORK

This paper propounds the notion of managed distributed
real-time and embedded (DRE) systems that are deployed in
mobile computing environments. To that end, we described
the design and implementation of a distributed operating
system called DREMS OS focusing on a key mechanism:
the scheduler. We have verified the behavioral properties of
the OS scheduler, focusing on temporal and spatial process
isolation, safe operation with mixed criticality, precise control
of process CPU utilization and dynamic partition schedule re-
configuration. We have also analyzed the scheduler properties
of a distributed application built entirely using this platform
and hosted on an emulated cluster of satellites.

We are extending this operating system to build an
open-source FACEtm Operating System Segment [19], called

COSMOS (Common Operating System for Modular Open
Systems). To the best of our knowledge this is the first open
source implementation of its kind that provides both ARINC-
653 and POSIX partitions.

Acknowledgments: This work was supported by the
DARPA under contract NNA11AC08C. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views
of DARPA.

REFERENCES

[1] Document No. 653: Avionics Application Software Standard Inteface
(Draft 15), ARINC Incorporated, Annapolis, Maryland, USA, Jan. 1997.

[2] G. Karsai, D. Balasubramanian, A. Dubey, and W. R. Otte, “Distributed
and managed: Research challenges and opportunities of the next gener-
ation cyber-physical systems,” in 2014 IEEE 17th International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed
Computing, June 2014, pp. 1–8.

[3] S. Vestal, “Preemptive Scheduling of Multi-Criticality Systems with
Varying Degrees of Execution Time Assurance,” in Proc. of 28th IEEE
Real-Time Systems Symposium, Tucson, AZ, Dec. 2007, pp. 239–243.

[4] S. Baruah, A. Burns, and R. Davis, “Response-Time Analysis for Mixed-
Criticality Systems,” in Proceedings of the 2011 32nd IEEE Real-Time
Systems Symposium, Vienna, Austria, Nov. 2011, pp. 34–43.

[5] LynuxWorks, “RTOS for Software Certification: LynxOS-178.” [Online].
Available: http://www.lynuxworks.com/rtos/rtos-178.php

[6] Autosar GbR, “AUTomotive Open System ARchitecture,” http:
//www.autosar.org/. [Online]. Available: http://www.autosar.org/

[7] R. Obermaisser, P. Peti, B. Huber, and C. E. Salloum, “DECOS:
An Integrated Time-Triggered Architecture,” e&i journal (Journal of
the Austrian Professional Institution for Electrical and Information
Engineering), vol. 123, no. 3, pp. 83–95, Mar. 2006.

[8] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber, “A Comparison
of Partitioning Operating Systems for Integrated Systems,” in Computer
Safety, Reliability and Security, ser. Lecture Notes in Computer Science.
Springer, 2007, vol. 4680/2007, pp. 342–355.

[9] A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, W. Otte, J. Parsons,
C. Szabo, A. Coglio, E. Smith, and P. Bose, “A Software Platform
for Fractionated Spacecraft,” in Proceedings of the IEEE Aerospace
Conference, 2012. Big Sky, MT, USA: IEEE, Mar. 2012, pp. 1–20.

[10] K. Lakshmanan and R. Rajkumar, “Distributed Resource Kernels: OS
Suppport for End-To-End Resource Isolation ,” in Proceedings of the
2008 IEEE Real-Time and Embedded Technology and Applications
Symposium, St. Louis, MO, Apr. 2008, pp. 195–204.

[11] S. Eisele, I. Madari, A. Dubey, and G. Karsai, “Riaps:resilient informa-
tion architecture platform for decentralized smart systems,” in 20th IEEE
International Symposium On Real-Time Computing, IEEE. Toronto,
Canada: IEEE, 05/2017 2017.

[12] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 27–32,
2014.

[13] W. R. Otte, A. Dubey, S. Pradhan, P. Patil, A. Gokhale, G. Karsai, and
J. Willemsen, “F6COM: A Component Model for Resource-Constrained
and Dynamic Space-Based Computing Environment,” in Proceedings of
the 16th IEEE International Symposium on Object-oriented Real-time
Distributed Computing (ISORC ’13), Paderborn, Germany, Jun. 2013.

[14] A. Dubey, G. Karsai, and N. Mahadevan, “A Component Model for
Hard Real-time Systems: CCM with ARINC-653,” Software: Practice
and Experience, vol. 41, no. 12, pp. 1517–1550, 2011.

[15] A. Garg, “Real-time linux kernel scheduler,” Linux Journal, vol. 2009,
no. 184, p. 2, 2009.

[16] L. Almeida and P. Pedreiras, “Scheduling within Temporal Partitions:
Response-time Analysis and Server Design,” in Proc. of the 4th ACM
Int Conf on Embedded Software, Pisa, Italy, Sep. 2004, pp. 95–103.

[17] G. Lipari and E. Bini, “A Methodology for Designing Hierarchical
Scheduling Systems,” Journal of Embedded Computing, vol. 1, no. 2,
pp. 257–269, Apr. 2005.

[18] W. Mauerer, Professional Linux Kernel Architecture, ser. Wrox
professional guides. Wiley, 2008. [Online]. Available: http://books.
google.com/books?id=4eCr9dr0uaYC

[19] OpenGroup. [Online]. Available: http://www.opengroup.org/face


