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CHAPTER I

INTRODUCTION

The revolutionary new technology of wireless sensor networks has opened a wide

area of exciting and powerful applications that will connect the cyber-world more

intimately with the real world. A wireless sensor network consists of a large number of

small-scale, resource-constrained computing nodes, outfitted with sensors and linked

together by radios that form a perceptive network that is able to monitor an ecosystem

or detect a specific phenomenon [6]. Although these smart sensors have limited power,

communication and processing capabilities, an assembly of hundreds of them can

spontaneously organize into an ad hoc perceptive network that is spread throughout

the physical world and is able to perform tasks no ordinary computer system could.

Wireless sensor networks have a middleware system whose main purpose is to

support the deployment, execution and maintenance of sensing applications. Römer

[20] notes that the scope and functionality of a middleware system for WSN includes,

but is not limited to, “mechanisms for formulating complex high-level sensing tasks,

communicating this task to the WSN, coordination of sensor nodes to split the task

and distribute it to the individual sensor nodes, data fusion for merging the sensor

readings of the individual sensor nodes into a high-level result, and reporting the

result back to the task issuer. Moreover, appropriate abstractions and mechanisms

for dealing with the heterogeneity of sensor nodes should be provided. All mechanisms

provided by a middleware system should accommodate special characteristics of WSN,

which mostly boils down to energy efficiency, robustness, and scalability”.
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Node Localization

This thesis describes a middleware service called node localization and presents a

new method for node localization. Node localization, also known as self-localization, is

the problem of localizing physical sensor nodes in a given sensor network deployment.

Localization is an essential tool for the deployment of low-cost sensor networks for

use in location-aware applications [27, 33, 24] and ubiquitous networking [7, 19]. In

a typical sensor network application each sensor node monitors and gathers local

information. This local information has significance if it can be tied to the physical

location it belongs to. For example in a habitat monitoring application a temperature

or humidity measurement by a smart sensor doesn’t provide the complete information

but once combined with the physical location of the sensor, the measurements can be

used to build a temperature or humidity map of the local region. In location-critical

applications, such as shooter-localization, sub-meter accuracy of 3D node locations is

an absolute necessity for the correct operation of the system [12].

Localization can be either range-free [34] or range-based. Range-free localization

techniques provide rough estimates of node positions only. Ranging methods for

range-based localization fall into two main classes: acoustic and radio signal strength-

based. The latter requires extensive calibration, yet it still achieves low accuracy and

limited range. Acoustic ranging has relatively high accuracy, but short range. The

main reasons are the limited acoustic energy a sensor node can emit and the relatively

high environmental noise. Having a speaker or sounder on every node adds size and

cost also. When stealthy operation is required, only ultrasound can be used. But

ultrasonic ranging has even more limited range and directionality constraints.

Sensor Network Deployment

There are many sensor network deployment scenarios suggested for practical and

useful application. Simple but impractical deployment schemes include manually
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placing the nodes on specified locations or random deployment of nodes in a rec-

tangular grid. We propose a new practical sensor network deployment scenario with

many favorable characteristics in numerous application areas is the dispersal of sensor

nodes from a low-flying unmanned aerial vehicle (UAV) platform. An acoustic beacon

mounted on the aircraft can send a radio message followed by an acoustic signal at

random intervals. All the nearby sensor nodes can estimate their distance from the

beacon by measuring the time-of-flight of the sound. As size and power are not as

big constraints on a UAV as on a sensor node, the maximum range can be signifi-

cantly increased by increasing the size and power of the sound source. Furthermore,

the nodes do not reveal their positions since they are only passive listeners in this

scenario.

In general the node localization problem can be defined as finding physical loca-

tions of sensor nodes in a given network deployment scenario. This work redefines

the self-localization problem for our network deployment scheme as finding the sensor

node locations given only the distance measurements between unknown mobile bea-

con transmission locations and the sensor nodes. Neither the mobile beacon positions

nor the sensor nodes themselves are located necessarily on a plane. Therefore, the

localization problem needs to be solved in 3D. In complex environments sensor nodes

might not have direct line-of-sight with mobile beacon but they receive the signal via

multipath propagation. These multipaths cause ambiguity in ranging data and pro-

duce false results. To our knowledge, no solutions exist in the literature that handles

multipath effects in 3D environment. For urban deployments this problem needs to

be addressed as well.

The main contribution of this work is the localization algorithm based on the

novel idea of a mobile beacon and its ability to handle multipath effects. The ranging

method is based on the time-of-flight measurement of an acoustic signal emitted

by a single beacon from multiple locations. The acoustic signal used is a linear
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frequency modulated (chirp) signal, that can be identified with high accuracy by

matched filtering at the sensors even at low SNR. Self localization is modeled as a

non-linear optimization problem where node locations are the optimization variables

and distance equations involving node locations are non-linear objective functions.

The localization algorithm is both iterative and incremental. At each iteration a part

of the sensor network is selected, localized and evaluated. It is incremental because

at each iteration the part of sensor network selected will grow around the previously

localized nodes. This method is a generalization of iterative localization algorithms

where node location is improved at each iteration.

The document is organized as follows. Chapter I provides motivation, brief in-

troduction and challenges in node localization. Chapter II introduces two interesting

sensor network applications that require node localization. Related research work in

self localization is summarized in chapter III. Chapter IV presents the novel acoustic

ranging method used in this work. Formal problem definitions and mathematical tool

definitions are presented in chapter V. In Chapter VI we present the main localization

algorithm in detail. The implementation and evaluation of localization technique is

provided in chapter VII. Chapter VIII concludes this document with a discussion on

the significance of deployment strategy and localization algorithm presented in this

thesis.
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CHAPTER II

APPLICATIONS

Current and potential application areas for wireless sensor networks include habi-

tat monitoring, geophysical monitoring, precision agriculture, military systems, sur-

veillance systems, traffic monitoring, business processes management, smart building

management, and in the future, possibly smart homes for everybody.

Two very interesting applications are described in this chapter. The first one is

that of habitat monitoring of Great Duck Island off the coast of Maine designed by

University of California at Berkeley [1], and the second is a countersniper system

designed and developed at Vanderbilt University [12].

Habitat Monitoring

In fragile habitats, such as a small island, human intervention for observation and

data gathering can adversely affect the small ecosystem. Sensor networks provide

non-invasive methods of observation of such fragile ecosystems. Sensor networks also

enable life science researchers to observe and monitor habitats that are not easily

accessible to humans.

Sensor nodes with weather sensor boards were deployed in the observation area

and their location were recorded. The weather sensor boards had temperature, light,

barometric pressure, humidity and passive infrared sensors. The data recorded by

sensors would be transmitted to the base-station. Base-stations would transfer the

data over network to data storage or client data processing units. In this way sensor

networks allow clients to remotely monitor the habitat. Figure II.1 [1] shows the

system architecture for habitat monitoring.
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Figure II.1: System architecture for habitat monitoring

Shooter Localization

Countersniper systems are important tools for armed forces and law enforcement

agencies. Many systems have been developed in the past but only a few can meet the

requirements in complex environment as urban terrain. Simon [12] notes that “the

main problems degrading the performance of these systems are the poor coverage due

to the shading effect of the buildings and the presence of multipath effects”.

Several physical phenomenon associated with shot firing can be used for shooter

localization. The most obvious acoustic event due to firing of a conventional weapon

is the muzzle blast. The countersniper system in [12] utilizes this muzzle blast and

the shockwave generated by the supersonic bullet to localize the shooter. Figure

II.2 [12] shows the simplified geometry of the bullet trajectory and the associated

muzzle blast and shockwave fronts. The muzzle blast produces a spherical wave

front, traveling at the speed of sound (vs) from the muzzle (A) to the sensor (S). The

shock wave is generated in every point of the trajectory of the supersonic projectile

producing a cone-shaped wave front, assuming the speed of the projectile is constant
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Figure II.2: Muzzle blast and shock wave

vB. The shockwave reaching sensor S was generated in point X. The angle of the

shockwave cone is determined by the speed of the projectile. The sensor nodes detect

and measure the time of arrival (TOA) of shockwaves and muzzle blasts. The system

then utilizes the measurements to localize the source of muzzle blast.

It is crucial to have accurate sensor node locations for the correct and accurate op-

eration of shooter localization application described above. The shooter-localization

application localizes the shooter based on the TOA of muzzle blast and shockwaves

and the locations of the sensor nodes that detect muzzle blast. The errors in sensor

node locations are propagated to the shooter localization errors. A more detailed il-

lustration of effect of node location errors on shooter location error is given in chapter

V.
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CHAPTER III

EXISTING LOCALIZATION TECHNOLOGIES

Self localization, due to its importance in sensor network applications, has been

an active research area for the past few years. An early survey of localization systems

in presented by Hightower and Boriello in [14]. Many of these systems adopt a simple

connectivity based ranging approach, while some of them further refine range esti-

mates between node pairs by measuring the received radio signal strength. However,

RSS based ranging requires extensive calibration and still yields inaccurate range es-

timates [22] resulting in coarse localization. A number of recent localization systems

use acoustic time of flight for ranging. The calibration required for acoustic ranging

is minimal. The localization system presented in this work uses acoustic ranging.

One of the earliest and most popular localization systems is GPS or Global Po-

sitioning System [13]. GPS was designed by and is controlled by the United States

Department of Defense. GPS is a satellite navigation system used for global outdoor

localization and providing highly accurate global time reference, which is useful, for

example, in military operations. The project, started in 1978, uses a multi-million

dollar infrastructure of 52 GPS satellites, the latest of which was launched in 2004.

Despite the popularity and easy accessibility of GPS receivers they are not suitable

for localization in wireless sensor networks. The reasons for this are the cost factor,

power consumption and the localization accuracy. Even the best GPS receivers do

not claim more than 2-3 meter resolution and can have up to 10-20 meter localization

error. This accuracy is acceptable for applications like vehicle navigation or landmark

localization but it is not sufficient for many sensor network applications.
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Radio Connectivity and Hop Based Ranging

Many localization algorithms are based on simple circular radio connectivity model

[8]. In this approach the radio transmitter is sitting at the center of the circular region

and all nodes within this region are considered connected to the transmitter. This

model is very simple and doesn’t require any special ranging infrastructure. The

network routing infrastructure can be used for radio connectivity based ranging. The

localization systems that are based on this approach are [28, 10]. There are several

problems with ranging based on radio connectivity. Asymmetries in the environment

or in the antenna’s orientation can affect radio connectivity. Furthermore, the radio

ranges show probabilistic behavior i.e. two radio nodes are connected with some

probability. This link quality is illustrated in Figure III.1 [8]. Apart from the problem

Figure III.1: Radio connectivity over distance

of being probably connected links there are two more issues with this approach. Even

if two radio nodes are connected to a transmitter, the model is insufficient to tell

9



which node is closer. Finally, many pairs whose connectivity falls near the boundary

will oscillate between being connected and disconnected.

A simple connectivity-based localization system by Bulushu [28] employs a grid

of reference nodes with overlapping regions. Unknown nodes localize themselves to

the centroid of their proximate reference nodes. The accuracy of localization is then

dependent on the separation distance between two adjacent reference nodes and the

transmission range of these reference nodes. Experiments show localization accuracy

of about one third of separation distance between reference nodes.

Niculescu and Nath [10] proposed a distributed hop by hop localization algorithm

called APS (Ad hoc Positioning System). The idea here was to propagate the anchor

node location information in the network. Nodes with unknown location note the

shortest hop count to each of the anchor nodes and multiply this with an average hop

distance to get an approximate distance to each of the anchor nodes. Nodes can then

perform triangulation to get an estimate of their locations. They describe three differ-

ent propagation methods, DV-Hop, DV-distance and Euclidean propagation methods,

each providing different tradeoff between accuracy, signaling complexity, coverage and

isotropy of the network. Typical location errors were of the order of 20 − 150% of

radio range.

Doherty [21] formulated self localization as a geometric constraint feasibility prob-

lem based on node connectivity. The problem was formulated as, given anchor node

locations find a possible position for each unknown node subjected to the proximity

constraints between node pairs imposed by known connections. The problem was

solved using convex optimization. Additionally, rectangular bounds on node posi-

tions were used for tighter geometric constraints. Doherty noted that provided tight

enough geometric constraints, simulations show that the node estimates become close

to actual node locations. For sensor network of 200 nodes in a 10×10 R region, where
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R was the maximum range. The simulations show that the mean location errors were

1− 9 R for different anchor nodes ratios.

Radio Signal Strength Based Ranging

Several localization systems use received radio signal strength to estimate ranges

between transmitter and receiver. Recent research projects in ad-hoc localization

using signal strength are SpotON [15] and AHLoS [4] among others. For a symmetric

transmitting antenna in a near-ideal environment signal strength at a receiver with

distance r from a transmitter can be described by RADAR equation,

Pr =
PtGtAr

4πR2
(III.1)

where Pr is the received power, Pt is the transmit power, Gt is antenna gain, Ar is

the effective receiver area and R is the distance between transmitter and receiver.

Since receiver area Ar is constant, signal strength is effectively inversely proportional

to square of the distance. This simple radio signal strength model is unreliable in

complex indoor or urban environments due to obstacles and reflections. Figure III.2

[11] shows the observed mean and standard deviation of signal strength with distance

in a near-ideal environment i.e. outdoor field.

Savarese [5] follows two phase localization algorithm,, containing a start-up and

a refinement phase. The start-up phase utilizes the hop-TERRAIN algorithm which

is similar to DV-hop [10]. The hop-TERRAIN algorithm finds the number of hops

from a node to each anchor nodes and then multiplies this hop count by an average

hop distance to estimate the range from anchors. The nodes with distances from

anchors and known anchor location triangulate their estimated position. The second

stage called the refinement is an iterative algorithmic step that uses the ranges and the

location estimates from hop-TERRAIN phase. Refinement updates the node positions
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Figure III.2: Radio signal strength

in a number of steps. Savarese [5] also introduces a crude notion of confidence value,

a metric for the quality of location estimate.

Savvides [3] solves for unknown node position estimates by setting up a global non-

linear optimization problem and solving it using iterative least-squares. The method

requires the known beacons to surround the unknown nodes, which the author calls

beacon-unknown node convexity. However, this topology constraint is hard to satisfy

with airborne deployment of sensor nodes in hostile urban areas.

Acoustic Time of Flight Based Ranging

The ranging techniques based on time of flight (TOF) measurements of signals

provide better results that are sufficient for fine-grained localization [18]. RF time of

flight based techniques, like GPS, have limited applicability in sensor networks. Much

better ranging results can be achieved when acoustic and RF signals are combined

[22, 2]. Recently, several localization methods have been proposed that utilize distance
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estimates using time-of-flight measurements [32, 2, 30]. Acoustic signals, however,

are temperature dependent and require an unobstructed line of sight. In a typical

indoor or urban environment non-line of sight range measurements, or multi-paths

produce false ranges that are difficult to separate from good ranges. Also, the ratio of

multi-paths to line-of-sight range measurements is considerable, thus any algorithm

localizing nodes in such scenarios has to consider multi-path propagation.

Cricket [30, 31] is an indoor location support system for pervasive and sensor-

based computing applications. Cricket is intended for use indoors or in urban areas

where outdoor systems like the Global Positioning System (GPS) don’t work well.

Cricket uses a combination of RF and ultrasound to provide a location-support ser-

vice to users and applications. Wall and ceiling-mounted beacons are spread through

the building, publishing location information on an RF signal. With each RF adver-

tisement, the beacon transmits a concurrent ultrasonic pulse. The listeners receive

these RF and ultrasonic signals, correlate them to each other, estimate distances to

the different beacons using the difference in RF and ultrasonic signal propagation

times, and therefore infer the space they are currently in.

We use acoustic time of flight based ranging developed at Vanderbilt University

[18] in our localization system. It is described in detail in section IV.

There are few approaches that deal with multi-path propagation. One such ap-

proach for two dimensions is presented by Moore [9]. It identifies multi-paths as

geometric impossibilities. Moore et. al. formulated node localization as a two-

dimensional graph realization problem. They identified that due to insufficient or

noisy data there could be ambiguity or uncertainty in node positions. The two types

of ambiguities in a graph that prevent unique realization are flip and flex ambiguities

as shown in Figure III.3[9]. As defined in [9], “Flip ambiguities (Figure III.3a) occur

for a graph in a d-dimensional space when the positions of all neighbors of some ver-

tex span a (d− 1)-dimensional subspace. In this case, the neighbors create a mirror
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Figure III.3: (a) Flip ambiguity. Vertex A can be reflected across the line connecting
B and C with no change in the distance constraints. (b) Discontinuous flex ambiguity.
If edge AD is removed, then reinserted, the graph can flex in the direction of the arrow,
taking on a different configuration but exactly preserving all distance constraints.

through which the vertex can be reflected. Discontinuous flex ambiguities (Figure

III.3b) occur when the removal of one edge will allow part of the graph to be flexed

to a different configuration and the removed edge reinserted with the same length”.

They introduce the concept of robust quadrilaterals to overcome these ambiguities.

In terms of graph theory a robust quadrilateral is a set of four fully-connected nodes

that are unique up to a global rotation, translation and reflection, i.e. it is globally

rigid. The idea can be extended to three dimensions but as [9] noted, under low

connectivity or high measurement noise conditions the algorithm may be unable to

localize a useful number of nodes. Another case where the geometric constraint based

echo identification fails is when there is disproportionate geometry thickness in one

direction. In a typical sensor network the X and Y distribution of nodes is much

higher than that in Z which can affect the performance of the algorithm.

The localization algorithm presented in this thesis models the problem as global

non-linear optimization problem as in [3], however it goes one step further to deal

with echoes and non-convexity of anchor-unknown node topology.
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CHAPTER IV

APPLIED ACOUSTIC RANGING

The localization system described in this work uses acoustic time-of-flight based

ranging developed at Vanderbilt University [18]. The concept of acoustic ranging is

based on measuring the time of flight of the sound signal between the signal source

(beacon) and the acoustic sensor. The range estimate can be trivially calculated from

the time measurement. However, the speed of sound is temperature dependent. As-

suming insignificant spatial temperature distribution in the sensor field, this problem

can be solved by a single temperature measurement at the base station. An appealing

characteristic of the proposed ranging algorithm is that this is the only calibration

that is needed. That is the sensors do not need individual calibration at all.

Hardware

The acoustic ranging application targets the MICA2 motes developed at UC

Berkeley [16]. The mote is equipped with a custom acoustic sensor board, which

was developed at the Vanderbilt University for a shooter localization application [12].

The heart of the sensor board is a low-power fixed point ADSP-2189 digital signal

processor running at 50 MHz (see Figure IV.1). The availability of the DSP enables

the implementation of sophisticated digital signal processing algorithms .

There are two independent analog input channels on the board, furnished with

low-cost electret microphones and 2-stage amplifiers with software programmable gain

(0-54dB). The analog channels are sampled by A/D converters at up to 100kSPS with

12-bit resolution. The board also has an analog output channel capable of driving a
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(a) (b)

Figure IV.1: Ranging hardware (a) MICA2 motes, (b) acoustic sensor board

250 mW external loudspeaker. The board is connected to the mote by programmable

interrupt and acknowledgment lines and a standard I2C bus.

In the current implementation the mobile beacon is based on a MICA2 mote

and the same sensor board with an active loudspeaker attached to its analog output

channel. The maximum output power is 105 dB measured 10 cm away from the

loudspeaker.

Ranging Algorithm

In order to calculate the range from the time-of-flight of the acoustic signal, the

departure and arrival times of the signal have to be identified and measured precisely.

The beginning of the transmission can be measured at the beacon, while the time of

arrival is measured at the receiving sensors. The range calculation is performed on

the receivers, thus the beacon has to send the starting time to the receivers in a radio

message.

Employing a sophisticated time synchronization mechanism is essential to accu-

rately measure the time of flight. Our approach employs the message time-stamping
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primitives introduced in [26]. The synchronization between the source and sensor

nodes is implemented as follows.

The source queries its local time t0 and decides that it will emit an acoustic signal

at time tsend = t0 + δ. The source sends the value tsend to all the sensors in a radio

message. Therefore the value of δ is chosen such that it is greater than the time

required by the sensors to process the radio message and to prepare for reception.

The sensors schedule their acoustic board for sampling when the beacon starts the

transmission of the acoustic signal.

We assume that the skew of the local clocks is negligible during the short time

of the measurement, but we allow arbitrary clock offsets. Since neither the source,

nor the sensors have knowledge of a global time, the sensors need to convert tsend

included in the message from the local time of the source to their own local times.

This is achieved by timestamping the radio message at transmission and at reception

as well. Since the radio signal is traveling at the speed of light, the difference between

the transmit time instant and the receive time instant is negligible, hence the trans-

mit timestamp (given by the local clock of the beacon) and the receive timestamps

(in the local time of the receivers) are assumed to represent the same global time

instance. Thus, a sensor can use the difference of the transmit timestamp and its

receive timestamp to calculate the offset of its local clock from the local clock of the

beacon. This offset is added to the received tsend to convert it to the local time of the

receiver.
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Figure IV.2: The emitted acoustic signal
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Figure IV.3: Ranging measurement results (a) without outlier rejection, (b) with
outlier rejection

The sensor node also has to measure the time of arrival of the acoustic signal. The

accurate detection of the signal is not trivial in a noisy environment, as it is difficult

to emit sharp rising edges or pulses with general purpose loudspeakers. Additionally,

the signal has to be emitted with the highest power available in order to maximize

the range of the measurement. These requirements are analogous to the problems

of radar signals, a well researched area [29, 23]. The problem arises as the limited

bandwidth of the analog output channel restricts the emission of rising edges with

arbitrarily steep slope. The contradiction is resolved by long duration signals with

short duration correlation functions, so when the received signal goes through an

appropriate matched filter, the output will be a sharp pulse. The emitted signal is

therefore a Gaussian-windowed linear frequency modulated (chirp) signal shown in

Fig.IV.2, that is commonly used in radar applications. The windowing is needed due

to the limited bandwidth of the acoustic channel.

A similar solution is presented in [22], where the emitted signal is a binary phase

shift keying (BPSK) spread spectrum signal. Since our method does not require to
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distinguish multiple sources, the use of linear frequency modulated signal is more

natural.

The frequency span of this signal is spread in the whole acoustic band of the analog

channels. The matched filter is realized as an FIR filter on the DSP. The matched

filtering essentially means the correlation of the expected signature with the measured

data, therefore the length of the FIR filter is the same as the length of the expected

signature. To avoid a high order FIR filter which would be computationally expensive,

either the length of the chirp signal or the sampling rate has to be decreased. However,

as the length of the chirp signal can not be arbitrarily short due to the limited

bandwidth of the physical hardware, the sample rate has to be decreased. Thus, the

raw data is decimated to a lower sampling frequency before the matched filtering.

In order to increase the signal-to-noise ratio (SNR), one range measurement con-

sists of a series of time-of-arrival measurements. As the delays between the consec-

utive chirps are known a-priori, an accurate combined result can be calculated by

averaging these measurements. In the averaged signal the chirp signature component

is preserved as it is added up at the same phase, but the noise which is assumed to

be independent Gaussian white noise is decreased by
√

N where N is the number of

chirps added. Currently we use 8 chirps, thus the SNR of the averaged signal is 9 dB

higher than the SNR of a single chirp.

Delays between consecutive chirps are varied to avoid a situation when multiple

runs have the same noise pattern at the same offset, which is a common phenom-

enon caused by acoustic multi-path effects. Hence the independent nature of the

disturbances is preserved.

The decimation filtering is running online on the DSP, and the decimated signal

is stored in RAM buffer. The consecutive measurements are added together in the

same buffer and after all the chirps are received, the matched filtering and the peak-

detection algorithm is performed offline. The peak-detection algorithm is simply a
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maximum finder above a threshold level, as the output of the matched filter has

distinctive peaks at chirps. The time of arrival of the chirp signal can easily be

identified based on the location of the peak.

Results

The above algorithm was tested on a grassy field with a single beacon, and multiple

receivers. In Fig. IV.3 the ranging results are presented, and in Fig. IV.4 the standard

deviation of the measurements is shown, after outlier rejection. Outlier rejection is

done by a simple median filter, where the values greatly differing from the mean of

the measurements are rejected. Note that multiple measurements are needed for each

beacon position to perform the rejection algorithm.
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Figure IV.4: Standard deviation of ranging

The effective range of the presented implementation is 30 meters, as the number

of outliers and the standard deviation of the measurements are getting significantly

high above this value. Below 30 meters the standard deviation grows approximately

linearly, with

STD ∼= k1d + k2 (IV.1)

where k1 = 0.011 and k2 = 0.024 and d denotes the actual distance.
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The effective range of the measurements is more than two times larger than in

previous acoustic ranging experiments [18, 25], where the reliable range was 10 m on

asphalt and 15 m on grass, respectively. The standard deviation is also significantly

improved. In [18], the output power of the sounder was limited (88 dB at 10 cm

from source) and no custom DSP board was used. In [25] the power of the beacon is

approximately the same as in the presented solution (105 dB at 10 cm from source),

however our use of the DSP board and the linear frequency modulated signal provides

better performance.

These experimental results are very promising and justify the presented approach.

Moreover, the current limits on range and precision are primarily caused by issues

with the current implementation. First, the power of the emitted acoustic signal is

still constrained by the gain on the output channel of the board. Second, the analog

input channels of the DSP board also limit the range, as it was designed for a shooter

detection application, where even the maximum gain is relatively low.
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CHAPTER V

SELF LOCALIZATION

As described in chapter I, high node localization accuracy is an absolute necessity

for the correct operation of location-critical applications, such as shooter-localization.

The application uses TOA of acoustic signals and locations of the nodes that detect

the muzzle blast of shooter. If the node locations are erroneous, the error will prop-

agate to the shooter localization error.

An illustration to show the effect of node localization accuracy on acoustic-beacon

localization is presented below. The simulation setup consists of four sensor nodes and

an acoustic beacon in 2D plane. The goal of the simulation is to localize the beacon,

given the TOA of acoustic signal from beacon to each of the sensor nodes. Sensor

node locations are given with zero mean and given standard deviation Gaussian error.

The simulation uses least-squares optimization for beacon localization. Figure V.1(a)
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Figure V.1: (a) Simulation setup. Big dots denote actual node/beacon location
while the small dots indicate computed locations. (b) shows the behavior of beacon
localization error w.r.t. the standard deviation in node location error.
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shows the 2D simulation setup while Figure V.1(b) shows the beacon localization

error against standard deviation in sensor node location error. Beacon localization

error increases at least linearly with sensor node location error. Hence, it is very

important to have accurate sensor node locations for accurate operation of location-

critical applications.

Formalization

Formally, a generalized self localization problem can be defined as follows. Given

node IDs and their ranges from each other, conjecture the relative physical location

of each node in the network. Few anchor nodes can be provided to transform relative

node locations to absolute positions.

There are many challenges to be addressed in this problem. First we define some

terms that we will use in the rest of the document.

Distance Matrix

Distance Matrix D is a matrix such that dij is the range measurement between

node i and node j. Distance is negative for node pairs for which range measurement

is not known. Number of positive entries in row i represents the number of neighbors

of node i.

D =



0 d12 . . . d1n

d21 0 . . . d2n

...
...

. . .
...

dn1 dn2 . . . 0


(V.1)

Necessary Condition for Localization

Necessary Condition for Localization in 3 dimensions states that a node

should have distance measurements with at least four non-coplanar neighbor nodes.
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Following figure illustrates the necessity of four non-coplanar neighbor nodes. Fig-

ure V.2 shows the locus of node location with number of neighbors. In case of one

neighbor the locus is a sphere; for two neighbors the locus is a closed curve that is

intersection of two spheres (a circle). For three neighbors the locus is reduced to two

points. We need fourth neighbor to get rid of this mirror ambiguity.
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Figure V.2: Node Locus

Multi-path

In a typical urban environment many sensor nodes might not have line-of-sight

with the mobile beacon but they can receive the acoustic signal via multipath. These

multipath ranges or echoes when used for localization tend to produce false or infeasi-

ble results. Consider the following 2-dimensional example (Figure V.3) for illustration.

Sound sources S1 and S2 have line-of-sight with sensor node U but the direct path to
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Figure V.3: Illustration of effect of echo.

sound source S3 is obstructed by wall W1, thus U receives the acoustic signal from S3

via multipath through wall W2. Due to this echo the range measurement between S3

and U is d′ instead of the actual value d. Based on these range measurements, node

U ′ is localized away from its actual location U . If the wall W2 were moved little far-

ther the echo distance d′ would increase and at some point no feasible location would

exist for node U . Similar illustration can be drawn for a 3-dimensional case. It is

clear from the above illustration that range measurements with echoes would not only

prevent some nodes to be localized but also—even worse—cause mis-localization.

Notice also that the amount of echoes present in the range measurements depends

on the topology. We found no way of estimating the extent of echoes in the measure-

ment data. In typical urban environments, low network connectivity and non-uniform

node distribution in the vertical (Z-)direction further deteriorate the localization ac-

curacy. These effects can cause even larger localization errors at boundary nodes.
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Error Model

For most measuring instruments, the actual physical measurement is affected by

some sources of errors that we call noise. The most common form of noise is the

white Gaussian noise, which exhibits a Gaussian distribution with zero mean and an

instrument or measurement process dependent standard deviation.

Ranging measurements also show white Gaussian noise for a “near ideal” environ-

ment, like an outdoor field where all sensor nodes have direct line of sight without

any obstructions. Multipath propagation in urban or complex environments causes

non-Gaussian errors in ranging measurements.

Most of the localization systems do not consider non-Gaussian errors in ranging

error distribution. Considering the non-Gaussian nature of the ranging error is essen-

tial to solve the localization problem for satisfactory results. There are many ways

ranging error distribution can be modeled. It can be considered as non-parametric

distribution or as combined distribution of Gaussian and chi-squared distribution.

This work doesn’t directly address the error modeling problem and doesn’t explore

the non-Gaussian nature of ranging errors. This work does acknowledge that ranging

are non-Gaussian, and deals with them by using a technique called pruned least-

squared optimization. Pruned least-squared optimization is described later in this

chapter.

Distance Optimization

The self localization problem in its most basic form can be modeled as a distance

optimization problem. In the distance optimization problem the independent opti-

mization variables are node locations and the non-linear objective functions are the

differences between distances computed from node locations and range measurements

for all node pairs for which range measurements exist. It can be observed that the
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distance optimization problem is actually a function-fitting problem where distances

are the non-linear functions of node locations. Least squares optimization is known

to work best for function-fitting problems [17]. The mathematical formulation of

distance optimization problem is presented below.

Find x∗, a global minimizer for objective function

F (x) =
1

2

N∑
i=1

N,d̂ij≥0∑
j=1

(
dij − d̂ij

)2
(V.2)

where

dij = {(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2}1/2

is the computed distance between nodes i and j, and d̂ij is the measured distance.

The optimization variable is x = [x1y1z1x2y2z2 . . . xnynzn]T where [xiyizi] is the 3D

coordinate of node i.

The non-linear objective function F (x) is the square sum of distance errors for

all pairs (i, j) for which range measurement exists (d̂ij ≥ 0). The components of the

optimization variable x are subjected to the boundary value constraints.

xmin ≤ xi ≤ xmax

ymin ≤ yi ≤ ymax (V.3)

zmin ≤ zi ≤ zmax

Pruned Distance Optimization

As mentioned in section V we have non-Gaussian error in the form of echoes

in range measurements. In least-square optimization terminology these echo ranges

are outliers that tend to shift the least-square model from the actual model. It is

logical not to consider these outliers in optimization. For this reason the optimization
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problem described in previous section is modified to account for probable outliers. The

definition of the new optimization problem requires an operator min which is defined

below.

Operator min

Definition 1. Let fi be a list of N function evaluations (or numbers), then minpfi

is the list of dpNe-many smallest function evaluations (or numbers) where d e

is ceiling operator and 0 ≤ p ≤ 1.

Definition 2. Let
∑N

i fi be a series sum of N function evaluations (or numbers),

then
∑N

i minpfi is the series sum of dpNe-many smallest function evaluations

where d e is ceiling operator and 0 ≤ p ≤ 1.

The mathematical formulation of the new distance optimization problem is presented

below.

Find x∗, a global minimizer for

F (x) =
1

2

N∑
i=1

N,d̂ij≥0∑
j=1

minp

(
dij − d̂ij

)2
(V.4)

where d̂ij and dij are the range measurement and distance computed from localized

nodes i and j and optimization variable is x = [x1y1z1x2y2z2 . . . xnynzn]T.

If the optimizer x is close to global optimizer x∗ then all function evaluations

but those corresponding to echoes will be close to zero. In other words, near the

global minimizer all consistent range measurements will have function evaluations

with values close to zero while echoes, which are non-consistent range measurements,

will produce function evaluations with larger values.

Least-square optimization works best if the errors have Gaussian distribution.

When we discard few largest function evaluations using the min operator, we are
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discarding the most significant outliers in the distribution and hence obtaining an

approximate Gaussian distribution. Figure V.4 illustrates pruned optimization ap-
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Figure V.4: Illustration of pruned least square optimization

proach for a line fitting problem. In Figure V.4(a) all the data points are considered

in optimization. The resulting curve is highly offset from the actual curve due to the

non-Gaussian errors. In Figure V.4(b) data points with large deviations from opti-

mized solution are removed from computation and curve is re-optimized for remaining

data points. Figure V.4(c) and (d) show the subsequent steps; the final solution is

very close to the actual curve.
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Penalty Functions

The standard optimization solvers used in this work were designed for uncon-

strained optimization. The bounded-value constraints on the optimization variables

are incorporated separately by modeling them as penalty functions in the objective

function. Penalty functions incorporate a penalty value if variables go out of bound.

The most intuitive form of a penalty function is a rectangular penalty wherein

a constant high penalty is incorporated if the variable goes out of bounds. For op-

timization purposes rectangular penalty does not provide motivation (descent direc-

tion) for the variable to fall within bounds. Other forms of penalty functions are

linear or quadratic penalties which grow linearly or quadratically with the offset from

the bounds. Logarithmic penalty functions are most suitable for bounded-value con-

straints because of their sudden descent near boundary values. Figure V.5 shows the
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Figure V.5: Penalty functions

comparison of different penalty functions. The least-square optimization problem for

penalty functions is defined below.

Find x∗, a global minimizer for

F (x) =
1

2

N∑
i=1

{κ · ln(1 + ∆xoff,i)}2 (V.5)
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where κ is penalty constant and ∆xoff,i is the offset from feasible boundary,

∆xoff,i =


|xi − xmin| if xi < xmin

0 if xmin ≤ xi ≤ xmax

|xi − xmax| if xi > xmax

(V.6)

and optimization variable x = [x1y1z1x2y2z2 . . . xnynzn]T.

Composition Of Least-Square Optimization Problems

Two or more least-square optimization problems can be composed as follows.

Consider two least-square optimization problems P1 and P2 on optimization variable

x and objective functions
∑N

i fi(x) and
∑M

j gj(x) then the combined least-square

optimization problem P on variable x have the objective function

FP (x) =
N∑
i

fi(x) +
M∑
j

gj(x) (V.7)
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CHAPTER VI

LOCALIZATION ALGORITHM

An obvious and straightforward localization algorithm would be to solve for all

unknown node locations simultaneously (Algorithm 1).

Algorithm 1 Self localization algorithm

1: Consider 3D coordinates of all unknown nodes in optimization

variable.

2: Construct and solve non-linear least-square optimization problem

with objective function in equation (V.2).

This approach has some serious disadvantages. Convergence of the optimization

problem strongly depends upon the initial guess given to the solver. A close-to-

optimum initial guess would converge to global optimum in considerably less time

while a bad initial guess for the same problem might end up in local optima. Initial

estimates for nodes can be computed by using an extension of the bounding box

technique described in [3]. But due to the large size of the sensor network and

relatively few randomly distributed anchor nodes, it is possible that we do not have

good initial estimates for the whole network but only for the part close to the anchors.

Iterative Incremental Localization Algorithm

An iterative incremental approach wherein a part of the network near anchor

nodes is localized first and then the node locations are propagated further seems

suitable. The idea here is to iteratively select and localize a part of network (a

sub-system) for which a good initial estimate is available. At each iteration the

part of the network selected for localization will grow, consisting of nodes that are
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already localized and few unknown neighboring nodes that have better estimates

in the current iteration. In each iteration ranges that are believed to be echoes

are identified and removed from computation. The algorithm is presented below

(Algorithm 2). Symbol x represents the 3D location vector of nodes, xest and xsol

denotes estimated and localized node location vectors respectively. N denotes the set

of nodes in the network and η (described in section sub-system evaluation later in

this chapter) denotes confidence value for the localization.

Algorithm 2 Incremental iterative self localization algorithm

1: xest ← 0, xsol ← 0
2: for run = 1 to runmax do
3: Configure parameters, read distance matrix d, set sub-system

Ñ ← ∅
4: repeat
5: Ñold ← Ñ
6: Estimate bounding-box Bi ∀i ∈ N
7: Choose xest

i ← x ∈ Bi ∀i ∈ N − Ñold based on neighbor polling

8: Select Ñ ⊆ N such that xest
i satisfies goodness ∀i ∈ Ñ

9: Optimize x for sub-system Ñ
10: xest ← x
11: for all i ∈ Ñ do
12: Compute ηi

13: Ñsol ← ∅
14: if ηi acceptable then
15: xsol

i ← xi

16: Ñsol ← Ñsol ∪ {i}
17: end if
18: end for
19: until Ñsol − Ñold = ∅
20: end for
21: Output xsol

There are two levels of looping in the algorithm. The outer loop starts with an

estimate, xest for the whole network. The first run of the outer loop starts with a

random (or user given) estimate. Each run afterward starts with the final estimate

of the previous run. The inner loop corresponds to the incremental selection and
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localization of a sub-system, Ñ , that we will call an iteration. At each iteration, the

selected sub-system will increase in size, more nodes will be localized with higher

accuracy until there are no more nodes to be localized or no more nodes can be

localized (i.e. the necessary condition for localization does not hold). Later sections

describe each step of the algorithm in detail.

Sub-System Selection

Each node is represented by a bounded-box with lower and upper bounds (xlb,xub).

The node coordinates can take any value in the closed interval [xlb xub]. Since anchor

nodes are known with high accuracy, their bounding-box is very small. Initially, the

bounding-boxes for all unknown nodes can be set to the size of the field and can be

updated using range measurements d̂ij between node i and its neighbors j.

xlb,i = min
j
{(xlb,j − d̂ij · 1),xlb,i} (VI.1)

xub,i = min
j
{(xub,j + d̂ij · 1),xub,i} (VI.2)

The order in which bounding-box updates should be done is also important. Con-

sidering the sensor network as a graph, it turns out that a variant of the topological

sorting (Algorithm 3) on the network graph will provide the required node ordering.

The main idea in this algorithm is that unknown nodes that are closer to known

Algorithm 3 Topological sort

1: Set known neighbor index, κ = ∞ for anchors and κ = 0 for all

other vertices

2: while Graph not empty do
3: Find a vertex u with highest κ[u]
4: Output u
5: Delete all edges e = (u, v) of u, increment κ[v] by 1
6: Delete u from graph

7: end while
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nodes get higher precedence.

For node i that already has an estimate xest
i and confidence value ηi, the bounds

are set as follows. Confidence values for node location estimates are computed in the

sub-system evaluation section which is described later.

xlb,i = max{(xest
i − ηi · 1),xlb,i} (VI.3)

xub,i = min{(xest
i + ηi · 1),xub,i} (VI.4)

For all other nodes a location estimate is picked from the bounding-box. The most

obvious way would be to pick the center of the box but a more heuristic method

involving bounding-box partitioning is used instead. The bounding-box of a node, if

larger than a critical size, is partitioned into smaller boxes and neighbors are polled

for the partition in which the node is most likely to be present. The center of that

partition is assumed to be the estimated location for that node. A polling index Cp is

computed for each partition p, which is essentially a weighted sum of distance errors

for all neighbors j of node i.

Cp =
∑

j∈Neigh(i)

∣∣∣∥∥∥xp − xest
j

∥∥∥− d̂ij

∣∣∣ · ηj (VI.5)

where xp is the center point of partition p. The center point of the partition with

minimum polling index is chosen as estimated location for that node.

A part of the network is selected based the following notion of goodness of esti-

mated node locations. An estimated location for node i is considered good if the node

has at least three neighbors and it’s bounding-box satisfies two properties. First, its

volume Vi is smaller than a critical volume V and second, its aspect ratio αi is greater

than a critical ᾱadaptive. Aspect ratio αi is a measure of cubeness of the bounding-box.

αi is expressed in terms of bounding-box volume Vi, space diagonal di and surface
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area Ai as,

αi =
6
√

3 · Vi

Ai · di

(VI.6)

Notice that for nodes with small bounding-boxes an estimate is acceptable even if it

has smaller aspect ratio. For this reason the critical aspect ratio is made adaptive,

quadratically depending on the bounding-box volume. In the equation below ᾱmin

and ᾱmax are constants.

ᾱadaptive = ᾱmax −
(

Vi

V
− 1

)2

· (ᾱmax − ᾱmin) (VI.7)

Sub-System Localization

The distance optimization problem for the selected sub-system is solved in multiple

stages. At each stage the solution is moved closer to the optima.

We solve the objective function in Equation (V.4) or the combination of objective

function in Equations (V.4) and (V.5) at each stage. The solution from the previous

stage is used as a starting point for the current stage. At the end of each stage

some range measurements that are believed to have non-Gaussian errors (echoes) are

identified and removed from the distance matrix. The different stages of sub-system

localization are described below.

• Stage I. At this stage echo ranges are identified and discarded based on the

evaluation of the objective function in Equation (V.4) at the current optimizer

xest.

• Stage II. At this stage of the optimization problem, Equation (V.4) is opti-

mized in a fixed number of iterations. The solver is stopped even if the optimizer

has not converged. Let us visualize this stage as a 3D earth terrain optimization

problem where x and y directions are optimization variables and altitude from

sea-level i.e. z is the optimization function. The global optimization in this
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problem is looking for the deepest trench on terrain. Optimizing for a fixed

number of iterations can be visualized as going downwards a local trench but

not going all the way down because that would take unlimited amount of time.

• Stage III. At the previous stage we did not consider bounded-value constraints

on the optimization variable. The variable might go out of the feasible region as

guided by the objective function. In this stage the combination of the optimiza-

tion problems, Equations (V.4) and (V.5) are optimized in a fixed number of

iterations. The objective function in Equation (V.5) ensures that the variable

will fall within the feasible region. The reason for having stage II separate from

stage III is that there exist a possibility that the path to the global optimizer

goes through a region that might not be part of the feasible region. Figure VI.1

shows a case when such a path exists. The optimization variable from initial

Figure VI.1: An example optimization landscape. −2 ≤ x ≤ 1 and −1 ≤ y ≤ 2 is
the feasible region.
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guess X will optimize to A while the global optimum is at P . But if we use two

stage optimization the optimizer will converge to P .

• Stage IV. This final stage is similar to stage III except parameter p in Equation

(V.4) is set to 1.0, i.e. no pruning of the distance matrix is done. It is expected

that by the end of stage III we would have discarded most significant echo

measurements.

Sub-System Evaluation

An important measure for any algorithm is its performance metric. In case of

self localization the metric can be defined as the closeness of the computed locations

to ground truth (actual node locations); we call this the localization error. Since in

practical scenarios the ground truth is not known, it would be very helpful if there

was an indirect performance metric that correlates with the localization error.

The quality of computed locations produced by the solver is evaluated using a

measure called the confidence value. The confidence value is an indicator of uncer-

tainty in node location around the current location estimate.

The algorithm to compute confidence value is the following. Compute the ranges

between computed node locations for all node pairs for which measured range exist.

Next compute the deviation of these computed ranges from measured ranges. Now

for each node i we have a deviation vector ∆i whose elements are the deviations

of computed ranges from measured ranges for all its neighbors. A large value in

∆i indicate that either (1) the node location is incorrect or (2) the corresponding

range measurement is incorrect. If the node location is incorrect then most of the

elements of ∆i should be large. If only a few range measurements are incorrect then

the mean and the variance of ∆i should be small except for those incorrect range

measurements. Practically, all node locations are categorized based on mean µi and
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standard deviation σi in ∆i. The categorization of node locations is described below.

Confidence value ηi is computed as σi exp(|µi|).

−5 0 5
0

5

10

15

Error (m)

N
um

be
r 

O
f E

rr
or

s

(a) correct

−5 0 5
0

5

10

15

20

25

Error (m)

N
um

be
r 

O
f E

rr
or

s

(b) affected by echo

−5 0 5
0

5

10

15

Error (m)

N
um

be
r 

O
f E

rr
or

s

(c) definitely incorrect

zero line
mean

−5 0 5
0

5

10

15

20

Error (m)

N
um

be
r 

O
f E

rr
or

s

(d) affected by echo

Figure VI.2: Categorization of computed locations based on computed errors. Thin
lines show the error distribution while dash-dotted line indicates the mean and grey
shaded region show the standard deviation. The dashed line is the zero mean.

1. If both µi and σi are close to zero then the node location is correct.

2. If µi is close to zero but σi is large then either the range deviations are spread

around zero or few large deviations caused σi to be large. We say that the node

location may be affected by echo. In this case we remove few data points with

large deviations and re-categorize the location based on a recomputed mean

and standard deviation.

3. If |µi| is large but σi is small then all elements of ∆i are large i.e. the node

location is definitely incorrect.
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4. If both |µi| and σi are large then again location might be affected by echo and

we follow the same procedure as we followed in case 2 above.

5. If |µi| and σi are neither large nor small then location correctness is undecided.

We follow the same procedure here as we followed in case 2 and 4.

The threshold values for mean, µ and standard deviation, σ are set depending on the

required localization accuracy. For sub-meter localization, minimum and maximum

mean can be 0.05 m and 0.30 m respectively. The minimum and maximum standard

deviation can be around 0.15 m and 0.8 m. The above values were used to evaluate the

algorithm on simulated topologies, described in next chapter. Figure VI.2 shows the

characteristics of each of the above category. Node locations categorized as incorrect

or as echoes are considered not localized.
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CHAPTER VII

IMPLEMENTATION AND RESULTS

We implemented the proposed localization algorithm in MATLAB and ran it with

simulated sensor network topologies and ranging data. The Levenberg-Marquardt

solver was used for optimization in MATLAB.

Simulated Data Generation

The network topologies and ranging data for localization algorithm were generated

in a Java based simulator. The Java simulator generates node locations on sensor

network field. The simulator also generates sound source locations arranged on a

path. The separation between two consecutive sound source locations is bounded.

This simulates the movement of a mobile acoustic beacon that has specified speed

and sound signal emitting rate. The simulator then generates ranges between sound

sources and nodes in its vicinity. Gaussian noise is added to the ranges according

to the experimental observation in Figure IV.4 (Eqn. IV.1). Non-Gaussian errors or

echoes and negative-echoes are also added to the ranging data according to the trend

observed in experimental data. Experiments show that the probability of a range

being an echo grows with the range. The extent of echo, which is the deviation of

echo range from actual value, depends entirely on the environment.

The simulator takes number of sensor nodes, number of anchor nodes, number of

acoustic beacon paths and number of sound sources on each path as input parame-

ters. Other adjustable parameters include sensor network field size, maximum and

minimum separation of consecutive sound sources and maximum range of acoustic

signal.
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Figure VII.1: XY view of a typical sensor network topology.

A topology of 50 sensor node locations was generated randomly in a 100× 100×

20 m field with at least half of the nodes on ground level. 80 sound sources were

generated on four random paths such that the separation between successive sound

sources is bounded (0− 8 m). Also, the Z variation of the sources was limited to 2 m

to simulate a mobile beacon, which is moving on the ground in the sensor field. This

constraint can be relaxed if we consider mobile beacons to be on a UAV that can vary

its altitude. Maximum acoustic range was set to 30 m which is in accordance with

our experimental observations. Five sensor nodes were assumed to be known anchor

locations. Two different ranging data sets, one with echoes and another one without

echoes, were generated for same topology. Figure VII.1 shows XY view of a typical

sensor network topology. Faint dashed lines indicate range measurements. Simulated

ranging errors are shown in Figure VII.2. Note that the standard deviation in ranging

error increases with ranges. Number of non-Gaussian errors also increases with range.
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Figure VII.2: Simulated ranging errors

The ranging data generated by the simulator closely emulates the behavior of actual

acoustic ranging.

Results

In the presence of ground truth, the performance of the algorithm can be evaluated

using localization error which is the difference between computed locations and the

ground truth. Localization error for node i is,

σ2
p,i = (xi − x̃i)

2 + (yi − ỹi)
2 + (zi − z̃i)

2 (VII.1)

where xi, yi and zi are the computed coordinates of node i, and x̃i, ỹi and z̃i are the

true location coordinates of the same node. Figure VII.3 and Figure VII.4 compare

the computed node locations to their true locations in XY and XZ views for ranging

data with echoes. Different solid lines show multiple paths of the sound source. Solid

arrows in Figure VII.3 indicate the sensor nodes that have the highest localization

error. Notice that all such nodes are very far from their nearest sound source.
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Figure VII.3: Comparison of computed node locations to their true values in XY
plane for ranging data w/ echoes.

Figures VII.5 and VII.6 show the histograms of 3D localization error without and

with simulated echoes respectively. Table VII.1 summarizes the localization results.

The steeper distribution in case (a) indicates that number of nodes with lower

Ranges
w/o echoes

Ranges w/
echoes

Unlocalized sensors 7 9

Mean error (2D) [m] 0.3041 0.4871
Max error (2D) [m] 2.5436 4.4795

Mean error (3D) [m] 0.8962 1.0664
Max error (3D) [m] 4.3252 4.5119

Table VII.1: Localization results

localization accuracy is more than that in case (b), where the number of nodes with

higher localization errors in significant. In other words, more nodes were localized

with better accuracy when we did not have echoes in ranging data.

44



−20 0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

X−Coordinate (m)

Z
−

C
oo

rd
in

at
e 

(m
)

Ground truth
Localized positions

(b)

Figure VII.4: Comparison of computed node locations to their true values in XZ
plane for ranging data w/ echoes.

From Figures VII.5 and VII.6 we can see that the computed locations of sound

sources are more accurate than that of sensor nodes. This high accuracy can be

attributed to the topological fact that sensor nodes are distributed around the sound

sources. For node localization application we are actually not concerned about the

computed sound source locations. However, it is an important observation, that if we

distribute the sound sources uniformly around sensor nodes then we can get higher

localization accuracy for the sensors.

The localization evaluation scheme described in chapter VI was used to evaluate

and categorize localization results. Figure VII.7 shows number of sensor nodes in

each category. The figure shows localization error distribution for each category. As

expected, most of the nodes under correct localization category have small localization

error. The categorization algorithm was able to identify four incorrect localization

results, two of them have location error less than 1.0 m. Few localization results
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case (a)

Figure VII.5: Histograms of 3D localization error for all sensor nodes and sound
sources without echoes in ranging data.

case (b)

Figure VII.6: Histograms of 3D localization error for all sensor nodes and sound
sources with echoes in ranging data.

with high location errors were categorized as others. Nodes that were classified under

affected-by-echo category have 1.0 m or more location error.

Sub-meter localization accuracy is a requirement for correct operation of shooter-

localization application. An important concern for node localization is the identifica-

tion of nodes with high location error. The algorithm localized approximately 75% of

the nodes with sub-meter accuracy and less than 5 m maximum error for simulated

sensor networks. The categorization scheme identified approximately 50% of the node

locations with 2 m or more location error. Based on localization on simulated data,
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Figure VII.7: Categorization of sensor nodes

the presented localization and categorization algorithms show a potential of close to

sub-meter accuracy in a complex urban environment.
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CHAPTER VIII

CONCLUSIONS

The presented sensor node localization technique has several contributions. The

aerial distribution of sensor nodes from a low-flying UAV and acoustic ranging using

a mobile acoustic beacon mounted on UAV is a realistic deployment strategy with

many advantages in complex, urban environments.

The method is passive since only the mobile beacon needs to emit acoustic signals.

This saves energy, size and cost on the sensor nodes and provides stealthy operation.

Furthermore, the mobile beacon can emit much higher-energy sound than the sensor

nodes, thereby increasing the effective range. The applied acoustic ranging method

has the longest range for mote class devices, even when normalized by the emitted

sound energy. This is due to the signal processing algorithms implemented on the

sensor board. The sound source installed on mobile UAV can have significant height

variation thereby facilitating 3D localization. The uniform speed of UAV with uniform

acoustic signal emitting rate provides consistent separation between sound source

locations.

The iterative and incremental non-linear optimization technique introduced pro-

vides an effective way to deal with acoustic multipath effects and works well for 3D

localization. There is little work in the wireless sensor network literature that ad-

dresses these problems. The algorithm provides sufficient localization results even

when number of sound source locations is kept low for practicality. Pruned least-

square optimization and other mathematical tools are formally defined and used in

localization algorithm. The idea behind pruned least-square optimization is to elim-

inate the outlier data points in case the error distribution is not Gaussian.

48



The simulated ranging data used in the evaluation of the localization algorithms

are based on experimental observation and are realistic. The localization results

produced by the algorithm shows mean localization error under 50 cm in XY and close

to 1 m in 3D. The results are satisfactory and assuring for centralized localization.

As a future direction in this work, the localization algorithm can be implemented

in Java and integrated with online ranging to provide online node localization in a

real urban deployment.
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