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Abstract— Implementation uncertainties such as time-
varying delay and data loss and having to typically implement
a discrete-time-controller can cause significant problems in the
design of networked control systems. This paper describes a
novel multi-rate digital-control system which preserves stability
and provides robustness to such implementation uncertainties.
We present necessary conditions for stability of conic systems
interconnected over digital-control-networks which can tolerate
networked delays and data-loss. We also compare the perfor-
mance using simulation results of the proposed architecture
to that of a classic-digital-control-implementation applied to
controlling position of a single-degree of freedom robotic
manipulator.

I. INTRODUCTION

The heterogeneous composition of computing, sensing,

actuation, and communication components has enabled a

vision for real-world Cyber Physical Systems such as auto-

motive vehicles, building automation systems, and groups of

unmanned air vehicles. Such systems are monitored and con-

trolled by Networked Control Systems (NCS) that integrate

computational and physical devices using communication

networks. NCS research has been recently a very active area

investigating problems at the intersection of control systems,

networking, and computer science [1].

The objective of this paper is to address fundamental

problems in NCS caused by implementation uncertainties

such as time-varying delay, and data loss. To deal with these

implementation uncertainties, we propose a design approach

on top of passivity [2]. The inherent safety that passive

systems provide is fundamental in building systems that are

insensitive to implementation uncertainties.

Our team has investigated the use of passivity for the de-

sign of NCS investigating stability in the presences of time-

varying delays [3], [4]. This paper presents an important new

step in the design of networked control systems consisting of

multiple plants by considering conic systems that relax the

passivity assumptions. Passive systems are a special case of

conic systems, thus the paper expands the applicability of our

framework. Further, conic systems can be used to represent

many important application such as quadrotor aircraft [5].

Our approach employs wave variables to transmit infor-

mation over the network for the feedback control while

remaining passive when subject to arbitrary fixed time delays

and data dropouts [6], [7]. The primary advantage of using

wave variables is that they tolerate most time-varying delays,

such as those occurred when using the TCP/IP transmission

protocol. In addition, our architecture adopts a multi-rate

digital control scheme to account for different time scales at

different part of the network as well as bandwidth constraints.

This paper provides necessary conditions for stability of

conic systems to be interconnected over wireless networks

which can tolerate networked delays, and data-loss. The

continuous-time bounded results can be achieved for all lin-

ear and nonlinear conic systems. The paper also demonstrates

how the proposed architecture can implemented using a new
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Fig. 1. High Performance, multi-rate digital control network for continuous-
time systems.

linear passive-sampler. Finally, our architecture can be used

to isolate wide-band and correlated noise without affecting

stability through the use of a discrete-time anti-aliasing-

filter HLP (z) which was synthesized by applying the conic-

preserving-IPESH-Transform to a high-order Butterworth

filter HLP (s).

Section II describes our new high-performance digital

control system and provides all the necessary analysis and

stability results. Section III describes a position-control prob-

lem involving a single-degree of freedom robotic manipulator

problem in order to compare our proposed-architecture to

that of a classic-digital-control-implementation. Section IV

presents the simulation results. Section V provides the con-

clusions of our paper.

II. HIGH PERFORMANCE DIGITAL CONTROL NETWORKS

Fig. 1 depicts a multi-rate digital control network which

interfaces a conic-digital-controller Hc : er → ec to a

continuous-time conic plant Hp : ep → fp [5], [8], [9]. The

digital control network is a hybrid-network consisting of both

continuous-time wave variables (up(t), vp(t))) and discrete-

time wave variables (uc(j), vc(j)) in which j = ⌊ t
MTs

⌋
[6], [7], [10]. The relationships between the continuous-

time and discrete-time wave variables is determined by the

multi-rate-passive-sampler (denoted PS : MTs) and multi-

rate-passive-hold (denoted PH : MTs). These two elements

are combination of the passive-sampler and passive-hold

blocks (which have been instrumental in showing how to

interconnect digital-controllers to continuous-time systems

in order to achieve L2
m-stability [3], [10] see [11], [12] for

interconnecting continuous time-plants to continuous-time-

controllers over digital networks) and a discrete-time passive-

up-sampler and passive-down-sampler [4]. At the interface to

the digital controller is an inner-product-equivalent sample

and zero-order hold block ect(t) = es(j), t ∈ [jMTs, (j +
1)MTs) [10] which are used for analysis in order to relate

continuous-time-control-inputs rct(t) and continuous-time-

control-outputs ect(t) to the continuous-time-plant inputs

rp(t) and outputs fp(t).

The architecture has the following advantages over tradi-

tional digital control systems:

1) continuous-time bounded-stability results can be achieved

for all linear and non-linear conic systems Hc which are

inside the sector [ac, bc] in which −∞ < ac < b, 0 ≤
b ≤ ∞,

2) wide-band, and correlated noise introduced into the sig-

nal fp(t) can be effectively isolated using the multi-
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rate-passive-sampler before implementing the high-gain

digital-controller Hc without adversely affecting stability,

3) we show that the IPESH-Transform preserves the conic-

properties of a reference analog filter in the discrete-time

domain in order to synthesize discrete-time-anti-aliasing

filters based on Butterworth filter models.

By choosing, to use wave-variables, a negative output

feed-back loop is introduced for both the plant and controller

in which we provide the necessary analysis to determine its

effects in Section II-A. This analysis in which we consider

boundedness results for digital control is inspired by the

insightful continuous-time control results presented in [13] in

which the plant-disturbance was not considered (rp(t) = 0).

Section II-B introduces the multi-rate-passive-sampler and

multi-rate-passive-hold which includes a new linear passive-

sampler which will encourage further analysis and simplify

implementation, it also includes are main stability results.

Section II-C provides the necessary results to construct

conic-digital-filters (which are inside the sector [af , bf ] from

conic-continuous-time-filters which are also inside the sector

[af , bf ].

A. Control of a Conic System Cascaded With a Passive

System

Many continuous-time dynamical systems denoted by the

symbol Hs : us → yp (in which us ∈ R
m is an input-

function in the extended Lm
2 -space and Hsus = yp ∈ R

m

denotes an image of us under Hs each with instantaneous

values at time t ∈ R denoted as us(t) and yp(t) respectively)

can typically be described by a cascade of a conic-system

Hc : us → yc which precedes a passive system Hp : yc →
yp. A passive system is a special type of conic-system which

can be contained inside a positive sector [0,∞]. When each

sub-system Hc and Hp can be described by a set of ordinary

differential equations of the following general form with

input u ∈ R
m, output y ∈ R

m, and state x ∈ R
n

ẋ(t) = F (x(t), u(t)), x(to) = xo, t ≥ to (1)

y(t) = H(x(t), u(t))

and in addition if F (0, 0) = 0, H(0, 0) = 0 and a positive-

definite storage function V (x(t)) > 0, V (0) = 0 exists

which is continuously differentiable such that V̇ (x(t)) ≤
r(u(t), y(t)) t ≥ 0 holds, then each subsystem is a

dissipative-system [14, Corollary 5.1 (5.31)] with respect

to the (conic) supply rate r(u(t), y(t)) −∞ < a < ∞
|a| < b ≤ ∞ in which the conic-supply-rate is of the

following form:

r(u(t), y(t)) = yT(t)u(t)− 1

a + b
yT(t)y(t)− ab

a + b
uT(t)u(t).

(2)

We chose to restrict ourselves to the less general conic-

supply-rates as they allow us to leverage the earlier work

of [8] and [9] when studying bounded-stability for conic-

systems H : u → y which are inside the sector [a, b] in

which the previous constraints on a and b hold such that:

‖(y)T ‖2
2 − (a+ b)〈y, u〉T +(ab)‖(u)T ‖2

2 ≤ 0 holds ∀T ≥ 0.

(3)

Fig. 2. Nominal closed-loop system Hcl resulting from ǫ and Hs.

Conic-systems are not in general dissipative, however, if

a dissipative-system has a conic-supply-rate then it is a

conic-system [5, Remark 3]. There are cases when Hc is

a dissipative-conic-system in which |a| < b < ∞ and Hp

is a passive-system and the resulting cascaded system Hs is

a dissipative-conic-system inside the sector [a, b] in which

b is typically finite when Hp is strictly-output passive. For,

example, a linear-time-invariant system which describes the

position Yp(s) of a unit-mass which is subject to a force

Us(s) consists of a double integrator Hs(s).

Hs(s) = Hc(s)Hp(s) =
Yc(s)

Us(s)

Yp(s)

Yc(s)
=

Yp(s)

Us(s)
=

1

s

1

s
=

1

s2
.

(4)

A Nyquist plot will quickly show that although both Hc and

Hp are passive integrators the resulting system Hs(s) is not

a conic-system in which there does not exist an |a| < ∞
to contain Hs inside the sector [a,∞]. In order make |a|
finite, Hc is made strictly output-passive by simply closing

the loop on kc
1
s

such that Hc(s) = kc

s+kc
. The resulting

system Hs(s) = kc

s(s+kc)
can be shown to be inside the sector

[− 1
kc

,∞] kc > 0.

We are particularly interested in determining the resulting

gain g(Hcl) (‖(yc)T ‖2 ≤ g(Hcl)‖(rc)T ‖2) when closing the

loop of a conic-system Hs which is inside the sector [a, b]
as depicted in Fig. 2.

Theorem 1: The conic-system Hs : us → yp depicted in

Fig. 2 is inside the sector [a, b], ǫ > 0. The input us is related

to the reference rs and output yp by the following feedback

equation

us(t) = rs(t) − yp(t), ∀t ≥ 0.

The resulting closed-loop system is denoted Hcl : rs → yp.

For the case when:

I. 0 ≤ a < b ≤ ∞, Hcl is inside the sector [ a
1+ǫa

, b
1+ǫb

]

in which g(Hcl) = b
1+ǫb

.

II. a < 0, −a < b ≤ ∞, −1 < 2ǫa < 0, and b > − a
1+2ǫa

then Hcl is inside the sector [ a
1+ǫa

, b
1+ǫb

] in which

g(Hcl) = b
1+ǫb

.

Proof:

I. We recall the relationship for our conic-system Hs that

〈yp, us〉T ≥ 1

a + b
‖(yp)T ‖2

2 +
ab

a + b
‖(us)T ‖2

2

substituting in the feed-back equation for us results in

〈yp, rcl〉T ≥
(

ǫ +
1

a + b

)

‖(yp)T ‖2
2+

ab

a + b
‖(rcl − ǫyp)T ‖2

2

solving for the norm of the feedback-error results in
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a + b + 2ǫab

a + b
〈yp, rcl〉T ≥1 + ǫ(a + b) + ǫ2ab

a + b
‖(yp)T ‖2

2+

ab

a + b
‖(rcl)T ‖2

2

cross multiplying results in the final expression

〈yp, rcl〉T ≥ 1

acl + bcl

‖(yp)T ‖2
2 +

aclbcl

acl + bcl

‖(rcl)T ‖2
2

in which acl =
a

1 + ǫa
, bcl =

b

1 + ǫb
.

II. We observe that as long as a < 0, −a < b ≤ ∞,

−1 < 2ǫa < 0, and b > − a
1+2ǫa

hold then all the

inequalities used to determine the bounding sector for

the previous case when 0 ≤ a < b ≤ ∞ do indeed

hold.

All that remains is to determine g(Hcl) in terms of acl and

bcl for both cases. From [5, Corollary 1] we know that Hcl

is inside the sector [acl, bcl] if and only if it is interior conic

with center c = acl+bcl

2 and radius r = bcl−acl

2 such that

‖(yp − crcl)T ‖2 ≤ r‖(rcl)T ‖2, holds ∀T ≥ 0.

Which implies that

c‖(rcl)T ‖2 + ‖(yp − crcl)T ‖2 ≤ (c + r)‖(rcl)T ‖2, ∀T ≥ 0.

We observe that under both cases the center c > 0, therefore,

we can apply the triangle inequality to show that

‖(yp + (c − c)rcl)T ‖2 = ‖(yp)T ‖2 ≤ (c + r)‖(rcl)T ‖2.

In which

g(Hcl) = c + r =
acl + bcl + bcl − acl

2
= bcl.

1) Wave Variable Networks: In order to analyze the

closed-loop effects on Hp and Hc we recall our use of

wave-variables. As discussed in [10] scattering [15] or their

reformulation known as the wave-variable-networks allow

effort and flow variables (ec(j), fp(t)), to be transmitted over

a network while remaining passive when subject to arbitrary

fixed time delays and data dropouts [6].

up(t) =
1√
2b

(bfp(t) + edc(t)) (5)

vp(t) =
1√
2b

(bfp(t) − edc(t)) (6)

vc(j) =
1√
2b

(bfdp(j) − ec(j)) (7)

uc(j) =
1√
2b

(bfdp(j) + ec(j)) (8)

(5) can be thought of as the effective sensor output in a wave

variable form for the plant Hp depicted in Fig. 1. Likewise,

(7) can be thought of as the command output in a wave

variable form from the controller Hc depicted in Fig. 1. (5)

and (6) respectively satisfy the following equality:

1

2
(uT

p (t)up(t) − vT

p (t)vp(t)) = fT

p (t)edc(t) (9)

Fig. 3. Final Controller-Plant-wave-network realization.

Similarly, (7) and (8) respectively satisfy the following

equality:

1

2
(uT

c (j)uc(j) − vT

c (j)vc(j)) = fT

dp(j)ec(j). (10)

Denote I ∈ R
ms×ms as the identity matrix. When im-

plementing the wave variable transformation the continuous

time plant “outputs” (up(t), edc(t)) are related to the corre-

sponding “inputs” (vp(t), fp(t)) as follows (Fig. 1):

[

up(t)
edc(t)

]

=

[

−I
√

2bI

−
√

2bI bI

] [

vp(t)
fp(t)

]

(11)

Next, the discrete time controller “outputs” (vc(j), fdp(j))
are related to the corresponding “inputs” (uc(j), ec(j)) as

follows (Fig. 1):

[

vc(j)
fdp(j)

]

=





I −
√

2
b
I

√

2
b
I − 1

b
I





[

uc(j)
ec(j)

]

(12)

It has been shown that when a discrete-time-strictly-output-

passive controller Hc is connected to a continuous-time-

strictly-output-passive plant Hp over a wave-variable net-

work which includes a passive-sampler and passive-hold and

uses a IPESH for analysis, that the resulting network is L2
m-

stable [3], [10]. In proving this we were able to, for a large

part, ignore the underlying network structure which resulted

from using the wave transform. In order to examine the

case when Hp is not passive we need to explicitly consider

the resulting network structure which results from the wave-

variable transformation. In order to simplify discussion and

create an explicit network structure as depicted in Fig. 3,

which can leverage Theorem 1, we make the following

assumptions:

Assumption 1: The scattering gain b must always satisfy

the following bounds:

0 < b < ∞, if ap ≥ 0

0 < b < min{−ap + bp

2ap

,− 1

2ap

}, if ap < 0.

In addition it is assumed that ac ≥ 0.

Which allows us to state the following theorem which is a

direct result of Lemma 4 and Lemma 5:
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Fig. 4. Multi-rate passive-sampler, passive-hold.

Theorem 2: The plant-controller-network depicted in

Fig. 1 can be transformed to the final form depicted in Fig. 3.

In addition if Assumption 1 is satisfied, then

√
2bHpe

is inside the sector

[

bap − 1

bap + 1
,
bbp − 1

bbp + 1

]

and

(13)
√

2

b
Hce

is inside the sector

[

b − bc

b + bc

,
b − ac

b + ac

]

. (14)

B. Multi-Rate-Passive-Sampler(Hold)

Fig. 4 depicts our proposed multi-rate passive-sampler

(PS:MTs), and passive-hold (PH:MTs) subsystem. The

multi-rate passive-sampler (PS:MTs) consists of a cas-

cade of a linear-passive-sampler (linear-PS:Ts) and a

passive-downsampler (PDS:Ts). The multi-rate passive-hold

(PH:MTS) subsystem consists of a cascade of a passive-

upsampler (PUS:M ) and passive-hold (PH:Ts). For simplic-

ity of discussion the figure is for the single-input-single-

output (SISO) case but we note all elements depicted can be

diagonalized to handle m-dimensional waves. The standard

anti-aliasing down-sampler (HLP (z), ↓ M) system depicted

in Fig. 4 has been shown to be a PDS, in addition the hold-

PUS depicted is a PUS [4, Definition 4]. A valid PDS:M

and PUS:M satisfy the following inequalities:

‖(uc(j))N‖2
2 ≤ ‖(up(i))MN‖2

2 (15)

‖(vp(i))MN‖2
2 ≤ ‖(vc(j))N‖2

2 (16)

which hold ∀N ≥ 0. The scaled-ZOH block in which

vp(t) =
1

Ts

vp(i), t ∈ [iTs, (i + 1)Ts)

has been shown to be a valid passive-hold system PH:Ts in

which

‖(vp(t))MNTs
‖2
2 ≤ ‖(vp(i))MN‖2

2 (17)

[3]. A valid passive-sampler will satisfy the following

inequality

‖(up(i)MN‖2
2 ≤ ‖(up(t))MNTs

‖2
2, (18)

unlike the non-linear averaging-passive-sampler [16, Defini-

tion 6] implementation which was shown to be a valid PS

we choose to implement a linear version.

Definition 1: The linear-passive-sampler as depicted in

Fig. 4 with input up(t) and output denoted up(i) is imple-

mented as follows:

1. the input up(t) is first filtered by an analog-low-pass-

anti-aliasing filter denoted HLPc
(s) whose magnitude

|HLPc
(jω)| ≤ 1 and unity-bandwidth should be roughly

the digital-control-nyquist-frequency ωn = π
MTs

. The

magnitude-roll-off should be one which achieves the

desired-stop-band magnitude at ω = π
Ts

(the nyquist-

frequency of the second-stage digital anti-aliasing filter

HLP (z)).
2. the output of HLPc

(s) we denote as upLPc(t) in which

up(i) =
1√
Ts

∫ iTs

0

(upLPc(t) − upLPc(t − Ts))dt (19)

Lemma 1: The linear-passive-sampler (Definition 1) sat-

isfies (18).

Proof: Since up(t) = 0, t < 0 by assumption, and the

low-pass-filter is assumed to be causal therefore up(0) = 0
which implies that

0 = ‖(up(i)0‖2
2 ≤ ‖(up(t))0‖2

2.

Next, we note that (19) can be equivalently written as

up(i) =
1√
Ts

∫ iTs

(i−1)Ts

upLPc(t)dt

squaring both sides we have

u2
p(i) =

1

Ts

(

∫ iTs

(i−1)Ts

upLPc(t)dt)2

applying the Schwarz Inequality we have

u2
p(i) ≤

Ts

Ts

∫ iTs

(i−1)Ts

u2
pLPc(t)dt

therefore

‖(up(i))MN‖2
2 =

MN−1
∑

i=0

u2
p(i)

≤
MN−1
∑

i=0

∫ iTs

(i−1)Ts

u2
pLPc(t)dt

≤ ‖(upLPc(t))(MN−1)Ts
‖2
2

≤ ‖(upLPc(t))MNTs
‖2
2

since the low-pass-filter has a gain less than or equal to one

(‖(upLPc(t))MNTs
‖2
2 ≤ ‖(up(t))MNTs

‖2
2) then (18) clearly

results from these last two inequalities.

Finally, from (15) and (18) it is obvious that the following

inequality holds for the multi-rate-passive-sampler PS:MTs

‖(uc(j))N‖2
2 ≤ ‖(up(t))MNTs

‖2
2 (20)

and from (17) and (16) the following holds for the multi-

rate-passive-hold PH:MTS

‖(vp(t))MNTs
‖2
2 ≤ ‖(vc(j))N‖2

2 (21)

With these two inequalities established, and Theorem 2 we

can now prove the following Lemma.
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Lemma 2: Denote the L2
m-gain of the plant-subsystem

Hpe
: êclp → ype

as γpe
in which ‖(ype

)MNTs
‖2 ≤

γpe
‖(êclp)MNTs

‖2. In addition, denote the l2m-gain of the

controller-subsystem Hce
: êclc → yce

as γce
in which

‖(yce
)N‖2 ≤ γce

‖(êclc)N‖2. In addition we shall use the

following shorthand notation in which Ep = ‖(êclp)MNTs
‖2,

Ec = ‖(êclc)N‖2, Rp = ‖(rp)MNTs
‖2, and Rc = ‖(rc)N‖2.

If γpe
γce

< 1 then

Ec ≤ γpe
+ 1

1 − γpe
γce

(

√

b

2
Rc +

1√
2b

Rp

)

Ep ≤ γce
+ 1

1 − γpe
γce

(

√

b

2
Rc +

1√
2b

Rp

)

Proof: From the triangle inequality we have:

‖(êclp)MNTs
‖2 ≤ 1√

2b
‖(rp)MNTs

‖2 + ‖(vp)MNTs
‖2

(22)

‖(êclc)N‖2 ≤
√

b

2
‖(rc)N‖2 + ‖(uc)N‖2 (23)

‖(uc)N‖2 ≤ γpe
‖(êclp)MNTs

‖2 +
1√
2b

‖(rp)MNTs
‖2 (24)

‖(vp)MNTs
‖2 ≤ γce

‖(êclc)N‖2 +

√

b

2
‖(rc)N‖2 (25)

in which the final two inequalities were a direct result of (20)

and (21) respectively. and substituting (25) into (22) results

in

Ep ≤ γce
Ec +

(

1√
2b

Rp +

√

b

2
Rc

)

(26)

similarly substituting (24) into (23) results in

Ec ≤ γpe
Ep +

(

1√
2b

Rp +

√

b

2
Rc

)

(27)

Substituting (26) into (27) results in the following

Ec ≤ γpe
γce

Ec + (γpe
+ 1)

(

1√
2b

Rp +

√

b

2
Rc

)

Ec ≤ γpe
+ 1

1 − γpe
γce

(

1√
2b

Rp +

√

b

2
Rc

)

likewise, substituting (27) into (26) results in the following

Ep ≤ γpe
γce

Ep + (γce
+ 1)

(

1√
2b

Rp +

√

b

2
Rc

)

Ep ≤ γce
+ 1

1 − γpe
γce

(

1√
2b

Rp +

√

b

2
Rc

)

note that the inequalities only result if γpe
γce

< 1.

Next we note the following observation that γpe
=

g(
√

2bHpe
) = g(−

√
2bHpe

) and γce
= g(

√

2
b
Hce

) =

g(−
√

2
b
Hce

) therefore using Theorem 1, Theorem 2 the

following Corollary follows.

Corollary 1:

γpe
= g(

√
2bHpe

) = max

{∣

∣

∣

∣

bap − 1

bap + 1

∣

∣

∣

∣

,

∣

∣

∣

∣

bbp − 1

bbp + 1

∣

∣

∣

∣

}

(28)

γce
= g(

√

2

b
Hce

) = max

{∣

∣

∣

∣

b − bc

b + bc

∣

∣

∣

∣

,

∣

∣

∣

∣

b − ac

b + ac

∣

∣

∣

∣

}

(29)

Therefore:

1. when the plant is passive (ap = 0, bp = ∞) then γpe
= 1

which implies γpe
γce

< 1 if the controller is strictly-

input-output-passive 0 < ac ≤ bc < ∞ (and vice-versa).

2. when the plant is inside the sector [ap,∞] in which ap <

0 then γpe
γce

< 1 if the controller is inside the sector

[ac, bc] in which −b2ap < ac, bc < −1
ap

.

As was shown in [10] the IPESH blocks can be used to aid

with analysis such that

‖(ec)N‖2 =
1√

MTsKMTs

‖(ec)MNTs
‖2 (30)

holds. In addition, the following inequality result from ap-

plying the Schwarz inequality as demonstrated in [17, proof

of Theorem 1-III].

‖(rc)N‖2 ≤
√

MTsKMTs
‖(rct)MNTs

‖2 (31)

Theorem 3: When γpe
γce

< 1 the digital control network

depicted in Fig. 1 is L2
m-stable in which there exists a 0 <

γ < ∞ such that

‖y(t)‖2 ≤ γ‖u(t)‖2

in which yT(t) = [fT

p (t), eT

ct(t)]

and uT(t) = [rT

p (t), rT

ct(t)].

Proof: (Sketch) Observe that

‖(ec)N‖2 ≤ bbc

b + bc

√

2

b
Ec

holds since Hclc has finite-gain, therefore

1√
MTsKMTs

‖(ect)MNTs
‖2 ≤ bbc

b + bc

√

2

b
Ec

holds due to (30). Similarly, observer that

‖(fp)MNTs
‖2 ≤ bp

1 + bbp

√
2bEp

holds since the closed-loop plant Hclp has finite-gain. Fi-

nally, we observe that (31) along with the other continuous-

time-norm inequalities can be substituted into the final-two

inequalities of Lemma 2 such that both inequalities involve

only continuous-time norms in which the outputs fp(t) and

ect(t) are bounded by the inputs rp(t) and rct(t). Therefore,

when γpe
γce

< 1 the digital control network depicted in

Fig. 1 is L2
m-stable.
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C. Conic Digital Filters

The section shows how an engineer can synthesize a

discrete-time controller/filter from a continuous-time refer-

ence model. In particular, we show how a continuous-time

conic system can be transformed into a discrete-time conic

system using the inner-product equivalent sample and hold

(IPESH). Additionally, we present a corollary for transform-

ing a continuous-time conic SISO LTI-system into a discrete-

time conic SISO LTI-system using the IPESH-Transform. We

begin by recalling the definition for the IPESH.

Definition 2: [18, Definition 4] Let Gct : L2
e(U) →

L2
e(Y ) denote an input-output mapping. The IPESH may

be applied to transform Gct into the discrete-time domain,

resulting in the mapping Gd : l2e(U) → l2e(Y ), as follows:

I. x(t) =
∫ t

0
y(τ)dτ ,

II. y(i) = x((i + 1)Ts) − x(iTs),
III. u(t) = u(i),∀t ∈ [iTs, (i + 1)Ts].

Remark 1: The inner-product is preserved using the

IPESH (see [18] for details).

Lemma 3: If Hct is inside the sector [a, b] then Hd

resulting from the IPESH is inside the sector [aTs, bTs].
Proof: Since Hct is inside the sector [a, b], we can write

〈y, u〉T ≥ 1

a + b
‖(y)T ‖2

2 +
ab

a + b
‖(u)T ‖2

2. (32)

But, from Definition 2-III it can be shown that

‖(u)T ‖2
2 = Ts‖(u)N‖2

2. (33)

Additionally, from Definition 2-II and the Schwarz inequal-

ity, the following inequality can be shown to hold [17, proof

of Theorem 1-III]

‖(y)T ‖2
2 ≥ 1

Ts

‖(y)N‖2
2. (34)

Finally, we use the equivalence of the discrete-time and

continuous-time inner products combined with (33) and (34),

and substitute into (32) to obtain

〈y, u〉N ≥ 1

Ts(a + b)
‖(y)N‖2

2 +
abTs

a + b
‖(u)N‖2

2

=
1

(aTs) + (bTs)
‖(y)N‖2

2 +
(aTs)(bTs)

(aTs) + (bTs)
‖(u)N‖2

2,

which proves the result.

At this point we have shown that a continuous-time

conic system can be transformed through the IPESH into

a discrete-time conic system. Since this is a general result,

it certainly applies for the special case of conic single-input-

single-output (SISO) LTI systems. In this case, the IPESH-

Transform can be expressed in closed-form as follows.

Definition 3: [4, Definition 5] Let Hp(s) and Hp(z)
denote the respective continuous and discrete time transfer

functions which describe a plant. Furthermore, let Ts de-

note the respective sample and hold time. Finally, denote

Z{F (s)} as the z-transform of the sampled time series

whose Laplace transform is the expression of F (s), given on

Fig. 5. Plant Dynamics Hp(s)

Fig. 6. The classical digital-control-design for position tracking

the same line in [19, Table 8.1 p.600]. Hp(z) is generated

using the following IPESH-Transform

Hp(z) =
(z − 1)2

Tsz
Z
{

Hp(s)

s2

}

.

The proof for [4, Lemma 5] shows that the IPESH-

Transform is a scaled-version (k = 1
Ts

) of the IPESH given

in Definition 2. Recall the scaling property for conic-systems,

which states that if H is inside the sector [a, b], then kH is

inside the sector [ka, kb] for any scalar k [5]. Therefore, we

have the following corollary:

Corollary 2: If a SISO LTI system H(s) is inside the

sector [a, b] then Hd(z) resulting from applying the IPESH-

Transform is inside the sector [a, b].

III. SINGLE-DEGREE OF FREEDOM

TELE-OPERATOR NETWORK

Fig. 5 depicts the idealized LTI-model (neglecting gravita-

tional effects) for a single-degree-of-freedom haptic-paddle

(with mass Mp) with a proportional (feed-back gain K)

filtered-velocity feedback-loop (with filter-time-constant τ )

in order for Hp(s) to be inside the sector [ap,∞]. It can be

verified that if

K =
Mp

τ
then Hp(s) is inside the sector [−τ,∞].

This nominal plant-system Hp(s) will be controlled using

our digital-control network depicted in Fig. 1 in which we

shall use a proportional-controller ec(j) = kcer(j) in which

the gain kc is chosen to satisfy L2
m-stability such that

kc <
1

τ
= − 1

ap

.

In addition KMTs
is chosen so that rct(t) = fp(t) at

steady-state. We note that rp(t) is probably better thought

of as an over-riding position reference in this frame-work,

in which we note that force-disturbances are introduced in

the inner-velocity feedback loop and are quickly rejected.

In our proposed frame-work, we note that if the robotic-

manipulator hits a wall and steady-state error results (rc(t) 6=
fp(t)) the operator receives increased force-feedback ec(t)
which is proportional to this error (rc(t) − fp(t)). Fig. 6

depicts a classic-digital-position-feedback control scheme in

which rc(j) = fp−classic(jMTs) at steady-state if n(t) =
0. We chose the feed-back gain to be the same as the
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Fig. 7. Baseline tracking response in which n(t) = 0.
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Fig. 8. Position response in which n(t) 6= 0.

scattering-gain b in order to get a slightly slower-response

then our high-performance system. However, we want to

measure how the two systems respond to the introduction

of wide-band noise n(t) in which the feed-back signal

fnp(j) = fp−classic(MTsj) + n(MTsj) for the classical-

scheme. For our high-performance system we filter the noise

corrupted signal using the multi-rate-passive-sampler subsys-

tem (Fig. 4) described in Section II-B in which HLPc
(s) is

an analog second-order-low-pass Butterworth-filter in which

it’s center-frequency ωc = π
MTs

in addition the second-stage

digital anti-aliasing filter HLP (z) was synthesized by apply-

ing the IPESH-Transform to a seventh-order Butterworth-

filter model HLP (s) with the same center-frequency ωc [20,

Section 9.7.5].

IV. SIMULATION RESULTS

The simulation parameters are as follows: b = 2, Mp = 2
kg, Ts = .01 seconds, M = 10, τ = MTs

π
and kc = 30 <

10π. Fig. 7 indicates that our high-performance position

fp(t) response tracks the desired reference rc(t) closer

than the classic-digital-control-system response fp−classic(t).
Fig. 8 indicates the superior advantage our high-performance

system has in tracking the desired reference rp(t) when

bandwidth-limited-white-noise is introduced with bandwidth
10π
Ts

. Both systems reject steady-state force disturbances

as predicted and as previously discussed. In addition, the

controller-term ect(t) in our high-performance-digital control

network provides additional force-feedback to an operator

if steady-state error occurs while maintaining steady-state

operation when the manipulator contacts a wall.

V. CONCLUSIONS

Theorem 1 provides a simple rule to characterize the

resulting conic-properties when closing the loop of a conic

system inside the sector [a, b]. This allowed us to use the rea-

sonable Assumption 1 to analyze the internal-stability struc-

ture (Fig. 3) of our proposed high-performance digital control

network for continuous time systems depicted in Fig. 2.

We showed that a novel-multi-rate linear-passive sampler

depicted in Fig. 4 satisfied the key-inequality (1) (Lemma 1),

combined with a multi-rate-passive-hold system in order to

interconnect digital-controllers to continuous time systems

and achieve L2
m-stability while allowing anti-aliasing filters

to be introduced and not affect either stability or perfor-

mance (which traditional anti-aliasing-filters do in classic

digital control frameworks). Lemma 2 provides the small-

gain conditions, while Corollary 1 demonstrates how non-

passive plants inside the sector [a,∞] can be interconnected

to certain strictly-input-output-passive digital controllers in

order to attain Lm
2 -stability (Theorem 3). Corollary 2 shows

how the IPESH-Transform can be applied to a conic-analog-

controller inside the cone [a, b] in order to synthesize a conic-

digitial-controllers inside the sector [a, b]. Finally, simulation

results of a single-degree-of-freedom haptic paddle using our

proposed architecture show good performance even when

subject to bandwidth-limited noise.
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APPENDIX

Fig. 9 depicts a graphical realization of (11) on the

left-hand-side (LHS), and the first obvious graphical-

transformation on the right-hand-side (RHS) in which we

denote closed-loop-transformation of the plant Hp in terms

of the feedback-gain b as Hclp : eclp → fp in which

eclp(t) = rp(t) +
√

2bvp(t) = ep(t) + bfp(t). (35)

In order to simplify discussion and to leverage Theorem 1

we use Assumption 1 in order to state the following corol-

lary:

Corollary 3: If Assumption 1 is satisfied then Hclp :

eclp → fp is inside the sector
[

ap

1+bap
,

bp

1+bbp

]

.

Next we transform the RHS realization in Fig. 9 to the final

form depicted in Fig. 10.

Lemma 4: The RHS of Fig. 9 can be transformed to the

final form depicted in Fig. 10. In addition if Assumption 1

Fig. 11. Controller-rc-uc-ep-vc-network realization and initial transfor-
mation.

is satisfied, then

√
2bHpe

is inside the sector

[

bap − 1

bap + 1
,
bbp − 1

bbp + 1

]

. (36)

Proof: From Fig. 10 it is clear that,

eclp(t) =
√

2b

(

1√
2b

rp(t) + vp(t)

)

= rp(t) +
√

2bvp(t)

which satisfies (35), next from Fig. 10 it is clear that,

up(t) =
√

2bfp(t) −
1√
2b

eclp(t) +
1√
2b

rp(t)

=
√

2bfp(t) −
1√
2b

(

rp(t) +
√

2bvp(t)
)

+
1√
2b

rp(t)

=
√

2bfp(t) − vp(t).

which satisfies (11) in regards to up(t). From Corol-

lary 3 we have that Hclp : eclp → fp is in-

side the sector
[

ap

1+bap
,

bp

1+bbp

]

. From the scaling prop-

erty [5, Property 1-(ii)], we have that sector-properties of

Hclp

√
2b =

√
2bHclp in which

√
2bHclp is inside the sector

[√
2b

ap

1+bap
,
√

2b
bp

1+bbp

]

. Using the sum-rule [5, Property 1-

(iii)] we have that

Hpe
is inside the sector

[ −1√
2b

+
√

2b
ap

1 + bap

,
−1√
2b

+
√

2b
bp

1 + bbp

]

solving for ape
we have

ape
=

−1√
2b

+
√

2b
ap

1 + bap

=
1√
2b

(

2bap − bap − 1

bap + 1

)

therefore Hpe
is inside the sector

[

1√
2b

(

bap − 1

bap + 1

)

,
1√
2b

(

bbp − 1

bbp + 1

)]

finally from the scaling property we have that

√
2bHpe

is inside the sector

[

bap − 1

bap + 1
,
bbp − 1

bbp + 1

]

.

Fig. 11 depicts a graphical realization of (12) on

the left-hand-side (LHS), and the first obvious graphical-

transformation on the right-hand-side (RHS) in which we

denote closed-loop-transformation of the controller Hc in

terms of the feedback-gain 1
b

as Hclc : eclc → ec in which

eclc(j) = rc(j) +

√

2

b
uc(j) = er(j) +

1

b
ec(j). (37)

Which allows us to state the following corollary:
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Fig. 12. Final Controller-rc-uc-ec-vc-network realization.

Corollary 4: If Assumption 1 is satisfied then Hclc :

eclc → ec is inside the sector
[

bac

b+ac
, bbc

b+bc

]

.

Next we transform the RHS realization in Fig. 11 to the final

form depicted in Fig. 12.

Lemma 5: The RHS of Fig. 11 can be transformed to the

final form depicted in Fig. 12. In addition if Assumption 1

is satisfied, then
√

2

b
Hce

is inside the sector

[

b − bc

b + bc

,
b − ac

b + ac

]

.

Proof: From Fig. 12 it is clear that,

eclc(j) =

√

2

b

(

√

b

2
rc(j) + uc(j)

)

= rc(j) +

√

2

b
uc(j)

which satisfies (37), next from Fig. 12 it is clear that,

vc(j) = −
√

2

b
ec(j) +

√

b

2
eclc(j) −

√

b

2
rc(j)

= −
√

2

b
ec(j) +

√

b

2

(

rc(j) +

√

2

b
uc(j)

)

−
√

b

2
rc(j)

= −
√

2

b
ec(j) + uc(j).

which satisfies (12) in regards to vc(j). From Corollary 4 we

have that Hclc : eclc → ec is inside the sector
[

bac

b+ac
, bbc

b+bc

]

.

From the scaling property, we have that sector-properties of

−Hclc

√

2
b

= −
√

2
b
Hclc in which −

√

2
b
Hclc is inside the

sector
[

−
√

2
b

bbc

b+bc
,−
√

2
b

bac

b+ac

]

. Using the sum-rule we have

that

Hce
is inside the sector

[

√

b

2
−
√

2

b

bbc

b + bc

,

√

b

2
−
√

2

b

bac

b + ac

]

solving for bce
we have

bce
=

√

b

2
−
√

2

b

bac

b + ac

=

√

b

2

(

1 − 2ac

b + ac

)

therefore Hce
is inside the sector

[

√

b

2

(

b − bc

b + bc

)

,

√

b

2

(

b − ac

b + ac

)

]

finally from the scaling property we have that
√

2

b
Hpe

is inside the sector

[

b − bc

b + bc

,
b − ac

b + ac

]

.


