
Handling Write Backs in Multi-Level Cache Analysis for WCET
Estimation

Zhenkai Zhang
Institute for Software Integrated

Systems
Vanderbilt University
Nashville, TN, USA

zhenkai.zhang@vanderbilt.edu

Zhishan Guo
Department of Computer Science
Missouri University of Science and

Technology
Rolla, MO, USA
guozh@mst.edu

Xenofon Koutsoukos
Institute for Software Integrated

Systems
Vanderbilt University
Nashville, TN, USA

xenofon.koutsoukos@vanderbilt.edu

ABSTRACT
In this paper, we investigate how to soundly analyze multi-level
caches that employ write-back policy at each level for worst-case
execution time (WCET) estimation. To the best of our knowledge,
there is only one existing approach for dealing with write backs
in multi-level cache analysis. However, as shown in the paper, this
existing approach is not sound. In order to soundly handle write
backs, at a cache level, we need to consider whether a memory
block is potentially dirty and when such a potentially dirty block
may be evicted from the cache. To this end, we introduce a dirty
attribute into persistence analysis for tracking dirty blocks, and
over-approximate a write back window for each possible write
back. Based on the overestimated write back occurring times, we
propose an approach that can soundly deal with write backs in anal-
ysis of multi-level (unified) caches for WCET estimation. Possible
write back costs are also integrated into path analysis. We evaluate
the proposed approach on a set of benchmarks to demonstrate its
effectiveness.

CCS CONCEPTS
• Computer systems organization→ Real-time systems; Em-
bedded software;

KEYWORDS
WCET estimation, multi-level cache analysis, write back handling

1 INTRODUCTION
Hard real-time system design requires worst-case execution time
(WCET) estimation for each task. Since it is impossible to derive
the exact WCET of a task in general, an overestimation is necessary
to ensure safety. On the other hand, the estimation should be as
tight as possible to maximize the system resource utilization. How-
ever, because of the complex behavior of many micro-architectural
features in modern embedded processors, it is very challenging to
soundly and tightly estimate the WCET.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RTNS ’17, October 4–6, 2017, Grenoble, France
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5286-4/17/10. . . $15.00
https://doi.org/10.1145/3139258.3139269

Caches are very commonly used in processors to bridge the
increasing gap between the clock cycle time and main memory
access time. Although the presence of caches improves the average
performance, it poses great challenges on the tightness of WCET
estimation. Over the past two decades, the analysis of the effects of
single-level cache behavior on WCET estimation has been studied
thoroughly.

Recently, analysis of cache hierarchies for WCET estimation
has drawn much attention [3, 8, 9, 12, 22, 28, 29], since there is a
rising need to employ high-performance processors in real-time
systems, which are often equipped with multi-level caches (e.g.,
cache hierarchies are natural in multi-core processors1). However,
compared to single-level caches, it is much more difficult to analyze
the behavior of multi-level caches, since the interactions between
cache levels need to be considered. For instance, if a memory access
hits in the cache at some level, it will not proceed to affect the cache
state at the next lower level.

Multi-level cache analysis for WCET estimation is still an on-
going research subject, and much work has mainly focused on
instruction caches. Since every non-trivial task manipulates some
data, how data references affect the behavior of a multi-level cache
has to be analyzed, which should take into account the write policy
as well as the write miss policy used at each level. There are two
commonly employed write policies, which are write-through and
write-back. When performing a write at some level, in the case of
the write-through policy being used, the written information will
propagate to the next lower level; yet, in the case of the write-back
policy being used, the information is only written to the memory
block at that level with the block being marked as dirty, and the
dirty block will be written to the next lower level upon eviction.
There are also two commonly used write miss policies, that are
write-allocate and no-write-allocate. Upon a write miss at some level,
with the write-allocate policy, a cache block is allocated to the mem-
ory block being written to; while, with the no-write-allocate policy,
no cache block is allocated. Although either write policy could
be used with either write miss policy, we usually have write-back
caches use the write-allocate policy and write-through caches use
the no-write-allocate policy.

While there has been some work on analysis of multi-level data
or unified caches using the write-through policy [3, 12], to the best
of our knowledge, only one approach has been proposed to analyze
multi-level write-back caches so far [22]. However, as shown in this
1 When using multi-core processors in hard real-time systems, we often fall back on
techniques like cache partitioning to eliminate inter-core interference. Although the
cores can be made to not interfere with each other on the shared cache(s), it is still a
multi-level cache for each core.

https://doi.org/10.1145/3139258.3139269

RTNS ’17, October 4–6, 2017, Grenoble, France Zhenkai Zhang, Zhishan Guo, and Xenofon Koutsoukos

paper, the approach proposed in [22] may not soundly handle write
backs so that the WCET can be possibly underestimated. Due to a
much smaller number of total writes, the write-back policy is more
preferably used in cache hierarchies. Therefore, it is necessary to
have an approach that can soundly handle write backs in multi-level
write-back data/unified cache analysis for WCET estimation.

Compared to thewrite-through policy, thewrite-back policy poses
more challenges to multi-level cache analysis, since sometimes it is
hard to predict when a write back at a cache level will be triggered
to happen, and when a write back happens the state at the next
lower level will be updated to embrace the evicted dirty block (i.e.,
a write back happening at a cache level should be treated as an
additional access to the next lower level during the analysis). In
this paper, we propose an approach to soundly handle write backs
in multi-level cache analysis, which centers on a novel dirty block
tracking method.

The main contributions of this paper are: (1) We show that the
approach proposed in [22] cannot soundly cope with write backs
since it only considers whether the blocks are potentially dirty but
not when a write back will possibly happen; (2) We propose an
approach for soundly analyzing multi-levelwrite-back caches, as we
estimate a safe write back window for each potentially dirty block
to capture possible write back occurring times; (3) We evaluate the
proposed approach on a set of benchmarks, and we compare our
write back window estimation method with the one proposed in
[1] showing the effectiveness of our method.

The rest of this paper is organized as: Section 2 briefly sets the
background on static (multi-level) cache analysis; Section 3 presents
the system model under consideration; Section 4 formulates the
problem; Section 5 shows the unsoundness of the only existing
approach; Section 6 describes the proposed approach to write back
handling in multi-level cache analysis; Section 7 evaluates the pro-
posed approach on a set of benchmarks; Section 8 gives the related
work; and Section 9 concludes this paper (with some future work).

2 BACKGROUND ON STATIC CACHE
ANALYSIS

Cache analysis for WCET estimation is usually based on abstract
interpretation for scalability. Such approaches aim to assign a cache
hit/miss classification (CHMC) to each memory reference according
to the abstract cache states (ACSs) derived by three different analy-
ses [4, 24]. These analyses are usually performed on the control-flow
graph (CFG) reconstructed from the low-level code of the program.
At a given program point, must analysis derives a set of memory
blocks that are definitely in the cache, and a memory reference to
a block in the set can be classified as always hit (AH); may anal-
ysis determines a set of memory blocks that are possibly in the
cache, and a memory reference to a block not in the set can be
classified as always miss (AM); persistence analysis derives a set of
memory blocks that stay in the cache once they are brought into
the cache, and a memory reference to such a block is classified as
persistent (PS) or first miss (FM); and, if a memory reference cannot
be classified as AH, AM, or PS, it is categorized as not classified (NC).

Given a reference r to a memory blockm, the effect of r on the
ACS θ type, where type is either must, may, or pers(istence), is cap-
tured by an update function U type : Θtype × M → Θtype, where

Θtype is the set of all the ACSs of the cache (i.e., θ type ∈ Θtype), and
M is the set of all the memory blocks with respect to the cache
block size (namely m ∈ M). In order to soundly merge informa-
tion at a join point during analysis on the CFG, a join function
J type : Θtype × Θtype → Θtype is defined as well. The definitions
of the update and join functions can be found in [4, 24]. Note that
J type is commutative and associative; in the case of combining
more than two ACSs θ type1 , · · · ,θ

type
t (t > 2), we will directly use

J type (θ
type
1 , · · · ,θ

type
t) to represent the corresponding nested use

of J type.
In the case of an A-way set associative cache using the least-

recently-used (LRU) replacement policy, an ACS is composed of
independent abstract set states, and each abstract set state uses
ages 1, · · · ,A to logically order the memory blocks in it. In addition,
each abstract set state in persistence analysis also uses a special age
⊤ to keep track of possibly evicted memory blocks mapped to the
set (namely, these memory blocks are non-persistent).

For single-level caches, we do not need to concern about if they
are accessed by some reference (as single-level caches are always
accessed). However, in the case of multi-level caches, a cache level
may not be accessed if the needed information is found at some level
above it. If we treat a possible access at a level as always occurring
during an analysis, the analysis may not be sound, since the set
reuse distances of memory blocks can be possibly underestimated
[8]. The set reuse distance between two references to the same
memory block at a cache level is defined as the relative age of the
block when the second reference occurs [8].

For a reference r , its cache access classification (CAC) in terms of
a cache level is used to represent the possibility that the level will be
accessed by r [8]. Let θ type denote the ACS at this level immediately
before r , and letm denote the memory block with respect to the
cache block size at this level having the information needed by r .
The CAC regulates how the effect of r on θ type should be considered,
as demonstrated in Tab. 1. If the CAC is always (A), the access will

Table 1: Consider the effect of reference r on the ACS of a
cache level

CAC How θ type is updated

Always (A) U type (θ type,m)

Never (N) θ type

Uncertainly (U) J type
(
U type (θ type,m),θ type

)
always occur, so r will always affect the ACS. On the other hand, if
the CAC is never (N), the access will never happen, and the ACS will
not be affected (so the update is equivalent to an identity function).
If the CAC cannot be either A or N, it is uncertainly (U), that means
the access may or may not happen. In order to ensure soundness,
the update with respect to an U CAC needs to take into account two
possible scenarios (both access occurring and access not occurring)
by joining them.

As described in [8], for a reference r that is possible to access
a cache level (i.e., its CAC is not N at this level), if r can be safely
classified as AH at this level, r will never need to access all the

Handling Write Backs in Multi-Level Cache Analysis for WCET Estimation RTNS ’17, October 4–6, 2017, Grenoble, France

lower levels, namely its CAC is N at any lower level; if r can be
safely classified as AM at this level, r is also possible to access
the next lower level, namely its CAC at the next lower level is the
same as the CAC at this level (i.e., A or U). Note that if a reference
always/never accesses a cache level in reality, but its CAC at that
level is U in an analysis, the analysis is still sound although the
result may not be precise.

3 SYSTEM MODEL
In this paper, we focus on a generalized non-inclusive2cache hi-
erarchy model, which has n cache levels. At each cache level Lx
(where 1 ≤ x ≤ n), it is a unified cache unless otherwise specified
(e.g., sometimes it is simpler and cleaner to just use multi-level data
caches in examples). Note that a unified cache contains both instruc-
tions and data, so the proposed approach can be easily adapted for
the analysis of cache hierarchies with levels composed of separate
instruction and data caches.

At each cache level, the write policy is write-back, and the
write miss policy is write-allocate, which is the most common
combination. We assume that each cache is set associative, and the
LRU replacement policy is employed. The size of a cache block may
not be the same at different cache levels, but it is assumed that the
block size does not increase as the level goes up. (Although most of
the processors have the same block size at different levels, there are
some exceptions. For example, in Alpha 21164, the L1 block size is
32B, the L2 block size is 32B/64B, and the L3 block size is 64B.)

We assume that when a write back happens, the dirty block
is written to the next lower level in the memory hierarchy first,
followed by the cache action that triggered the write back (i.e.,
no victim or write buffer is used between each pair of levels). We
also assume cache levels are not searched in parallel for a piece of
information, namely a cache level is searched because of a cache
miss at its immediate upper level. For convenience, we say that
data reads are made via load instructions and data writes are made
via store instructions (i.e., RISC architecture is used), although this
is not a restriction at all.

4 PROBLEM STATEMENT
When analyzing data/unified caches for WCET estimation, a rec-
ognized difficulty is due to dynamic load/store instructions, whose
accessed memory addresses are not directly known but are com-
puted at run time. Therefore, we first need to perform an address
analysis to derive all the possibly accessed memory addresses for
each load/store instruction. Several methods have been proposed
for address analysis [21, 25], and we can just use an existing one,
namely address analysis is not in the scope of this paper.

The problem that we concentrate on in this paper is how to cap-
ture and propagate the effects caused by store instructions soundly
in multi-level caches, specifically in multi-level write-back caches,
forWCET estimation. In contrast withmulti-levelwrite-back caches,
the problem inmulti-levelwrite-through caches is much easier, since

2 There are three cache hierarchy types, which are inclusive, exclusive, and non-
inclusive. Multi-level inclusive caches require that the contents at upper cache levels
must be a subset of the contents at lower inclusive levels. Multi-level exclusive caches
require that the contents at a cache level should not be duplicated at any other cache
level. Multi-level non-inclusive caches allow duplicated contents existing at any cache
level, but they do not strictly enforce the inclusion property.

the information written by a store instruction will be propagated
through the hierarchy at the time when the write happens; and
approaches for soundly analyzing multi-level write-through caches
have been proposed [3, 12]. The reason why the problem becomes
much harder in terms of multi-level write-back caches is that the
propagation of written information to the next lower level is always
postponed; thus, at each level, we need to track the blocks that may
cause write backs, estimate the time points when a write back may
happen, and take into account the possible write back effects on
ACSs of an analysis.

In spite of the popularity of using the write-back policy in cache
hierarchies (especially in non-inclusive cache hierarchies), the prob-
lem of multi-level cache analysis in the presence of write backs is
not well investigated.

5 UNSOUNDNESS OF EXISTING APPROACH
To the best of our knowledge, the only existing approach that takes
into account write backs in multi-level cache analysis is proposed
in [22]. This existing approach tracks whether a memory block is
dirty at a cache level in both its must and may analyses (which
are called hit and miss analyses respectively in [22]). To capture
any possible write backs, the approach also introduces “phantom”
memory blocks in its must analysis; a “phantom” memory block
signifies the block may be dirty but it should not be reported as
AH if the block is accessed. During its must or may analysis, if a
tracked dirty block is evicted out of the ACS of a cache level due
to a reference, the ACS of the next cache level for that analysis
will be updated according to the analysis semantics and the dirty
condition of that block (definitely dirty or possibly dirty)3. Fig. 1
shows an example of write back handling in itsmust analysis, where
the memory blockmz is tracked as definitely dirty and the next
reference to the memory blockmb is classified as L1 AM by itsmay
analysis (namely, this reference tomb will always result in an L2
cache access). As we can observe from the updated state, whenmz
is evicted out of the ACS of L1, it is used to update the ACS of L2;
and then both the ACSs of L1 and L2 are updated usingmb .

mb

mb mz ma

mz

ma

mb

Figure 1: An example of write back handling inmust analy-
sis of [22]

However, the approach proposed in [22] for handling write backs
may be unsound. For instance, as shown in Fig. 2, we have a 2-level
data cache hierarchy (where L1 cache is 2-way set associative and
L2 cache is 4-way set associative) and a CFG. The nodes in the CFG
are annotated with memory blocks that are accessed by load/store
instructions inside the nodes. All of the annotated memory blocks
are mapped to the same L1 and L2 cache sets in the data cache
hierarchy. As we can observe from the figure, mz is written no
3 The strategy of write back handling is implicitly described in [22] using examples,
which indicate their supposed way to handle write backs in multi-level cache analysis.
There is also an additional “live cache” abstract domain proposed in [22] to model
relationships between pairs of cache levels. However, the “live caches” do not affect
how the write backs are handled, so we omit the details on “live caches” here.

RTNS ’17, October 4–6, 2017, Grenoble, France Zhenkai Zhang, Zhishan Guo, and Xenofon Koutsoukos

modify
mz

mz

mz

mz

mz

me me mz

me mz

md mc

mbmd mc ma

md

ma

modify mz

modify mz

join

handle write back
of mz first

L2 AH

mz

mz

ma

ma mz

mb

mzmb ma

ma mb mc mb

mamc mb mz

mc

mz

mz

ma mz

ma mz

ma mb ma

mamb mz

mb mc mb

mzmc mb ma

mc md mc

mbmd mc mz

md

write mz back to L2 first

ma

miss in both L1
and L2 caches

(B)

(C)

mz mz

me

ma

mb

mc

md

ma

B0

B1B2

B3

B4

B5

B6

B7

B8

p0

p1

p2

π

(A)

Figure 2: (A) The example CFG –mz is written in both B1 and B2, and π indicates a concrete path B0 → B1 → B4 → B5 → B6 →
B7 → B8; (B) Abstract cache states inmust analysis of [22]; (C) Concrete cache states along the indicated path π

matter which branch is taken at p0, so at the join point p1, mz
is definitely dirty in L1 cache (which is denoted by mz in both
the abstract and concrete cache states in the figure). Due to the
reference toma in B4, the approach updates the ACS of L2 in its
must analysis usingmz first before updating the ACSs of L1 and L2
usingma . According to the derived ACSs at p2, the reference toma
in B8 will be classified as L1 AM and L2 AH (to avoid cluttering the
figure, we do not show the derived ACSs in its may analysis; yet, it
is straightforward to derive them since all of the data references
before p2 have compulsory misses at both cache levels). However,
if the indicated concrete path π (namely, B0 → B1 → B4 → B5 →
B6 → B7 → B8) is taken, the concrete cache state of L2 at p2 does
not containma , which means the reference toma in B8 will have
cache misses in both L1 and L2 caches. Therefore, this approach to
write back handling is not sound.

The main reason why this approach cannot soundly handle write
backs is that it does not take into account the uncertainty of the
occurring time of a write back. Recall that must analysis computes
upper bounds on ages of memory blocks, while may analysis com-
putes lower bounds on their ages. When a tracked dirty block is
forced out of the ACS at a cache level in eithermust ormay analysis,
it cannot guarantee that a write back will happen at that out-of-
the-ACS moment. Instead, a write back is only incurred when a
dirty block is evicted from the concrete cache state, which may be
as early as when the corresponding tracked dirty block is out of the
must ACS, or as late as when the corresponding tracked dirty block
is out of the may ACS, or some moment in between. Failing to con-
sider this uncertainty may result in an underestimation of the set
reuse distances of memory blocks. For example, as demonstrated in
Fig. 2, the approach considers once the write back ofmz to L2 cache
in its must analysis when the reference toma in B4 is processed.
However, by following the indicated concrete path π , we can ob-
serve that the write back in terms of the dirtymz actually happens
when the reference tomb in B5 occurs, which is later than the time
considered by the approach in its must analysis. As a consequence,
the set reuse distance ofma in L2 cache is underestimated after the
reference tomb in B5.

6 MULTI-LEVEL WRITE-BACK CACHE
ANALYSIS

In this section, we present our approach to multi-level cache analy-
sis, which can soundly handle write backs. As a side note, we model
each load/store instruction by two references – an instruction refer-
ence followed by a data reference, and we treat the two references
of a load/store instruction as two different points in our analysis.

6.1 Consideration of Non-Singleton Address
Set

As mentioned above, address analysis is performed to derive a set
of possibly accessed addresses for each data reference. A derived
address set may have more than one memory address. In order to
ensure soundness, we need to take into account all the possibilities
during analysis if a non-singleton address set is derived for a data
reference.

Given a data reference r , if its derived address set has only a
single address member, we directly use the update functionU type

of the corresponding analysis (type ∈ {must,may, pers}) to account
for the effect of r on the input ACS θ type. Otherwise, if the derived
address set {a1, · · · ,ak } for r is not a singleton set (i.e., k ≥ 2), we
use the following composite function [12]:

J type
(
U type (θ type,ma1), · · · ,U

type (θ type,mak)
)
,

where J type is the join function of the corresponding analysis
type, and each memory blockmai ∈ {ma1 , · · · ,mak } corresponds
to a memory address ai derived for r . Basically, to handle a non-
singleton address set, for each possibly accessed memory block, a
copy of the input ACS is created and updated using the correspond-
ing update function; and all the updated copies are joined using
the corresponding join function. Thus, no matter which memory
block is accessed in reality, its effect on the ACS is conservatively
considered for soundness.

6.2 Introduction of Dirty Attribute
In order to soundly cope with write backs, we first need to capture
all the memory blocks at each cache level that can be potentially

Handling Write Backs in Multi-Level Cache Analysis for WCET Estimation RTNS ’17, October 4–6, 2017, Grenoble, France

marked as dirty during a task’s execution. Different from the work
in [22], which separately tracks dirty blocks in must and may anal-
yses, we propose to use persistence analysis as the basis, namely we
only keep track of dirty blocks during persistence analysis at each
cache level.

In order to track whether a memory block m is dirty in our
persistence analysis, we introduce a dirty attributem.d , which has
one of the following three values:

– CL: The memory blockm is clean.
– DD: The memory blockm is definitely dirty.
– PD: The memory blockm is possibly dirty.

We extend the update and join functions of persistence analysis to
take into account this dirty attribute. (Sound persistence analysis
could be either may analysis based [4] or younger set based [10],
and the comparison between these two methods can be found in
[27].)

Given an input ACS θpers and an accessed memory blockm to
the update function of persistence analysis, we set the dirty attribute
m.d as follows:

m.d =

DD m is written
CL m is read ∧m < θpers

m.d otherwise
,

namely if m is modified, m.d will be set as DD; but if m is not
modified andm has never been referenced yet (as θpers keeps all
the memory blocks referenced so far, if we havem < θpers,m has
not been referenced),m.d will be set as CL; otherwise, we do not
change the dirty attribute ofm (no matter whetherm is in an age
within 1, · · · ,A, or the special age ⊤, where the cache is A-way set
associative). From now on, we will use a tagm to denote thatm is
modified when applying the update function of persistence analysis.
Moreover, we may treat write back ofm to some level as thatm is
loaded and then modified at that level.

Given two input ACSs θpers1 and θ
pers
2 to the join function of

persistence analysis, for each memory blockm in the resultant ACS,
we set the dirty attributem.d as follows:

m.d =

DD m ∈ θ
pers
1 with DD ∧m ∈ θpers2 with DD

CL
(m ∈ θ

pers
1 with CL ∧m < θpers2)∨

(m ∈ θ
pers
2 with CL ∧m < θpers1)∨

(m ∈ θ
pers
1 with CL ∧m ∈ θpers2 with CL)

PD otherwise

,

namelym.d is set as DD in the joined ACS only whenm is definitely
dirty in both input ACSs, while, m.d is set as CL if either m is a
clean block in both input ACSs orm exists in only one of the input
ACSs withm.d equal to CL; otherwise, ifm is a possibly dirty block
in at least one of the input ACSs, or there are not two identical dirty
attributes (e.g.,m.d is CL and DD respectively), orm.d is DD in one
ACS butm does not exist in the other ACS,m.d is set as PD.

Note that in the case of a data reference due to a dynamic store
instruction which may modify more than one memory blockma1 ,

· · · ,mak (where k ≥ 2), we will first havemai .d (where 1 ≤ i ≤ k)
set as DD in the updated ACS copy byUpers (θpers,mai); however,
mai .d will become PD after joining all the updated copies ifmai .d
is not DD in one or more of the other updated ACS copies (in

other words, ifmai .d is DD after considering the reference with
a non-singleton address set, it has to be DD at least prior to the
operation).

6.3 Estimation of Write Back Occurring Time
In order to clearly present our approach to multi-level write-back
cache analysis, we investigate how to soundly bound the possible
occurring time of a potential write back. For the sake of clarity, we
develop the notions against a single-level cache here, which will be
used later in our approach.

Recall that persistence analysis determines whether a memory
block stays in the cache at a program point once the block was
brought into the cache. If a memory block m just becomes non-
persistent at a program point p (i.e.m becomes the special age ⊤
in the corresponding abstract cache set state), andm.d is not CL, it
is possible thatm was modified before p and is evicted out of the
cache at p, namely a write back may occur at p. Since persistence
analysis over-approximatesm’s maximal age, it is sound to begin
accounting for the possible effect of write back ofm atp. In addition,
since we may not know the exact occurring time of write back of
m (if it is written back), as long asm stays in age ⊤ and alsom.d is
not CL after p, we need to consider thatm may be written back at
one of the following points instead of p, namely, all these points
form a write back window form, and ifm is written back, the write
back happens at some point within the window.

As we know when a memory block is certainly accessed at a
point, the block will become age 1 in persistence analysis, which
will discontinue write back consideration of the block if it was in
age ⊤ with DD or PD dirty attribute before this point. On the other
hand, we also seek to conservatively “sanitize” blocks in age ⊤
having DD or PD dirty attribute, which will discontinue write back
consideration as well.

In order to safely “sanitize” a memory blockm whose dirty at-
tribute is DD or PD at some point, we need to make sure thatm is
always clean at the point in any possible execution. Recall thatmay
analysis is used to determine whether a memory block is certainly
not in the cache at a given point. If may analysis determines thatm
is not in the cache at any point immediately before a reference r ,m
should always be clean with respect to the cache when r is going
to occur (if r will modifym,m becomes dirty afterwards).

To facilitate “sanitization”, during persistence analysis, we first
apply an auxiliary function S : Θpers × Θmay → Θpers to change
certain blocks’ dirty attribute before using the needed function of
persistence analysis on the ACS. Given a reference r , let θmay denote
the ACS updated due to r in may analysis, and let θpers denote the
ACS updated due to r in persistence analysis. If there is only one
reference immediately following r , we will use S (θpers,θmay) as
the input ACS for the reference to the update functionUpers, which
is defined as follows:

S (θpers,θmay) = θpers with ∀i ∈ {1, · · · ,d },∀m ∈ θpers (i) (⊤) :

m.d =

CL m < θmay ∧m.d is not CL
PD m ∈ θmay ∧m.d is DD
m.d otherwise

,

whered denotes the number of cache sets in the cache, andθpers (i) (⊤)
denotes the set of blocks whose age is ⊤ in the ith abstract set state

RTNS ’17, October 4–6, 2017, Grenoble, France Zhenkai Zhang, Zhishan Guo, and Xenofon Koutsoukos

of θpers. As we can see from the definition, the function S will not
modify the relative ages among blocks, but it may change the dirty
attribute of some blocks which are already non-persistent (i.e., such
blocks may have been written back): ifm is definitely not in the
cache according to θmay (i.e.,m < θmay)4,m.d is set as CL because
even ifm were dirty, it would have been written back before the
reference; on the contrary, ifm.d is DD butm may be in the cache
(given bym ∈ θmay) or may have been evicted and written back
(sincem has age⊤ in θpers), we cannot guaranteem is still definitely
dirty before the reference, som.d is set as PD; otherwise,m.d is not
changed. We also apply this function S before merging the ACSs at
a join point in persistence analysis, namely, given two sets of ACSs
⟨θ

pers
1 ,θ

may
1 ⟩ and ⟨θpers2 ,θ

may
2 ⟩, the joined ACS is computed by:

J pers
(
S (θ

pers
1 ,θ

may
1),S (θ

pers
2 ,θ

may
2)
)
.

It should be clear that applying S before or after merging does not
affect soundness but possibly precision. For example, for a blockm,
ifm.d is PD/DD in θpers1 butm can be “sanitized” according to θmay

1
(i.e.,m < θmay

1), whilem.d is CL in θpers2 andm is in θmay
2 ,m.d will

be CL when applying S before merging the ACSs. In contrast, if we
join the corresponding ACSs first and then apply S on the joined
ACSs,m.d will be PD since the joined may ACS will havem, which
preventsm from being “sanitized” in the joined persistence ACS.

Note that if the write back window for a memory blockm con-
tains only one point, it does not guarantee there is definitely a write
back ofm occurring at that point. In order to ensure a write back of
m definitely occurring at a reference r , it has to satisfy the following
condition:

m ∈ δmust (r) ∧m ∈ δmay (r) ∧m.d is DD,

where δmust (r) (resp. δmay (r)) is the set of memory blocks that
are forced out of the ACS during applying the update function of
must (resp. may) analysis in terms of r . The rationale is that if this
condition is satisfied, immediately before r ,m must be in the cache
(inferred fromm ∈ δmust (r)) with the oldest age (further inferred
fromm ∈ δmay (r)); since the block accessed by r is definitely not in
the cache (inferred fromm ∈ δmay (r)), when r occurs,m must be
evicted out and written back asm is definitely dirty at that point.

Estimating write back occurring time in the context of single-
level caches has also been simply investigated in [1]. However, the
method proposed in [1] is more pessimistic than ours, and it is also
problematic if integrated into multi-level write-back cache analysis.
Detailed comparisons and discussions are given in Section 7.

6.4 Analysis of Multi-Level Unified Caches
with Write Backs

Similar to many other methods for multi-level non-inclusive cache
analysis (e.g., [3, 8, 12]), our approach also analyzes a cache hierar-
chy in a level-by-level manner, which means we start from the first
level and move downwards to the last level. At each level, must,
may, and persistence analyses are carried out in the listed order5 (it
is the extended persistence analysis as described above).
4 Note that if both may and persistence analyses are sound, a memory block will be in
age ⊤ in persistence analysis no later than it is evicted out of the ACS in may analysis.
5 If may analysis based persistence analysis is used [4], these two analyses can be per-
formed concurrently. Otherwise, may analysis needs to be finished before persistence
analysis due to the use of may ACS in S function.

Since L1 is always accessed, and the contents at L1 will not
be affected by other cache level(s), we analyze L1 directly like a
single-level. Otherwise, we need to consider memory access filter-
ing behavior and write back behavior when analyzing any other
level. To this end, we have a new strategy when updating ACS with
respect to a reference, although we make no changes on how to
join ACSs at a join point.

To facilitate presentation, let us use the following notations.
Given a reference r and a level Lx (1 ≤ x ≤ n), θ type, inx,r (resp.
θ
type,out
x,r) represents the Lx ACS of the type indicated analysis into
(resp. out of) the update process accounting for r ; δmust

x (r) (resp.
δ
may
x (r)) gives the set of memory blocks that are evicted out of
the Lx ACS in the update process of must (resp. may) analysis
considering r ; {ma1 , · · · ,mak }x,r denotes the set of memory blocks
possibly accessed by r with respect to the Lx cache block size CBSx ,
where each ai ∈ {a1, · · · ,ak } (k ≥ 1) is an address that may be
referenced by r ; CACaix denotes the Lx cache access classification
in terms of ai being referenced. Recall that we “sanitize” blocks in
persistence analysis before updating the ACS, and θ type, inx,r will be
acquired according to Tab. 2.

Algorithm 1: ACS update strategy at level Lx (2 ≤ x ≤ n)
/* let θ temp

1 be a temporary ACS */

/* account for write back effect */

1 θ temp
1 ← θ type, in

x,r ;

2 if ∃m′ ∈
(
δmust
x−1 (r) ∩ δmay

x−1 (r)
)
then

3 m ← memory block corresp. tom′ w.r.t. CBSx ;
4 if m′.d is DD in θ pers,out

x−1,r then
5 θ temp

1 ← U type (θ type, in
x,r ,m);

6 else if m′.d is PD in θ pers,out
x−1,r then

7 θ temp
1 ← J type

(
U type (θ type, in

x,r ,m), θ type, in
x,r

)
;

8 end
9 else

10 foreach cache set i possibly affected by r at L(x − 1) do
11 foreachm′ ∈ θ pers,out

x−1,r (i) (⊤) ∧m′.d is not CL do
12 m ← memory block corresp. tom′ w.r.t. CBSx ;

13 θ temp
1 ← J type

(
U type (θ type, in

x,r ,m), θ temp
1

)
;

14 end
15 end
16 end

/* let θ temp
2 be another temporary ACS */

/* account for cache access effect */

17 θ type,out
x,r ← ⊥;

18 foreachmai ∈ {ma1, · · · ,mak }x,r do
19 if CACaix is A then
20 θ temp

2 ← U type (θ temp
1 ,mai);

21 else if CACaix is N then
22 θ temp

2 ← θ temp
1 ;

23 else

24 θ temp
2 ← J type

(
U type (θ temp

1 ,mai), θ
temp
1

)
;

25 end
26 θ type,out

x,r ← J type (θ temp
2 , θ type,out

x,r);
27 end

Handling Write Backs in Multi-Level Cache Analysis for WCET Estimation RTNS ’17, October 4–6, 2017, Grenoble, France

Table 2: Input ACS to the update process considering reference r

ACS r is preceded by r ′ only r is preceded by r ′1, · · · , r
′
t (t ≥ 2)

θmust, in
x,r θmust,out

x,r ′ Jmust (θmust,out
x,r ′1

, · · · ,θmust,out
x,r ′t

)

θ
may, in
x,r θ

may,out
x,r ′ Jmay (θ

may,out
x,r ′1

, · · · ,θ
may,out
x,r ′t

)

θ
pers, in
x,r S (θ

pers,out
x,r ′ ,θ

may,out
x,r ′) J pers

(
S (θ

pers,out
x,r ′1

,θ
may,out
x,r ′1

), · · · ,S (θ
pers,out
x,r ′t

,θ
may,out
x,r ′t

)
)

Given a reference r and a level Lx (2 ≤ x ≤ n), we employ
the strategy described in Algorithm 1 to update the ACS. The first
part (lines 1–16) of the update strategy considers if there is a def-
inite/possible write back and the corresponding effect. We use
θ
temp
1 as the ACS to capture any potential write back effect. If(
δmust
x−1 (r) ∩ δ

may
x−1 (r)

)
is not empty, it must be a singleton set, since

a memory blockm′ in the intersection is guaranteed to be evicted
exactly when r happens, which cannot be more than one. Since
CBSx−1 may be smaller than CBSx , line 3 obtains the memory
blockm corresponding tom′ in terms of the Lx cache block size.
The aforementioned condition for a definite write back will be met,
ifm′ is definitely dirty at level L(x − 1) (line 4); line 5 captures the
effect of this definite write back on ACS. On the contrary, ifm′ is
just possibly dirty (line 6), we need to combine two scenarios at
line 7 that arem is modified and no write back happens. Note that
the tagm indicatesm is modified and the tag is considered only in
persistence analysis for setting dirty attribute. In other words,m
just meansm for both must and may analyses.

On the other hand, if we do not find such a block at line 2, we
still need to consider each possible write back (lines 9–16). Since
we may not know which L(x − 1) cache set is accessed when r
occurs, we have to consider every possibility (line 10). Given a
possibly accessed cache set, for each memory blockm′ in the set,
whose write back window at L(x − 1) contains r (i.e.,m′ is non-
persistent andm′.d is not CL, as checked in line 11), line 12 finds
the corresponding memory blockm with respect to CBSx , and line
13 considers the possible write back effect on ACS. Because it is
uncertain whether there is a write back and (if there is) which
memory block is written back, we join all the possible scenarios
(including that no write back is incurred) – ifm1, · · · ,my (y ≥ 1)
are all the memory blocks that are considered at line 13, after the
first part θ temp

1 will be equivalent to the result of the following
expansion:

J type
(
U type (θ

type, in
x,r ,m1), · · · ,U

type (θ
type, in
x,r ,my),θ

type, in
x,r

)
.

If there is no such block found at line 11 (i.e., there is no possible
write back), line 13 will not be reached and θ temp

1 will still be θ type, inx,r
as expected.

The second part (lines 17–27) considers the effect of information
access needed by r on the resultant ACS from the first part. It follows
thewell-established approach relying on cache access classifications
[3, 8, 12]. If one of multiple memory blocks may be accessed by r ,
the effect of each one of them on the ACS needs to be taken into
account and combined, as previously described. It is worth noting
that, at a cache level lower than L1, a memory block can become

dirty only due to some write back issued from the immediate upper
level. Thus, the second part will not tag any memory block as
modified no matter whether or not r is a data reference due to a
store instruction. (We only consider whether a data reference is
due to a store instruction to tag its accessed memory block when
analyzing L1 cache.)

Although the approach is targeted at analysis of multi-level
write-back caches, at each level of which it is a unified cache, it is
straightforward to make the approach applicable to dealing with
separate instruction and data caches at some level(s). For example,
if separate caches are used at L1 and a unified cache is used at L2,
all the possible write backs issued from L1 can only be from L1 data
cache when data references occur. Thus, given a reference, we iden-
tify which cache can be affected by the reference at the immediate
upper level and use its ACS in the first part of the approach.

6.5 Integration of Write Back Costs into Path
Analysis

As a de factomethod, Implicit Path Enumeration Technique (IPET) is
used to calculate theWCET bound [15]. It uses a set of integer linear
constraints that combines the flow information and the timing
effects of multi-level caches [9, 12].

In the light of our system model (write buffers are not used),
write back costs need to be considered explicitly in IPET for path
analysis. To derive the WCET, we maximize the following objective
function:

v∑
i=1

ci · xi +
n∑
j=1

dj · yj ,

where xi is the number of times the basic block Bi is executed (v
basic blocks in total), ci is the worst-case cache-aware cost without
considering the portion due to write backs of the basic block Bi , yj
is an upper bound on the number of write backs issued from the
jth cache level (n cache levels in total), and dj is the cost of a write
back occurring at the jth cache level. We have xi ’s subject to both
structural and functional constraints as described in [15], and we
calculate each ci according to the derived CHMC of each reference
in the basic block as stated in [9, 12].

Because the number of write backs issued from some level cannot
be more than the number of modifications made to this level, we
will impose the following constraints on yj ’s:

0 ≤ y1 ≤
v∑
i=1

si · xi ; 0 ≤ y2 ≤ y1 ; · · · 0 ≤ yn ≤ yn−1 ,

where si is the number of store instructions in the basic block Bi .
In addition, since we can over-approximate the number of possible

RTNS ’17, October 4–6, 2017, Grenoble, France Zhenkai Zhang, Zhishan Guo, and Xenofon Koutsoukos

write backs in Bi issued from the jth level, which is denoted byw j
i ,

we will also impose the following constraints:

y1 ≤
v∑
i=1

w1
i · xi ; · · · yn ≤

v∑
i=1

wn
i · xi .

In Bi , although a memory block at the jth level may be written back
to the next level at one of several points, as long as these points
are consecutive without any possible modification of the block, it
is treated as the same possible write back at all these points; and
we havew j

i equal to the number of distinct points, each of which
can have a different possible write back issued from the jth level.

7 EVALUATION
In this section, we evaluate the proposed approach to multi-level
write-back cache analysis for WCET estimation. We have developed
a research prototype tool with the approach. It takes MIPS R3000
compliant binaries and reconstructs CFGs from them. It also com-
putes context-sensitive call graphs to improve analysis precision.
The CPLEX solver is employed to solve the generated ILP (Integer
Linear Programming) problems.

Due to the limitations of our current tool, we only consider the
timing effects of multi-level caches and we do not account for the
effects caused by other micro-architectural features like pipelines
and branch predictors. Accordingly, we assume there are no timing
anomalies [16], and a reference that is classified asNC can be treated
as a AM when used for WCET estimation.

The evaluation is performed on a set of benchmarks maintained
by the Mälardalen WCET research group [6]. The used benchmarks
are shown in Tab. 5, and they are compiled for MIPS R3000 using
gcc-3.4.4. The size of each benchmark covers both its code and data.
Some of the benchmarks operate on big arrays (e.g., matmult and
crc), and some of them do not have load/store instructions accessing
more than one address (e.g., expint and prime).

7.1 Comparison of Methods for Estimating
Write Back Occurring Time

As discussed in Section 6, it is crucial to have a sound method for
bounding the possible occurring time of a potential write back. In
terms of single-level write-back caches, there is a method proposed
in [1], which relies on may analysis to delimit possible write back
ranges, and uses must analysis to help identify definite write backs.
Analytically, our method for write back occurring time estimation
dominates, especially when cache capacity is relatively large – our
method will report no write backs if potentially dirty blocks stay as
persistent, but the method in [1] will continuously report possible
write backs as long as potentially dirty blocks are still in may ACS.

Since the original method in [1] is only suitable for single-level
write-back cache analysis (it requires a small modification for multi-
level write-back cache analysis, as described later), we compare
our method for bounding write back windows with theirs in terms
of single-level caches. In the experiments, we fix the cache block
size as 32B and associativity as 4-way. For each benchmark, we
perform two comparisons by changing the capacity of the unified
cache – one is relatively large and the other one is relatively small,
compared to the benchmark size. Due to the space limitation, we
will not list the capacity configurations here, but they are the same

as the L2 capacities shown in Tab. 4 for each benchmark (e.g., for the
benchmark bs, the large one is 2KB and the small one is 256B). We
use the number of program points where write backs are estimated
to occur as the metrics to evaluate the precision.

Table 3: Number of program points where write backs are
estimated to occur

Benchmark #Pts Large Config. Small Config.
#WPOur #WP[1]’s #WPOur #WP[1]’s

bs 111 0 33 12 100
insertsort 145 0 56 86 137
prime 338 0 149 55 303
expint 318 0 115 31 264
bsort100 198 0 137 170 180

cnt 325 0 178 244 291
qurt 1243 0 435 375 1053
select 537 0 180 225 421
crc 676 0 531 115 634
ns 189 0 38 0 56

matmult 418 0 102 192 375
statemate 3410 0 809 51 1281

The results are shown in Tab. 3, where the second column (#Pts)
also gives the total points in each benchmark (recall that a load/store
instruction is modeled with two points instead of one). From the
results, we can see our method always dominates, i.e., it can more
precisely identify where write backs may occur. The results match
the aforementioned analytical expectation. The precision of this
estimation may have a considerable impact on the overall analysis.

7.2 Effects of Occurring Time Estimation on
Multi-Level Write Back Cache Analysis

The original method proposed in [1] is actually problematic, since
it only distinguishes two states: “dirty” and “clean”. For example,
if a block m is “dirty” along one path and “clean” along another
path, m is set as “dirty” after the paths are joined. It is possible
that a definite write back ofm will be given by the analysis under
certain scenarios later, which is not correct if the path with “clean”
m is concretely taken. Treating a possible write back as a definite
write back may result in unsound multi-level cache analysis. A
straightforward fix is to introduce a third state “possibly dirty”, as
what we have proposed in Section 6.

We integrate the fixed method of [1] into our multi-level write-
back cache analysis, and perform a set of experiments to show the
effects of the precision of write back occurring time estimation
on multi-level write-back cache analysis. All the experiments are
carried out on a two-level cache hierarchy, which uses write-back
and write-allocate policies at each level. Certain parameters of the
hierarchy are fixed, which are shown in Tab. 4. We assume that the
write back stall at a level is the same as the access latency of its
next lower level, and we also assume that any needed information
can be found in the main memory with a 100-cycle latency.

We carry out the experiments on each benchmark by changing
L1 and L2 cache capacities. For a benchmark, we use two capacity
configurations. In the first configuration, L1 cache size is greater

Handling Write Backs in Multi-Level Cache Analysis for WCET Estimation RTNS ’17, October 4–6, 2017, Grenoble, France

Table 4: Fixed parameters of two-level cache hierarchy

Level Block Size Associativity Latency Write Back Stall
L1 16B 2-way 1-cycle 10-cycle
L2 32B 4-way 10-cycle 100-cycle

than the size of the benchmark but not larger than twice the bench-
mark size. Additionally, L2 cache size is four times greater than
L1 cache size. In the second configuration, L2 cache size is smaller
than the size of the benchmark but not less than half the benchmark
size. Moreover, L1 cache size is half the size of L2 cache. The two
configurations for each benchmark are shown in Tab. 5.

Table 5: Cache capacity configurations for each benchmark

Benchmark Size Configuration 1 Configuration 2
L1 L2 L1 L2

bs 480B 512B 2KB 128B 256B
insertsort 500B 512B 2KB 128B 256B
prime 628B 1KB 4KB 256B 512B
expint 976B 1KB 4KB 256B 512B
bsort100 1008B 1KB 4KB 256B 512B

cnt 1444B 2KB 8KB 512B 1KB
qurt 1580B 2KB 8KB 512B 1KB
select 1716B 2KB 8KB 512B 1KB
crc 2183B 4KB 16KB 1KB 2KB
ns 5624B 8KB 32KB 2KB 4KB

matmult 5804B 8KB 32KB 2KB 4KB
statemate 10591B 16KB 64KB 4KB 8KB

Tab. 6 shows the experimental results, where the estimates are
in clock cycles. For each benchmark, we also calculate how much
the relative pessimism is by WCET[1]’s

WCETour
− 1. From the results, we can

observe that the dominance of our approach is overwhelming when
the cache capacities are relatively large (the relative pessimism
ranges from 59.4% to even 968.5%). The reason for this phenomenon
is not hard to explain – when the precision of write back occurring
time estimation is low, too many false-positive write backs will
significantly inflate the WCET estimates. The comparison under
the small configuration is not as striking as that under the large
one, due to the write back bounds imposed by our constraints
(Section 6.5); but our approach still dominates in most cases. The
experiments are carried out on a Linux machine with a 3.4GHz
quad-core processor and 16GB memory. All of the analysis times
range from hundreds of milliseconds to tens of seconds.

8 RELATEDWORK
Static cache analysis for WCET estimation has been studied exten-
sively over the past two decades, which is mainly based on either
abstract interpretation or static cache simulation [19, 24]. Much
work focuses on single-level caches, especially that involving data
cache analysis. In [25], static cache simulation is extended to carry
out analysis of single-level data caches. In [20], an approach based
on cache miss equations is proposed to derive exact data cache
hit/miss patterns even in the presence of non-rectangular loops.

In [21], must analysis is used for data cache analysis, which may
need to partially unroll loops for more analysis precision. As ar-
gued in [10], persistence analysis is more suitable for data cache
analysis; however, the original persistence analysis proposed in [5]
is unsound, and the sound ones are introduced in [4, 10]. (A com-
parison of these two sound persistence analyses is investigated in
[27].) Based on persistence analysis, in [10], a scope-aware data
cache analysis method is proposed, which captures the temporal
usage of memory blocks possibly accessed by a data reference over
different loop iterations. In [23], input dependent and indepen-
dent data cache behavior is studied, where persistence analysis and
pigeon-hole principle are combined to deal with input dependent
(unpredictable) data references.

The first multi-level (non-inclusive) cache analysis is proposed
in [18], which is an extension to static cache simulation. Later, in
[8], it has been pointed out that this method is not suitable for
analyzing multi-level set associative caches, and it is proposed to
use cache access classification (CAC) to filter the references at each
cache level and to define an update strategy to take into account the
uncertain accesses. Methods for analyzing multi-level instruction
caches of types other than non-inlucisve are also presented in
[9, 28, 29]. Based on thework in [8], an approach for analyzingmulti-
level non-inclusive data caches with write-through and no-write-
allocate policies is proposed in [12], and a method for analyzing
non-inclusive unified cache hierarchies with write-through and
write-allocate policies is proposed in [3]. In [22], an abstract domain
called live caches is proposed to model relationships between cache
levels, and this domain is used to improve the precision of multi-
level unified cache analysis with the write-back policy. As discussed
in this paper, the approach to write back handling in [22] is not
sound.

Cache hierarchies are natural in multi-core processors, and much
work focuses on analysis of inter-core interferences on shared
instruction caches [7, 14, 17, 26]. Some work tries to take into
account data references as well. In [13], it analyzes conflicts on
shared data caches and proposes bypass heuristics to reduce these
conflicts. In [2], an analysis framework that covers different micro-
architectural components including data caches in a multi-core
processor is proposed. It is assumed that the write-through policy
is employed in [2, 13].

In order to avoid using too pessimistic estimation, probabilistic
timing analysis (PTA) techniques have been proposed to produce
multiple estimations with the probabilities that they can be ex-
ceeded. In [11], a measurement-based PTA approach is proposed to
estimate probabilistic WCET in the presence of multi-level unified
caches. In this paper, we want to guarantee safety, and consider
PTA as a complementary methodology to our approach.

9 CONCLUSION AND FUTUREWORK
How to soundly analyze multi-level caches in the presence of write
backs is challenging, and there are pitfalls – the only existing ap-
proach to the problem is shown as unsound. As the first step to-
wards sound multi-level write-back cache analysis, we propose
an approach based on a novel dirty block tracking method that
estimates possible write back occurring times. We evaluate the
proposed approach on a set of benchmarks with a two-level cache

RTNS ’17, October 4–6, 2017, Grenoble, France Zhenkai Zhang, Zhishan Guo, and Xenofon Koutsoukos

Table 6: WCET estimates and relative pessimism comparison

Benchmark Large Config. Small Config.
WCETour WCET[1]’s

WCET[1]’s
WCETour

− 1 WCETour WCET[1]’s
WCET[1]’s
WCETour

− 1
bs 3112 4960 59.4% 10134 10134 0%

insertsort 16043 44343 176.4% 176913 183213 3.6%
prime 41433 359835 768.5% 1146835 1148265 0.1%
expint 16758 117423 600.7% 406163 426163 4.9%
bsort100 1118657 3693657 230.2% 19016917 20026717 5.3%

cnt 20440 104560 411.5% 440562 440662 <0.1%
qurt 27698 68630 147.8% 135374 139474 3.0%
select 30202 63852 111.4% 198732 198732 0%
crc 86328 922443 968.5% 571148 1136163 98.9%
ns 35873 139693 289.4% 54763 151803 177.2%

matmult 712632 2972252 317.1% 23066142 23066142 0%
statemate 57719 102799 78.1% 98490 137980 40.1%

hierarchy, and compare our write back window estimation method
with the one proposed in [1]. The experimental results show that
the precision of write back occurring time estimation matters sig-
nificantly when the cache capacities are relatively large.

In the future, we plan to study how to reduce pessimism in our
analysis. One method is to use loop unrolling as described in [21],
but it is very expensive. Scope-aware cache analysis is promising
and can greatly improve the precision of persistence analysis [10].
However, we also need to improve the precision of may and must
analyses to reduce the possible write back window and obtain more
definite write backs. In addition, we will refine the integration with
path analysis to have more fine-grained representation of write
backs in IPET. As another direction, we will also investigate multi-
level cache-related preemption delay in the presence of write backs,
which complements our previous work in [30].

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
(CNS-1739328), as well as a startup grant and a seed grant from
Intelligent System Center at Missouri University of Science and
Technology.

REFERENCES
[1] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. 1996.

Cache Behavior Prediction by Abstract Interpretation. In SAS ’96. 52–66.
[2] Sudipta Chattopadhyay, Chong Lee Kee, Abhik Roychoudhury, Timon Kelter,

Peter Marwedel, and Heiko Falk. 2012. A Unified WCET Analysis Framework
for Multi-core Platforms. In RTAS ’12. 99–108.

[3] Sudipta Chattopadhyay and Abhik Roychoudhury. 2009. Unified Cache Modeling
for WCET Analysis and Layout Optimizations. In RTSS ’09. 47–56.

[4] Christoph Cullmann. 2013. Cache Persistence Analysis: Theory and Practice.
ACM Transactions on Embedded Computing Systems 12, 1s, Article 40 (March
2013), 25 pages.

[5] Christian Ferdinand and Reinhard Wilhelm. 1998. On Predicting Data Cache
Behavior for Real-Time Systems. In LCTES ’98. 16–30.

[6] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. 2010. The
MälardalenWCET Benchmarks: Past, Present And Future. InWCET ’10. 136–146.

[7] Damien Hardy, Thomas Piquet, and Isabelle Puaut. 2009. Using Bypass to Tighten
WCET Estimates for Multi-Core Processors with Shared Instruction Caches. In
RTSS ’09. 68–77.

[8] Damien Hardy and Isabelle Puaut. 2008. WCET Analysis of Multi-level Non-
inclusive Set-Associative Instruction Caches. In RTSS ’08. 456–466.

[9] Damien Hardy and Isabelle Puaut. 2011. WCET Analysis of Instruction Cache
Hierarchies. Journal of Systems Architecture 57, 7 (Aug. 2011), 677–694.

[10] Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. 2011. Scope-Aware Data
Cache Analysis for WCET Estimation. In RTAS ’11. 203–212.

[11] Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and Francisco J. Cazorla.
2013. Multi-level Unified Caches for Probabilistically Time Analysable Real-Time
Systems. In RTSS ’13. 360–371.

[12] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. 2009. WCET Analysis of
Multi-Level Set-Associative Data Caches. In WCET ’09. 1–12.

[13] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. 2010. Shared Data Caches
Conflicts Reduction for WCET Computation in Multi-Core Architectures. In
RTNS ’10. 2283.

[14] Yan Li, Vivy Suhendra, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. 2009.
Timing Analysis of Concurrent Programs Running on Shared Cache Multi-Cores.
In RTSS ’09. 57–67.

[15] Yau-Tsun Steven Li and Sharad Malik. 1995. Performance Analysis of Embedded
Software Using Implicit Path Enumeration. In DAC ’95. 456–461.

[16] Thomas Lundqvist and Per Stenström. 1999. Timing Anomalies in Dynamically
Scheduled Microprocessors. In RTSS ’99. 12–.

[17] Mingsong Lv, Wang Yi, Nan Guan, and Ge Yu. 2010. Combining Abstract Inter-
pretation with Model Checking for Timing Analysis of Multicore Software. In
RTSS ’10. 339–349.

[18] Frank Mueller. 1997. Timing Predictions for Multi-Level Caches. In LCTRTS ’97.
29–36.

[19] Frank Mueller. 2000. Timing Analysis for Instruction Caches. Real-Time Systems
18, 2/3 (May 2000), 217–247.

[20] Harini Ramaprasad and Frank Mueller. 2005. Bounding Worst-Case Data Cache
Behavior by Analytically Deriving Cache Reference Patterns. In RTAS ’05. 148–
157.

[21] Rathijit Sen and Y. N. Srikant. 2007. WCET Estimation for Executables in the
Presence of Data Caches. In EMSOFT ’07. 203–212.

[22] Tyler Sondag and Hridesh Rajan. 2010. A More Precise Abstract Domain for
Multi-level Caches for Tighter WCET Analysis. In RTSS ’10. 395–404.

[23] Jan Staschulat and Rolf Ernst. 2006. Worst Case Timing Analysis of Input Depen-
dent Data Cache Behavior. In ECRTS ’06. 227–236.

[24] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. 2000. Fast and
Precise WCET Prediction by Separated Cache and Path Analyses. Real-Time
Systems 18, 2/3 (May 2000), 157–179.

[25] Randall T.White, FrankMueller, Chris Healy, DavidWhalley, andMarionHarmon.
1999. Timing Analysis for Data and Wrap-Around Fill Caches. Real-Time Systems
17, 2-3 (Dec. 1999), 209–233.

[26] Jun Yan and Wei Zhang. 2008. WCET Analysis for Multi-Core Processors with
Shared L2 Instruction Caches. In RTAS ’08. 80–89.

[27] Zhenkai Zhang and Xenofon Koutsoukos. 2015. Improving the Precision of
Abstract Interpretation Based Cache Persistence Analysis. In LCTES’15. Article
10, 10 pages.

[28] Zhenkai Zhang and Xenofon Koutsoukos. 2015. Precise Multi-level Inclusive
Cache Analysis for WCET Estimation. In RTSS ’15. 350–360.

[29] Zhenkai Zhang and Xenofon Koutsoukos. 2015. Top-Down and Bottom-Up
Multi-Level Cache Analysis for WCET Estimation. In RTAS ’15. 24–35.

[30] Zhenkai Zhang and Xenofon Koutsoukos. 2016. Cache-related Preemption Delay
Analysis for Multi-level Inclusive Caches. In EMSOFT ’16. Article 16, 10 pages.

	Abstract
	1 Introduction
	2 Background on Static Cache Analysis
	3 System Model
	4 Problem Statement
	5 Unsoundness of Existing Approach
	6 Multi-Level Write-Back Cache Analysis
	6.1 Consideration of Non-Singleton Address Set
	6.2 Introduction of Dirty Attribute
	6.3 Estimation of Write Back Occurring Time
	6.4 Analysis of Multi-Level Unified Caches with Write Backs
	6.5 Integration of Write Back Costs into Path Analysis

	7 Evaluation
	7.1 Comparison of Methods for Estimating Write Back Occurring Time
	7.2 Effects of Occurring Time Estimation on Multi-Level Write Back Cache Analysis

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

