
Optimal Detection of Faulty Tra�ic Sensors
Used in Route Planning

Amin Ghafouri
Vanderbilt University

Nashville, Tennessee 37212
amin.ghafouri@vanderbilt.edu

Aron Laszka
Vanderbilt University

Nashville, Tennessee 37212
aron.laszka@vanderbilt.edu

Abhishek Dubey
Vanderbilt University

Nashville, Tennessee 37212
abhishek.dubey@vanderbilt.edu

Xenofon Koutsoukos
Vanderbilt University

Nashville, Tennessee 37212
xenofon.koutsoukos@vanderbilt.edu

ABSTRACT
In a smart city, real-time tra�c sensors may be deployed for various
applications, such as route planning. Unfortunately, sensors are
prone to failures, which result in erroneous tra�c data. Erroneous
data can adversely a�ect applications such as route planning, and
can cause increased travel time. To minimize the impact of sensor
failures, we must detect them promptly and accurately. However,
typical detection algorithms may lead to a large number of false
positives (i.e., false alarms) and false negatives (i.e., missed detec-
tions), which can result in suboptimal route planning. In this paper,
we devise an e�ective detector for identifying faulty tra�c sensors
using a prediction model based on Gaussian Processes. Further,
we present an approach for computing the optimal parameters of
the detector which minimize losses due to false-positive and false-
negative errors. We also characterize critical sensors, whose failure
can have high impact on the route planning application. Finally,
we implement our method and evaluate it numerically using a real-
world dataset and the route planning platform OpenTripPlanner.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; Dependable and fault-tolerant systems and net-
works; • Theory of computation → Gaussian processes;

KEYWORDS
fault detection, cyber-physical systems, smart city, route planning

ACM Reference format:
Amin Ghafouri, Aron Laszka, Abhishek Dubey, and Xenofon Koutsoukos.
2017. Optimal Detection of Faulty Tra�c Sensors Used in Route Planning.
In Proceedings of The 2nd Workshop on Science of Smart City Operations and
Platforms Engineering, Pittsburgh, PA USA, April 2017 (SCOPE 2017), 6 pages.
DOI: http://dx.doi.org/10.1145/3063386.3063767

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SCOPE 2017, Pittsburgh, PA USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4989-5/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3063386.3063767

1 INTRODUCTION
In smart cities, real-time tra�c sensors may be deployed for various
applications. However, sensors are prone to failures, which result
in erroneous tra�c data. Erroneous data can adversely a�ect the
performance of applications. To minimize the impact of sensor
failures, we must detect them promptly and with high accuracy.
However, typical detection algorithms may lead to a large number
of false positives and false negatives, which can result in suboptimal
performance.

Anomaly detection of faulty tra�c sensors has been studied in
the literature. Typical approaches include using data-driven meth-
ods that incorporate historical and real-time data to detect anom-
alies [10], [18], [14], [16]. However, existing approaches may result
in high performance-losses in tra�c applications, mainly due to
false-positive (FP) and false-negative (FN) errors. In order to min-
imize the losses, it is desirable to reduce the FP and FN rates as
much as possible. But, there exists a trade-o� between them, which
can be changed through a detection threshold. To address this, it
is necessary to take into account the tra�c application when de-
signing anomaly detectors, and quantify the losses in the tra�c
application caused by the FP and FN errors. By selecting the right
detection threshold, the performance losses caused by FPs and FNs
can be minimized.

In this paper, we study the problem of �nding optimal thresholds
for anomaly detection of faulty tra�c sensors, considering route
planning as the application of interest. The objective is to select
the optimal thresholds of anomaly detectors in order to optimize
the performance of the route planning application in the presence
of faulty sensors. We devise an e�ective detector for identifying
faulty tra�c sensors using a prediction model based on Gauss-
ian Processes. Further, we present an approach for computing the
optimal parameters of the detector which minimize losses due to
false-positive and false-negative errors. We also characterize critical
sensors, whose failure can have high impact on the tra�c applica-
tion. Finally, we implement our method and evaluate it numerically
using a real-world dataset and the route planning platform Open-
TripPlanner [11]. Our evaluation results show that the proposed
strategy successfully minimizes the performance loss and identi�es
the critical sensors.

The remainder of this paper is organized as follows. In Section 2,
we present the background for route planning and Gaussian Process

SCOPE 2017, April 2017, Pi�sburgh, PA USA A. Ghafouri et al.

regression. In Section 3, we introduce the system model. In Section 4,
we de�ne a notion of optimal detection, present a method to obtain
near-optimal thresholds, and de�ne critical sensors. In Section 5,
we implement our method and evaluate it numerically. In Section 6,
we discuss related work. Concluding remarks are presented in
Section 7.

2 PRELIMINARIES
2.1 Route Planning
Let G = (V ,E) be a directed graph with a setV of vertices and a set
E of arcs. Each arc (u,v) ∈ E has an associated nonnegative cost
c(u,v). The cost (i.e., length) of a path is the sum of the costs of its
arcs. In the point-to-point shortest path problem, one is given as
input the graph G, a query q = (o,d), where o ∈ V is an origin and
d ∈ V is a destination, and the objective is to �nd a minimum-cost
(i.e., shortest) path from o to d in G. In the many-to-many shortest
path problem, a set of queries Q is given, and the goal is to �nd the
minimum-cost path for each query q = (o,d) ∈ Q .

There exist many route planning algorithms that compute op-
timal solutions in an e�cient manner [1]. Among these methods,
the bidirectional Dijkstra’s algorithm with binary heaps computes
point-to-point shortest path in O(|E | + |V | log |V |). Further, the
Floyd-Warshall algorithm solves all pairs shortest paths in O(|V |3).
A large number of methods have been designed to improve run-
ning time of shortest-path algorithms. For example, contraction
hierarchies and arc �ags have been successfully used [3].

2.2 Gaussian Process Regression
GPs provide a Bayesian paradigm to learn an implicit functional re-
lationship y = f (x) from a training dataset {(x i ,yi); i = 1, 2, ...,n},
where x i ∈ Rd represents the vector of observed input variables
(i.e., predictors), and yi is the observed target value. A comprehen-
sive discussion of GPs in machine learning can be found in [13].

GPs directly elicit a prior distribution on the function f (x), and
assume it to be a GP a priori,

f (x) ∼ GP
(
µ(x),k(x ,x ′)

)
. (1)

For a new point x∗, the goal is to predict y∗ = f (x∗). Given that the
regression function is a GP, the distribution of the values of f at
any �nite number of points is a multivariate Gaussian distribution.
Therefore, (

y
y∗

)
∼ N

(
µ(x),

(
K K ′∗
K∗ K∗∗

))
, (2)

where K is the covariance matrix for the labeled points, K∗ is the
covariance vector between the new point and the labeled points,
and K∗∗ is the measurement noise. Then,

Pr(y∗ |y) ∼ N
(
K∗K−1y,K∗∗ − K∗K−1K ′∗

)
. (3)

The prediction of a GP model depends on the choice of covariance
function, which identi�es the expected correlation between the
observed data. Typically, a parametric family of functions is used,
and the hyperparameters are inferred from the data. Examples of
the commonly used covariance functions include polynomial kernel,
automatic relevance determination (ARD), and radial basis function
(RBF). Methods for learning the hyperparameters are based on

maximization of the marginal likelihood, which can be performed
using gradient-based optimization algorithms.

3 SYSTEM MODEL
In this section, we present the system model. We �rst de�ne a
model of transportation network. Then, we construct a detector for
identifying faulty tra�c sensors using a prediction model based on
Gaussian Processes.

3.1 Transportation Network
Consider a transportation network modeled as a graph G = (V ,E),
where edges represent road segments and vertices represent con-
nections between road segments (e.g., tra�c junctions). We assume
that a subset S ⊆ E of the road segments are monitored by sensors
that measure tra�c state (e.g., speed, occupancy, �ow) at discrete
timesteps k ∈ N. The measurements of these sensors are transmit-
ted to a navigation service, which given a set of queries Q(k) at
timestep k , computes the corresponding shortest paths. For seg-
ments without a tra�c sensor, we assume the navigation service
uses either previously computed values or predicted values using
measurements of adjacent sensors.

Tra�c sensors may be faulty due to miscalibration or hardware
failure. If a sensor s ∈ S is faulty, there is a discrepancy between the
actual and measured values. In other words, if as (k) is the actual
value and ms (k) is the measured value of faulty sensor s , then
ms (k) = as (k) + εs (k), where εs (k) is the fault value at time k . In
this model, we do not consider faults that result in no data being
sent, since such cases can easily be �ltered out by an operator.

3.2 Gaussian Process-Based Detector
Given the sensor measurements, we need to decide whether some
sensors are faulty. We assume that the number of sensors that
simultaneously become faulty is low, which is true in practice. As a
result, for any sensor, the majority of nearby sensors that have not
been marked faulty provide reliable tra�c data, and so we can use
these nearby sensors to predict the value measured by the sensor
in question. To detect faults, we then compare the predictions to
the measurements, and if there is a signi�cant di�erence between
the predicted values and the received measurements, an alarm
indicating presence of a fault in that particular sensor is triggered.

3.2.1 Tra�ic Prediction. As our tra�c predictor, we use GPs,
which is a kernel-based machine learning method. Kernel-based
methods have gained special attention for tra�c prediction because
of their generalization capability and superior nonlinear approxima-
tion. Among di�erent kernel-based methods, previous work shows
that GPs outperform other methods such as ARIMA and neural
networks [17]. We use GPs because in addition to the above advan-
tages, it allows for explicit probabilistic interpretation of forecasting
outputs.

As the kernel function, we decide for the commonly used ARD
squared exponential,

K(m(k),m(k)′) = σ 2f exp
(
−1
2

d∑
i=1

(mi (k) −m′i (k))
2

σ 2i

)
, (4)

Optimal Detection of Faulty Tra�ic Sensors SCOPE 2017, April 2017, Pi�sburgh, PA USA

where m(k) and m(k)′ are vectors of measurements, and σf and
{σi }di=1 are hyperparameters.

We let the target variable be the predicted tra�c value ps (e.g.,
tra�c �ow or occupancy) of sensor s ∈ S at timestep k . Further, we
let the predictor variables be the measured tra�c values of other
sensors at the same timestep. In practice, two sensors are highly
correlated if they are in close proximity. Therefore, it is possible
to select predictor variables as the measured values of d closest
sensors from the target sensor, where the choice ofd depends on the
network structure. This way, the predicted tra�c value is de�ned
as ps (k) = f (mV (s)(k)), where V (s) is the set of d closest sensors
from s .

3.2.2 Detection Algorithm. We can e�ciently detect failures
for each sensor s ∈ S , by comparing the measured tra�c value
ms (k) with the predicted tra�c value ps (k). We use Cumulative
sum control chart (CUSUM) as the detection algorithm, which is a
sequential analysis technique typically used for monitoring change
detection [12].

Consider sensor s ∈ S , with a sequence of measurements
ms (1), ...,ms (k) and corresponding tra�c predictions with means
ps (1), ...,ps (k) and standard deviations σs (1), ...,σs (k). The stan-
dardized residual signal is de�ned as

zs (k) =
ms (k) − ps (k)

σs (k)
. (5)

Moreover, upper and lower cumulative sums are de�ned as,

Us (k) = max(0,Us (k − 1) + zs (k) − bs), (6)

Ls (k) = min(0,Ls (k − 1) + zs (k) + bs), (7)
where Us (k) = Ls (k) = 0 for k = 1, and bs is a small constant.

Denoting the detection threshold at timestep k by ηs (k), a mea-
surement sequence violates the CUSUM criterion at the sample
zs (k) if it obeys Us (k) > ηs (k) or Ls (k) < −ηs (k). Formally, letting
H0 and H1 be the null and fault hypothesis, the decision rule is
described by

ds (Us (k),Ls (k)) =
{

H1 if Us (k) > ηs (k) or Ls (k) < −ηs (k)
H0 otherwise .

(8)

3.2.3 False-Negative and False-Positive Trade-o�. In anomaly de-
tectors, there might be a false negative, which means failing to raise
an alarm when a fault did happen. Further, there might be a false
positive, which means raising an alarm when the sensor exhibits
normal behavior. It is desirable to reduce the FP and FN probabili-
ties as much as possible. But, there exists a trade-o� between them,
which can be controlled by changing the threshold. In particular, by
decreasing (increasing) the threshold, one can decrease (increase)
the FN probability and increase (decrease) the FP probability.

We represent the FN probability for each sensor s by the func-
tion FNs : R+ → [0, 1], where FNs (ηs (k)) is the probability of FN
when the threshold is ηs (k), given that the sensor is faulty. Simi-
larly, we denote the attainable FP probability for each sensor s by
FPs : R+ → [0, 1], where FPs (ηs (k)) is the FP probability when the
threshold is ηs (k), given that the sensor is in normal operation. It is
possible to plot the FP probability as a function of the FN probability
for various threshold values [5] (e.g., see Figure 3).

4 OPTIMAL DETECTION
In this section, we formulate the problem of �nding optimal thresh-
olds for anomaly detection of tra�c sensors, considering route
planning as their primary application. The objective is to select
the optimal thresholds for anomaly detectors in order to minimize
the losses caused by false positives and false negatives. Then, we
present an algorithm to �nd near-optimal detection thresholds. Fi-
nally, we characterize critical sensors, whose failure can have high
impact on the tra�c application.

4.1 Optimization Problem
First, consider the set of queries Q , and a route planning algorithm
that takes as inputs the set of queries and the measured and pre-
dicted tra�c values, and outputs the optimal routes. For a single
query q ∈ Q and sensor s ∈ S , we denote by Pq (ms) the optimal
route computed using the measured tra�c values for all sensors,
and we denote by Pq (ps) the optimal route using the predicted
value ps for sensor s and the measured values m−s for all other
sensors. Finally, for a given route r and sensor s , let T (r ,ms) and
T (r ,ps) be the total travel time based on the measured ms and
predicted ps values for sensor s , respectively, and the measured
valuesm−s for all other sensors.

Then, T
(
Pq (ps),ms

)
is the measured travel time of the shortest

route computed using the predicted value ps for sensor s . Similarly,
T

(
Pq (ms),ms

)
is the measured travel time of the shortest route

computed using the measured value ms . We de�ne the loss caused
by a false positive as follows:

CFP
s,q (ps ,ms) = T

(
Pq (ps),ms

)
−T

(
Pq (ms),ms

)
, (9)

that is, the di�erence in measured travel time between using either
the predicted or the measured value for sensor s .

The rationale behind the above expression is the following. In
case of a FP, according to the detector, the measured value ms is
incorrect, but it is actually correct. Consequently, we choose a route
that is computed using our prediction ps instead of the optimal
route, which would be computed using the measurement ms . To
quantify the loss, we need to compare the travel times of the two
routes, and we must use the measured tra�c value ms for this
comparison since that is the correct value in this case.

Similarly, for a FN,T
(
Pq (ms),ps

)
is the predicted travel time of

the shortest route using measured valuems , and T
(
Pq (ps),ps

)
is

the predicted travel time of the shortest path using predicted value
ps . The loss caused by a FN is

CFN
s,q (ps ,ms) = T

(
Pq (ms),ps

)
−T

(
Pq (ps),ps

)
, (10)

that is, the di�erence in predicted travel time between using either
the measured or the predicted value for sensor s . Note that in (9)
and (10), the values of P and T can be computed using existing
route planning algorithms [1].

Next, let FPs (ηs (k)) and FNs (ηs (k)) be the probabilities of false-
positive and false-negative errors when detection threshold ηs (k) is
selected. Further, letpf be the probability of fault, and letpn = 1−pf
be the probability of normal operation. For a given query q, the
total loss caused by FPs and FNs is,

Ls,q (ηs (k)) =FPs (ηs (k)) ·CFP
s,q (ps ,ms) · pn+

FNs (ηs (k)) ·CFN
s,q (ps ,ms) · pf .

(11)

SCOPE 2017, April 2017, Pi�sburgh, PA USA A. Ghafouri et al.

Predictor

Measurements

Algorithm for
Finding

Thresholds

Queries

Detector

m(k)

p(k)
m(k)

Q (k)

η(k)

Figure 1: Information �ow in our approach.

Considering the set of all queries Q , the total loss is

Ls (ηs (k),Q) =
∑
q∈Q

Ls,q (ηs (k)), (12)

which allows us to de�ne the notion of optimal detection threshold
for a sensor.

De�nition 4.1 (Optimal Detection). The detection threshold η∗s (k)
is optimal for sensor s if it minimizes the loss function (12). Formally,
η∗s (k) is optimal for sensor s if

η∗s (k) ∈ argmin
ηs (k)

Ls (ηs (k),Q). (13)

Figure 1 shows the �ow of information in our approach. At each
timestep k , given measurementsm(k), the predictor computes the
predicted measurements p(k). Then, given a set of queries Q(k),
and the predictions and measurements, the thresholds η(k) are
computed for the detectors using the algorithm presented next.

4.2 Algorithm for Obtaining Thresholds
We present Algorithm 1 to �nd near-optimal detection thresholds.
The algorithm implements a random-restart hill climbing technique.
If the FP to FN trade-o� curve is convex, which makes (12) convex,
we are able to compute optimal thresholds using convex optimiza-
tion methods. However, this is not generally the case, as trade-o�
curves tend to be non-convex (see Figure 3 for an instance of a
trade-o� curve).

The algorithm considers each sensor separately, and �nds its cor-
responding detection threshold. At each iteration, the algorithm se-
lects a new starting point and �nds a local minimum using gradient-
based optimization. In order to avoid unnecessary computation, we
skip computing detection thresholds for sensors with very similar
measured and predicted tra�c values. Formally, for sensor s ∈ E,
we select detection threshold ηs = ∞, if |zs (k)| < b. This is because
the detector’s statistics Us (k) and Ls (k) are decreasing and it is
unlikely that an alert would be raised if one was not raised before.

4.3 Critical Sensors
Value of the optimal loss gives insight on the criticality of tra�c
sensors. Fault on a sensor that has high loss value degrades the
system’s performance more than fault on a sensor with low loss
value. We formally de�ne the set of δ -critical sensors below.

De�nition 4.2 (Critical Sensors). Set of δ -critical sensors in a time
period [1,T] is de�ned as the set of sensors which have the average
optimal loss values of greater than or equal to δ . That is to say, a
sensor s is critical if 1

T
∑T
k=1 Ls (η

∗
s (k),Q(k)) ≥ δ .

Algorithm 1 Algorithm for Obtaining Thresholds

1: Input Q , FP(η), FN (η), α , γ
2: Initialize: η ← η0, L∗ ←∞
3: for all s ∈ S do
4: if |z(k)| ≤ b then
5: η∗s ←∞
6: else
7: while i < N do
8: ηs,new ←↩ FP−1s (Uniform([0, 1]))
9: ηs,old ← 0

10: while |Ls (ηs,new ,Q) − Ls (ηs,old ,Q)|>α do
11: ηs,old ← ηs,new
12: ηs,new ← ηs,old − γ∇ηs Ls (ηs,old ,Q)
13: if Ls (Q,ηs,new) < L∗s then
14: η∗s ← ηs,new
15: L∗s ← Ls (ηs,new ,Q)
16: i ← i + 1
17: return η∗

Identifying critical sensors is bene�cial, since it allows us to
locate the most vulnerable elements of a network, which should
be strengthened �rst to increase the robustness of a network. For
example, if we have a limited budget which permits us to replace
only a subset of the sensors with more robust ones, then we should
start with the critical sensors.

5 EVALUATION
In this section, we implement our method and evaluate it numeri-
cally using a route planning platform.

5.1 System Model
5.1.1 Tra�ic Data. We use a tra�c dataset obtained from the

Caltrans Performance Measurement System (PeMS) database [2].
The database provides real-time and historical tra�c data from over
39,000 individual sensors, which span the freeway system across
metropolitan areas of the State of California. Figure 2 shows the
location of sensors in our case study, in which a total of 40 sensors
are considered. We use the 5-minute aggregated data collected on
the weekdays of September 3, 2016 to September 17, 2016. The
dataset contains 115,200 data points. The �rst 7 days are used as
training data, and the remaining 7 days are used as test data.

To simulate faults, we use models for a speci�c set of fault types
and ranges of fault magnitudes, which is similar to the approach pre-
sented in [16]. The fault models are: 1) Constant Relative Overcount
(caused by e.g., unsuitable sensitivity levels); range: 3% to 7% of the
actual values (i.e., εs (k) = usas (k) where 0.03 ≤ us ≤ 0.07), 2) Con-
ditional Undercount (caused by e.g., sensor saturation); range: 7%
to 13% (i.e., εs (k) = usas (k) where −0.13 ≤ us ≤ −0.07).

Next, for each sensor, we construct a predictor using the mea-
surements of its d closest sensors as the predictor variables. We
selectd = 10 since it results in the minimum overall prediction error.
We choose bs = 0.05 for all the detectors, to make them sensitive to
small shifts in the mean. We evaluate each detector’s performance
by plotting the FP probability against the FN probability at various
threshold values. Figure 3 shows the trade-o� curve of the detector

Optimal Detection of Faulty Tra�ic Sensors SCOPE 2017, April 2017, Pi�sburgh, PA USA

Figure 2: Amap of tra�c sensors installed in Downtown Los
Angeles.

0 0.2 0.4 0.6 0.8 1
FN Probability [FN(η)]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
P

P
ro
b
ab

il
it
y
[F

P
(η
)]

Conditional Undercount

Constant Relative Overcount

Figure 3: Trade-o� between the false-positive and false-
negative probabilities.

implemented for a sensor, whose identi�er in the PeMS dataset is
VDS 774685.

5.1.2 Route Planner. We use OpenTripPlanner (OTP), which
is an open source platform for multi-modal route planning [11].
OTP relies on open data standards including OpenStreetMap for
street networks. The default routing algorithm in OTP is the A∗

algorithm with a cost-heuristic to prune the search. For improved
performance on large networks, it also uses contraction hierarchies.

5.2 Results
We simulate a route planning scenario in OTP, where the edge costs
(i.e., travel times) are updated using our tra�c data. For a source and
destination as shown in Figure 4a, we consider 1000 queries made
on September 15, from 9:00 am to 10:00 am. Figure 4a shows the
shortest route when a particular sensor (i.e., VDS 774685) is healthy,
and Figure 4b shows the shortest route when the same sensor
has a conditional undercount fault. Note that if the fault remains

(a)

(b)

Figure 4: Reroute occurs due to a conditional undercount
fault. (a) Normal. (b) Fault. (Green �ag is the source and red
�ag is the destination.)

undetected (i.e., false negative), a suboptimal route (Figure 4b) will
be selected instead of the optimal route (Figure 4a). In another
scenario, assume an alarm is triggered under normal operation
(i.e., false positive). This means that the predicted value is used for
route planning instead of the accurate measurement value, which
depending on the prediction accuracy, may result in a suboptimal
route planning solution.

We use Algorithm 1 to �nd near-optimal thresholds that mini-
mize losses due to FPs and FNs. We assume that for each sensor,
the probability of fault is pf = 0.05. For the previously considered
sensor, at k = 1 (i.e., from 9:00 am to 9:05 am), the loss value (12)
as a function of the threshold is shown in Figure 5. In this case,
Algorithm 1 �nds the optimal thresholds. For the Conditional Un-
dercount, the optimal threshold and the minimum loss are η = 0.17
and L = 16.2, whereas for the Constant Relative Overcount, the
optimal threshold and the minimum loss are η = 0.39 and L = 30.0.

Further, Table 1 shows the average optimal loss for some sen-
sors, i.e., 1

T
∑T
k=1 Ls (η

∗
s (k),Q(k)). As a baseline, we also compute

the minimum loss when the thresholds have static values at all
the timesteps. That is, for all k , we assign ηs (k) = η∗s , where
η∗s ∈ argminηs

∑
k Ls (ηs ,Q). We observe that our method achieves

signi�cantly smaller losses compared the static case. The loss val-
ues can also be used to identify the set of δ -critical sensors. For
example, 50.0-critical sensors are made bold in the table.

6 RELATEDWORK
There are many papers that study tra�c prediction. The work in [9]
uses multivariate kernel regression models to predict tra�c �ow in

SCOPE 2017, April 2017, Pi�sburgh, PA USA A. Ghafouri et al.

0 0.2 0.4 0.6 0.8 1
Threshold [η]

0

10

20

30

40

50

60

70

80

L
os
s
[L
]

Conditional Undercount

Constant Relative Overcount

Figure 5: Loss as a function of detection threshold.

Table 1: Average Optimal Losses

Sensor ID Cond. Undercount Cons. Rel. Overcount

Optimal Static Optimal Static

774685 16.2 31.2 30.0 38.1
774672 18.0 27.6 22.1 36.7
772501 15.6 24.3 12.8 19.2
763453 51.8 74.3 57.5 80.9
737158 43.0 59.6 54.8 71.4

a network, considering route planning as the application. In [4], the
paper provides a travel time prediction algorithm in a small scale
simulated network. The work in [15] constructs robust algorithms
for short-term tra�c �ow prediction. Finally, in [7], classical time
series approaches are used for short-term speed prediction in a
network.

The problem of anomaly detection of tra�c sensors is reviewed
in [10]. The paper categorizes di�erent methods into the three levels
of macroscopic, mesoscopic, and microscopic, and provides practical
guidelines for anomaly detection. The work in [18] presents three
methods to detect faulty tra�c measurements. The methods are
based on Pearson’s correlation, cross-correlation, and multivariate
ARIMA. Finally, the work in [14] presents a test, which is based
on the relationship between �ows at adjacent sensors to detect
faulty loop detectors. Nevertheless, since previous papers use static
thresholds, their methods result in high losses due to FPs and FNs.

In our previous work, we have considered the problem of op-
timal parameter selection for anomaly detection. The problem of
�nding optimal thresholds for intrusion detectors is studied in [8].
The paper shows that computing optimal attacks and defenses is
computationally expensive, and proposes heuristic algorithms for
computing near-optimal strategies. Further, the work in [6] stud-
ies the problem of �nding optimal thresholds for anomaly-based
detectors implemented in dynamical systems in the face of strate-
gic attacks. The paper provides algorithms to compute optimal
thresholds that minimize losses considering best-response attacks.

7 CONCLUSIONS
We studied the problem of �nding optimal detection parameters for
anomaly detection of tra�c sensors, considering route planning as
application. We constructed a predictor using Gaussian processes,
which was then used for anomaly detection. We studied how to �nd
the optimal detection parameters, which minimize losses due to FP
and FN errors. We also characterized critical sensors, whose failure
can have high impact on the tra�c application. We implemented
our method and evaluated it numerically using a route-planning
platform. Our evaluations indicated that the proposed detection
method successfully minimizes the performance losses.

ACKNOWLEDGMENTS
The work is supported by the National Science Foundation (CNS-
1238959, CNS-1647015), the Air Force Research Laboratory (FA 8750-
14-2-0180), and the National Institute of Standards and Technology
(70NANB15H263)

REFERENCES
[1] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,

Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F Werneck. 2016.
Route planning in transportation networks. In Algorithm Engineering. Springer,
19–80.

[2] Caltrans. 2016. Performance Measurement System (PeMS). Available:
http://pems.dot.ca.gov. (2016). [Accessed: 10/25/2016].

[3] Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. 2015. User-constrained
multimodal route planning. Journal of Experimental Algorithmics (JEA) 19 (2015).

[4] Lili Du, Srinivas Peeta, and Yong Hoon Kim. 2012. An adaptive information
fusion model to predict the short-term link travel time distribution in dynamic
tra�c networks. Transportation Research Part B: Methodological 46, 1 (2012),
235–252.

[5] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters
27, 8 (2006), 861–874.

[6] Amin Ghafouri, Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, and Xeno-
fon Koutsoukos. 2016. Optimal Thresholds for Anomaly-Based Intrusion De-
tection in Dynamical Environments. In Proceedings of the Decision and Game
Theory for Security: 7th International Conference, GameSec 2016, New York, NY,
USA, November 2-4, 2016, Vol. 9996. Springer, 415.

[7] Yiannis Kamarianakis, Angelos Kanas, and Poulicos Prastacos. 2005. Modeling
tra�c volatility dynamics in an urban network. Transportation Research Record:
Journal of the Transportation Research Board (2005), 18–27.

[8] Aron Laszka, Waseem Abbas, S Shankar Sastry, Yevgeniy Vorobeychik, and
Xenofon Koutsoukos. 2016. Optimal thresholds for intrusion detection systems.
In Proceedings of the Symposium and Bootcamp on the Science of Security. ACM.

[9] Thomas Liebig, Nico Piatkowski, Christian Bockermann, and Katharina Morik.
2017. Dynamic route planning with real-time tra�c predictions. Information
Systems 64 (2017), 258–265.

[10] Xiao-Yun Lu, Pravin Varaiya, Roberto Horowitz, and Joe Palen. 2008. Faulty
loop data analysis/correction and loop fault detection. In 15th World Congress on
Intelligent Transport Systems.

[11] B McHugh. 2011. The opentripplanner project. The OpenTripPlanner Project
(2011), 12–16.

[12] ES Page. 1954. Continuous inspection schemes. Biometrika 41, 1/2 (1954), 100–
115.

[13] Carl Edward Rasmussen. 2006. Gaussian processes for machine learning. (2006).
[14] Stephen Peter Robinson. 2006. The development and application of an urban

link travel time model using data derived from inductive loop detectors. Ph.D.
Dissertation.

[15] Shiliang Sun, Rongqing Huang, and Ya Gao. 2012. Network-scale tra�c mod-
eling and forecasting with graphical lasso and neural networks. Journal of
Transportation Engineering 138, 11 (2012), 1358–1367.

[16] Peter Widhalm, Hannes Koller, and Wolfgang Ponweiser. 2011. Identifying
faulty tra�c detectors with Floating Car Data. In Integrated and Sustainable
Transportation System (FISTS), 2011 IEEE Forum on. IEEE.

[17] Yuanchang Xie, Kaiguang Zhao, Ying Sun, and Dawei Chen. 2010. Gaussian
processes for short-term tra�c volume forecasting. Transportation Research
Record: Journal of the Transportation Research Board 2165 (2010).

[18] Nikolas Zygouras, Nikolaos Panagiotou, Ioannis Katakis, Dimitrios Gunopulos,
and UOA GR. 2015. Towards detection of faulty tra�c sensors in real-time.
(2015).

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Route Planning
	2.2 Gaussian Process Regression

	3 System Model
	3.1 Transportation Network
	3.2 Gaussian Process-Based Detector

	4 Optimal Detection
	4.1 Optimization Problem
	4.2 Algorithm for Obtaining Thresholds
	4.3 Critical Sensors

	5 Evaluation
	5.1 System Model
	5.2 Results

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

