
A MULTI-DOMAIN FUNCTIONAL DEPENDENCY MODELING TOOL

BASED ON EXTENDED HYBRID BOND GRAPHS

By

Zsolt Lattmann

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2010

Nashville, Tennessee

Approved:

Professor Gabor Karsai

Professor Gautam Biswas

ii

ACKNOWLEDGEMENT

This work was supported under the DRAFTS Program, Airbus UK LTD on “Dependability and Risks

Assessment Frameworks Tool Sets”. Their support is acknowledged.

I would like to thank my advisor, Professor Gabor Karsai for his support, instruction, and advice

during this project.

I would like to thank Professor Gautam Biswas for his help.

iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENT .. ii

TABLE OF CONTENTS .. iii

LIST OF TABLES .. iv

LIST OF FIGURES ... v

Chapter

I. INTRODUCTION .. 1

Problem statement .. 3

II. BACKGROUND ... 5

Bond graphs .. 5

Basics .. 5

Modulated elements and switched junctions... 11

Vector bond graphs... 13

Hierarchical design .. 13

Differential equations from bond graphs ... 13

Model Integrated Computing .. 14

III. DESIGN OF THE MODELING LANGUAGE .. 17

IV. DESIGN OF THE MODEL INTERPRETER .. 23

V. CASE STUDY .. 28

VI. SUMMARY AND CONCLUSIONS ... 32

BIBLIOGRAPHY .. 34

iv

LIST OF TABLES

Table Page

II.1: Power and energy variables in different domains ... 5

III.2: Legal and illegal signal connections .. 22

IV.3: Simulink models of the bond graph elements .. 27

v

LIST OF FIGURES

Figure Page

I.1: Hierarchical design structure .. 2

II.2: The two different causal stroke ... 6

II.3: Relationship between the power and energy variables .. 6

II.4: Causal form of sources ... 7

II.5: Resistor’s causal form and characteristics ... 8

II.6: Causal form and characteristics of capacitors ... 9

II.7: Causal form and characteristics of inertias .. 9

II.8: Transformer causal graph .. 10

II.9: Gyrator causality graph .. 10

II.10: Junction types and their equations .. 11

II.11: Modulation signal is connected to bond graph elements ... 11

II.12: Example for modulated transformer ... 12

II.13: ON state with equations, OFF state with equations .. 12

II.14: Example for creating differential equation from bond graph ... 14

II.15: Meta-modeling example [7] .. 15

III.16: FDM tool ... 17

III.17: Meta-model of FunSketcher ... 18

III.18: State machine model of the junctions .. 20

IV.19: Power propagation example. ... 24

V.20: System diagram ... 28

V.21: Bond graph of the system in GME ... 29

V.22: Generated Matlab Simulink model .. 30

V.23: Step response of the system ... 31

1

CHAPTER I

INTRODUCTION

Modeling physical systems is necessary to understand how they work and how the compositions of

physical components (i.e., complex physical systems) work. Modeling is used for prediction, design, and

operation. Simple components or simple physical systems can be modeled with modeling languages that

have modeling elements on the order of 10. For instance, bond graphs can be used for modeling

physical systems and they have only nine basic elements. However, complex physical systems can have

many interconnected components (e.g. a landing gear system of airplanes has 80-100 elements), which

are also physical systems. The number of components (including physical, hardware, and software

components) rapidly grows in a particular subsystem during the design time. This means that number of

interconnections and the complexity also grows during subsystem design.

Therefore, modelers need support for hierarchical modeling because using only the atomic elements

of the modeling language would result in a very large number of atomic elements and their connections

on the same level. This is beyond the scalability boundary of graphical languages; normally the accepted

limit is 50 icons per screen. Using hierarchy, modelers can define smaller components with ports. Ports

are gateways between two levels in the hierarchy. Models that contain components, these also have

ports, and ports are called subsystems. Subsystems can be connected to other elements through their

ports, or ports in a higher level subsystem that contains the composition of the elements. The

hierarchical structure of an example system is shown in Figure I.1.

2

Figure I.1: Hierarchical design structure

When modelers design a complex physical system, they use different physical domains: hydraulic,

electrical, mechanical or thermal. Each domain has different elements and components with

descriptions of different physical laws (such as Kirchhoff’s Law, Newton’s Law, Pascal’s Law). Modelers

must create well-defined mathematical models for each domain. For instance, the mathematical model

of an electrical capacitor can be written as Equation 1, where the voltage on the capacitor can be

computed at every instant of time by the integrating of the current on the capacitor, then dividing it

with the capacitor value and adding the initial voltage.

 𝑣 𝑡 =
1

𝐶
 𝑖 𝜏 𝑑𝜏 + 𝑣 𝑡0
𝑡

𝑡0
 (1.)

Using those models, the modeler obtains a set of equations. However, when the system has certain

kind of switching elements, electrical switch or hydraulic valve, the equations might depend on time. A

better approach is to use those mathematical models as atomic elements of the system and create the

composition of them. Each component has its mathematical description, which is used to calculate the

states and the independent variables of the system. The modeler can visualize the composition of

elements and components with a visual layout designer (such as Generic Modeling Environment GME

Subsystem (S)

Component (C)

Atomic elements (flat graph)

Ports

3

[4]). If the modeler specifies the initial conditions and parameters of each atomic element or

component, the system can be simulated and analyzed.

According to the requirements above, the basis of the visual domain specific modeling language that

we have chosen is an extended hybrid bond graph modeling language. Bond graphs are a domain

independent modeling formalism [1][8]; any physical domain can be modeled using the same elements

and connections, but with different domain-dependent physical meaning. When modelers create a bond

graph model for a specific component, they also create the visual representation of the mathematical

equations of the component because bond graphs can be rewritten into differential equations.

However, hybrid bond graphs are not sufficient for modeling complex physical systems, for instance,

sensing and actuation is not possible in classical bond graph terminology. Therefore, we extended our

language to include sensing and actuation together, with hierarchy, as previously described, data

processing elements, and controllers. Hierarchy can provide for visualizing different details on different

levels. Given an engineering tool, models can be visualized, edited, created, and managed graphically.

Problem statement

1. In this thesis we will describe a Domain Specific Modeling Language (DSML), which can be used

to create and edit physical models and their controlling functions in different domains. Our

DSML is called Functional Dependency Model (FDM), and it is based on extended hybrid bond

graphs.

2. Bond graphs and the connected elements in the bond graphs have predefined syntax and

semantics. Syntactic and semantic concepts determine the design rules. Design rules define the

legal compositions of the elements and rules for the values of specific attributes. Modelers can

create only syntactically and semantically correct models. Therefore, the design rules shall be

validated by a constraint checker and/or a model interpreter.

4

3. Another design rule is that the bond graph shall be correct regarding the causality directions.

The interpreter generates a causality graph to show the causality directions and the causality

problems to the modeler. The interpreter uses the power propagation between the components

to perform causality checks.

4. If the model seems correct to the interpreter and the constraint checker, the interpreter shall

create a MATLAB script to build a Simulink [10] model according to the FDM model and its

hierarchy.

5

CHAPTER II

BACKGROUND

Bond graphs

Basics

The discussion below follows the book on System Dynamics [1]. Bond graphs provide a modeling

formalism based on basic elements with ports and interconnections between ports. Interconnections

represent power flows between the elements, which elements can be of type 1-port, 2-port, and n-port.

Ports can be connected together via connections called bonds. The bond connections are lines that end

with a half arrow. The power sources are always on the beginning of arrows and the power sinks are

always the end of arrows. Each bond represents two variables: the generalized effort and flow variable.

The power is the product of the effort and the flow variables, which have different physical meaning and

represent different quantities in different domains. For example, in the electrical domain the effort can

be the voltage and the flow can be the current. Table II.1 contains the identification of the effort and

flow variables in several domains.

Table II.1: Power and energy variables in different domains

 Generalized variables

Effort, e Flow, f Momentum, p=∫e Displacement, q=∫f

D
o

m
ai

n

Mechanical
translation

Force, F Velocity, V Momentum, P Displacement, X

Mechanical
rotation

Torque,  Angular velocity,  Angular momentum, p Angle, 

Hydraulic Pressure, P Volume flow, Q
Pressure momentum,
pp

Volume, V

Electrical Voltage, e Current, i Flux linkage variable,  Charge, q

Thermal Temperature, T Entropy flow, fS Entropy, S

6

The direction of effort and flow is indicated by the causal stroke (see Figure II.2) of the connection.

Effort is always above or on the left hand side of a connection. Flow is always below or on the right hand

side of a connection. The causal stroke sign can be on either side of the connection. Figure II.2 shows the

causal strokes in different cases and the direction of effort and flow.

Figure II.2: The two different causal stroke

Bond graphs show the power directions, but they are the same as the energy directions (see

Figure II.2). Figure II.3 summarizes the power and energy variables and their mathematical relationship

between them, which is true at every instant of time. The variables are also referred to as (generalized)

effort (e), flow (f), momentum (p), and displacement (q).

Figure II.3: Relationship between the power and energy variables

Bond graph elements are described next, including 1-port elements (such as sources, resistors,

capacitors, and inertias), 2-port elements (such as transformers and gyrators), and junctions.

Simple 1-port elements generate power, dissipate energy or store energy. Power generation is

represented by a power source, which can be either source of effort or source of flow. A resistor

𝑒 𝑓 𝑞 𝑝

 𝑑𝑡 𝑑𝑡

𝑝 = 𝑒 𝑞 = 𝑓

power directions

causal stroke 𝑒
𝑓

𝑒
𝐴 𝐵

𝐴 𝐵

𝐴 𝐵

𝑓
𝐴 𝐵

7

element dissipates energy. Storage elements are (generalized) capacitance and inductance elements

that can store either effort or flow.

In the bond graph terminology, there are two types of power sources: source of effort (Se) and source

of flow (Sf). The power sources produce constant efforts or constant flows. The produced flow and effort

does not depend on other elements of the system, assuming ideal sources. For example, a car battery

can be modeled as a source of effort using bond graph language. The voltage (i.e. effort) of the battery is

a constant 12 V and does not change when the load is changing. This assumption is not satisfied for real

systems. The effort sources can be voltage supplies, pressure sources, and force sources such as gravity.

The flow sources can be current supplies, hydraulic flow sources, and velocity sources such as a wall,

where 𝑣 = 0
𝑚

𝑠
. The causal direction is predefined on source elements (see Figure II.4).

Figure II.4: Causal form of sources

Resistors represent a characteristic relationship between flow (f) and effort (e) variables. The

characteristics of the resistors can be linear or nonlinear. In a special case, when the resistor is linear,

the resistor’s value is called resistance and its inverse is called conductance. Power flows into the

resistor and the resistor dissipates energy according to its characteristics. Using the power convention,

the half arrow is pointing towards the (passive) resistors. Parameters of resistors are the electrical

resistance in the electrical domain or mechanical damper coefficient in the mechanical domain. The

hydraulic resistor can be a pipe, which is defined with nonlinear parameterized equations; pipes cannot

be described with a single resistor parameter. The causal stroke can point in either direction on a

resistor (see Figure II.5).

𝑓(𝑡)

𝑒

𝑓

𝑒(𝑡)
𝑆𝑒 𝑆𝑓

𝑆𝑒

𝑆𝑓

8

Figure II.5: Resistor’s causal form and characteristics

Ideal storage elements can store energy without loss. In other words, they are the ‘memory’ of the

system. The effort storage element is called (1-port) capacitor or compliance and the flow storage

element is referred to as (1-port) inertia in bond graph terminology. Causality determines the direction

of the effort and the flow. Therefore, storage elements have two different types of causality: integral

causality and derivative causality. In physical systems, the preferred one is the integral causality. When a

storage element has an integral causality, the system has an independent variable or state of the

system. When a storage element has derivative causality, the system does not have any another

independent variables or states.

Capacitors represent a characteristic relationship between the effort (e) and the displacement (q).

Also, this element has two different types, linear and nonlinear, according to the relationship between

the effort and displacement. 1-port capacitors include electrical capacitors, springs, torsion bars,

hydraulic accumulators, and gravity tanks. Figure II.6 shows the causal strokes and characteristic

equation of capacitors.

𝑅 𝑅 𝑅
𝑓

𝑒
𝑅

𝑓

𝑒 𝑓 = 𝑅𝑒

𝑓 = 𝜑𝑅(𝑒)

𝑒 =
1

𝑅
𝑓

𝑒 = 𝜑𝑅
−1(𝑓)

9

Figure II.6: Causal form and characteristics of capacitors

Inertias represent a characteristic relationship between the flow (f) and the momentum (p) (see

Figure II.7). Also, this element has two different types, linear and nonlinear, according to the

relationship between the flow and momentum. 1-port inertias can be electrical inductances, masses,

and fluid inertias.

Figure II.7: Causal form and characteristics of inertias

Ideal 2-port elements are used for power conversion between the input and the output ports of the

element. This conversion is ideal: the element does not have power loss. Equation 2 must be satisfied

for every instant of time, according to the rule of the power conversion without power loss. There are

two types of 2-port elements in bond graph terminology: transformer and gyrator.

 𝑒1 𝑡 𝑓1 𝑡 = 𝑒2 𝑡 𝑓2(𝑡) (2.)

Transformers can be electrical transformers, rigid levers, gear pairs and hydraulic rams. Transformers

have a parameter m, which is called the transformer modulus. Equation 3 shows the constitutive law

between effort and flow. The subscript notations on the equations are used to differentiate between

the two sides of the transformer (see Figure II.8).

𝐼 𝐼 𝐼
𝑓

𝑒
𝐼

𝑓

𝑒
𝑓 =

1

𝐼
 𝑒𝑑𝑡
𝑡

𝑓 = 𝜑𝐼
−1 𝑒𝑑𝑡

𝑡

𝑒 = 𝐼𝑓

𝑒 =
𝑑

𝑑𝑡
𝜑𝐼 𝑓

𝐶 𝐶 𝐶
𝑓

𝑒
𝐶

𝑓

𝑒 𝑓 = 𝐶𝑒

𝑓 =
𝑑

𝑑𝑡
𝜑𝐶 𝑒

𝑒 =
1

𝐶
 𝑓𝑑𝑡
𝑡

𝑒 = 𝜑𝐶
−1 𝑓𝑑𝑡

𝑡

10

 𝑒1 = 𝑚𝑒2 , 𝑓2 = 𝑚𝑓1 (3.)

Figure II.8: Transformer causal graph

Gyrators usually convert power between different domains and they can be electrical gyrators,

mechanical gyrators (converting power from mechanical rotation domain to mechanical displacement

domain, for example), and voice coil transducers (from mechanical displacement domain to electrical

domain). Gyrators have a parameter r, which is called gyrator modulus. Equation 4 shows the

constitutive law between effort and flow. The subscript notation is used to differentiate between the

two sides of the gyrator (see Figure II.9).

 𝑒1 = r𝑓2 , 𝑒2 = r𝑓1 (4.)

Figure II.9: Gyrator causality graph

Bond graphs have two different junction types that make it possible to connect bond graph

elements, and elements can be connected only through junctions. The first type of junctions is the 0-

junction, which has two constraints: efforts are the same on all the connected bonds, and the

summation of the flows on those bonds is zero. For example, 0-junction represents parallel connection

in electrical domain. The second type of junctions is the 1-junction, which has two constraints: flows are

the same on all connected bonds and the summation of the efforts is zero. For instance, 1-junction

represents serial connection in electrical domain. Junctions have 2 or more connected bonds.

𝐺𝑌 𝐺𝑌
1 2 2 1

𝑇𝐹 𝑇𝐹
1 2 1 2

11

Figure II.10: Junction types and their equations

Modulated elements and switched junctions

Some of the bond graph elements, called modulated elements, can be modulated with a signal, and

are used to model non-linear elements. Signals represent a flow of information without any energy

meaning. Signals can modify the parameter values of the elements or can switch junctions. Bond graphs,

that contain switched junctions, are called hybrid bond graphs [14]. The bond graph terminology

assumes that power is not needed for transferring, creating, and using signals. Signals are powerless

data links, which can carry any kind of data: numbers, Boolean values, vectors and matrices. The

modulated elements have the letter M in front of the name of the elements (i.e. MSe, MSf, MTF and

MGY). Some examples for the modulated bond graph elements are shown in Figure II.11.

Figure II.11: Modulation signal is connected to bond graph elements

The modulated effort source (MSe) can be, for instance, a sinusoidal voltage in the electrical domain.

Modulated transformer (MTF) is usually kinematic linkage or geometric transformation in the

mechanical domain. A simple example is a rotating arm around a pivot, which is on one side of the arm

(see Figure II.12). The input is the force on the end of the arm, and the output is the torque around the

pivot. In this case, the mechanical displacement domain is the input and the mechanical rotation domain

is the output of the system. This system can be modeled as a MTF according to the domain

transformation and the relationships between the force/torque and the velocity/angular velocity.

𝑀𝑇𝐹
𝑒2 = 𝑚(𝑡)𝑒1 𝑒1

𝑓1
𝑀𝐺𝑌

𝑒1

𝑓1

𝑚(𝑡) 𝑟(𝑡)

𝑀𝑆𝑒
𝑒1 = 𝑒(𝑡)

𝑓1

𝑒(𝑡)

𝑀𝑆𝑓
𝑒1

𝑓1 = 𝑓(𝑡)

𝑓(𝑡)

𝑓2 =
1

𝑚(𝑡)
𝑓1

𝑒2 = 𝑟(𝑡)𝑓1

𝑓2 =
1

𝑟(𝑡)
𝑒1

0
𝑒1

𝑒2

𝑒3

𝑓1

𝑓2

𝑓3
𝑒1 = 𝑒2 = 𝑒3

𝑓1 + 𝑓2 + 𝑓3 = 0

1
𝑒1

𝑒2

𝑒3

𝑓1

𝑓2

𝑓3
𝑓1 = 𝑓2 = 𝑓3

𝑒1 + 𝑒2 + 𝑒3 = 0

12

Assume that the force is vertical. The parameter value of the transformer r depends on the causality and

r is equal to either 𝑙 cos 𝜃 or
1

𝑙 cos 𝜃
, where l is the length of the rod and θ is the angle between the

horizontal axis and the arm.

Figure II.12: Example for modulated transformer

Signals must carry a Boolean value (i.e. TRUE or FALSE) when they are connected to a junction

element, called the switched junction [2]. When the connected signal carries a TRUE value the junction

is in the ON state and works as described above. When the connected signal carries a FALSE value the

junction is in the OFF state. Therefore, the effort and the flow variables must have zero values on all

connected bonds as shown on Figure II.13.

Figure II.13: ON state with equations, OFF state with equations

0
𝑒1

𝑒2

𝑒3

𝑓1

𝑓2

𝑓3 𝑒1 = 𝑒2 = 𝑒3

𝑓1 + 𝑓2 + 𝑓3 = 0

1
𝑒1

𝑒2

𝑒3

𝑓1

𝑓2

𝑓3
𝑓1 = 𝑓2 = 𝑓3

𝑒1 + 𝑒2 + 𝑒3 = 0

𝑒1 = 𝑒2 = 𝑒3 = 0

𝑓1 = 𝑓2 = 𝑓3 = 0

𝑂𝑁 𝑆𝑡𝑎𝑡𝑒 𝑂𝐹𝐹 𝑆𝑡𝑎𝑡𝑒

𝜃

𝐹, 𝑣

𝜏, 𝜔

𝑙
𝑀𝑇𝐹

𝜏 𝐹

𝑣 𝜔

𝑙 cos 𝜃
𝐹𝑙 cos 𝜃 = 𝜏

𝜔𝑙 cos 𝜃 = 𝑣

𝑀𝑇𝐹
𝜏 𝐹

𝑣 𝜔

1

𝑙 cos 𝜃
 𝐹 =

1

𝑙 cos 𝜃
𝜏

𝜔 =
1

𝑙 cos 𝜃
𝑣

13

Vector bond graphs

Vector bond graphs [11] have multidimensional bonds, and these bonds carry as many variables

between elements as many ports they have. Vector bond graphs are an extension of the bond graph

terminology. Since bonds have multiple variables the one-port elements are defined as a field.

Therefore, vector bond graphs have different fields: R-field, I-field, C-field, IC-field, multiport TF,

multiport GY and junction structures. Parameters of multiport bond graph elements are vectors or

matrices. Those elements and their parameters simplify the modeling of multidimensional dynamics.

Hierarchical design

Complex physical systems would have to be described by very large graphs if we used only flat bond

graphs. This is a scalability problem that always appears when the modeling language supports only flat

graphs. By extending the bond graphs with hierarchy, the graphs can be reduced to fewer, simpler

pieces and their connections. This way, the components can be connected to each other through their

ports. Hierarchical modeling promotes reuse: when the modelers create components, for example a real

voltage supply with internal resistor, another modeler can use that. Combining several components

takes less time than creating and editing one large flat model for the same system. Therefore, following

the hierarchical approach, system models are more comprehensible for other engineers. Using the

hierarchical design, engineers can create reusable components for further modeling.

Differential equations from bond graphs

Bond graph models can be transformed to differential equations only after the causality algorithm [1]

has been completed on the graph. The causality algorithm determines the physical causal directions (i.e.

causal strokes) on all the bonds. The algorithm will be described in the section on the design of the

model interpreter. Storage elements, that have integral causality, indicate the state variables of the

differential equations. The relationships between the state variables are described by the characteristic

14

equation of the elements. Figure II.14 shows a simple example how one can create the differential

equations from the bond graph notations.

Figure II.14: Example for creating differential equation from bond graph

Model Integrated Computing

Model Integrated Computing (MIC) [6] is used for designing well-defined software systems, and it has

three core components: (1) Domain Specific Modeling Languages, (2) the meta-programmable MIC tool

suite based on the Unified Modeling Language (UML) class notations [9] and (3) a framework to verify,

analyze, and transform models during the design process.

Modelers can specify Domain Specific Modeling Languages (DSML) [6] for their problem domains.

These languages are not abstract; they are well-defined modeling languages using domain specific

notations. DSMLs can be defined by a meta-language, which is based on UML and is supported by the

Generic Modeling Environment [4].

E(t)

R L

C

𝐸(𝑡) + 𝑅𝑓 + 𝑒3 + 𝑒4 = 0

𝑓 = −
1

𝐿
𝑅𝑓 −

1

𝐿
𝑒4 −

1

𝐿
𝐸(𝑡)

𝑒4 =
1

𝐶
𝑓

𝑓

𝑒4
 =

−
𝑅

𝐿
−

1

𝐿
1

𝐶
0

𝑓
𝑒4
 + −

1

2
0
 𝐸(𝑡)

𝑒1 + 𝑒2 + 𝑒3 + 𝑒4 = 0

𝑓1 = 𝑓2 = 𝑓3 = 𝑓4 = 𝑓

𝑒1 = 𝐸 𝑡

𝑒2 = 𝑅𝑓2

𝑓3
 =

1

𝐿
𝑒3

𝑒4 =
1

𝐶
𝑓4

𝑖 = 𝑓

𝑈𝐶 = 𝑒4

15

Figure II.15: Meta-modeling example [7]

The meta-modeling language for GME is called MetaGME. The MetaGME [13] language has several

predefined concepts: models, atoms, sets, aspects, connections, attributes, and constraints. The

modelers can describe their DSML with the composition of these concepts. A simple example for a

meta-model is shown in Figure II.15. Models can contain other components, this containment allows the

user to create hierarchical models, and they might have ports and connections. Atoms represent the

atomic elements of DSMLs, which are shown with icons and have attributes. Sets are containers similar

to models, but they group elements on the same level of the hierarchy.

In this and several other cases, the modeler may need to use different aspects for a model. Aspects

are used to define the visualization of the models through projections. The model elements (models,

atoms, etc.) can be connected to each other via connections. Connections are visualized as lines with or

without arrows. The atoms, connections, sets, and models might have attributes, which can be set by

the modeler. Attributes can be of type Boolean, enumeration, and field attribute (string, integer, and

double). Regarding the attributes, the connections and the composition of the models, the language

might have several design rules. Design rules are predefined syntactic and semantic restrictions for the

user-built models, which must be satisfied by the model. One way to implement those rules is to use

16

constraints. Constraints can be written on Object Constraint Language (OCL) [12]. GME has a constraint

checker, which evaluates constraints for the domain-specific model. When a constraint evaluates to

false GME flags this is a problem.

GME contains the models in a tree structure, where one can reach every element of the model with

starting from a special element called the root element. There are many algorithms that can traverse

tree structures, for instance, Depth First Search (DFS) and Breadth First Search (BFS) algorithms.

ISIS has developed other tools, including Universal Data Model (UDM) [3], which is used to access the

user built model. Using UDM, the developers of DSMLs can generate a C++ class representation for their

modeling language. Then they can write a C++ program, which processes the user built models based in

the particular DSML. The C++ program can create, delete, merge, transfer and generate models using

UDM interface.

Such program is referred to as a model interpreter. Model interpreters can be used to process and

verify GME models and check design rules on those models. The interpreter can generate any other

files, for example, an other GME model based on another DSML, source code, script file, configuration

file, input file for another software, etc. If the input and the output of the interpreter are graphs from

different domains, this is called graph transformation. Another ISIS tool, GReAT [5] is used for this

purpose.

17

CHAPTER III

DESIGN OF THE MODELING LANGUAGE

The purpose of this thesis is creating a DSML for modeling complex physical systems, and a model

interpreter that processes the user-built models. The block diagram of the tool is shown in Figure III.16.

The FDM tool carries out three main steps: design a model (based on the FDM meta-model), generate

output files (using the FDM model interpreter), and create the Simulink model using the generated

output files.

Figure III.16: FDM tool

FDM is a domain specific modeling language with functional and physical aspects. The modeling

elements of the FDM are as follows. Systems have only functional components on the top level. Top

level building blocks can be Components, Power links, Information links, Groups, Ungroups, Packs,

Unpacks, and Controllers. This top level has different aspects: functional (i.e. FunSketcher) and physical

domain specific aspects (i.e. electrical, mechanical displacement, mechanical rotation, thermal, and

hydraulic). A part of the FDM meta-model is shown in Figure III.17.

18

Figure III.17: Meta-model of FunSketcher

On the physical level, the modelers can create well-defined mathematical models for physical

systems using our extended hybrid bond graph notations as described on page 11. Modelers can use

additional elements to modify, measure, sense, and perform computations on bond graph variables and

signals. The modulation function element can be connected to any modulated bond graph node, and it

represents the internal modulation of the system. Internal modulation happens when a parameter of

the system depends on a state or a variable of the system. For example, pipes can be modeled as a non

linear resistor and the resistor is value depends on the fluid flow. The switching function element can be

19

connected to any switched junction, and it represents the internal switching of the system. For example,

when a tank has a hole at height h and the fluid level reaches that point than a junction will be turned

on by a switching function.

Sensing elements (i.e. `detect effort`: De and `detect flow`: Df) can ‘read’ the generalized bond

variables (i.e. effort and flow) on the junctions and they represent measured or sensed variables. De can

be connected to a common effort junction (0-junction) to sense the (common) effort and Df can be

connected to a common flow junction (1-junction) to sense the (common) flow. Modelers have also

support for debugging their models and visualizing bond variables using monitor elements (such as

monitor flow MF and monitor effort ME). MF can be connected to a common flow (i.e. 1-junction)

element and ME can be connected to a common effort (0-junction) element.

FDM language supports three operators (i.e. time variant elements): integrator, differentiator, and

delay elements for performing mathematical operations on signals. Sensing elements can measure

physical quantities, but the modelers may need to use the integral or derivative of those quantities. For

instance, the effort is the force and the flow is the velocity in mechanical displacement domain, and the

time integral of the velocity (i.e. the generalized flow variable) is the distance.

1-port and 2-port elements have three attributes: value, minimum tolerance, and maximum

tolerance. The value represents the nominal value of the element. The minimum and maximum

tolerance is a percentage range around (below and above) the nominal value. These values are given by

the manufacturers. The storage elements have one additional value, which is the initial value. For

example, a hydraulic tank can be modeled as a capacitor. Assume that the hydraulic tank has some fluid

at the starting point of the simulation. Then the initial value of the capacitor should be set up according

to the initial fluid height in the tank.

20

The switched junctions have state machines with two states and two transitions, shown in

Figure III.18. Each junction has three attributes: InitialState, OffCondition, and OnCondition. The

InititalState has two different possible values ON (default) and OFF. This attribute represents the state

of the junction at the beginning of the simulation. When the junction is ON, then the junction

establishes a connection among all bonds connected to it. According to the type of the junction, all the

efforts or all the flows are equal on all bonds. When the junction is OFF, the bonds are disconnected.

When the OnCondition becomes true during the simulation and the actual state of the junction is OFF

then the junction will switch its state from OFF to ON. When the OffCondition becomes true during the

simulation and the actual state of the junction is ON then the junction will switch its state from ON to

OFF.

Figure III.18: State machine model of the junctions

Power ports are physical domain specific elements that are used to connect bond graph elements

(i.e. junctions) to each other on different levels of the hierarchy. Power ports can be electrical,

mechanical rotation, mechanical displacement, hydraulic, and thermal; they have domain specific

attributes, which can be used to define minimum and maximum values for the power variables (i.e.

generalized effort and flow). For instance, electrical power ports have minimum and maximum voltages

and currents. Hydraulic power ports have minimum and maximum pressures and hydraulic flows. The

connections between the power ports and the bond connections have a dimension attribute, which

21

represents the number of effort and flow pairs on that connection. This attribute allows the modeler to

create vector bond graphs.

Power links represent real power connections between components, and they can model energy loss.

Power links contain Group and Ungroup elements. Group elements are used to combine power ports

together and create power groups. Power groups represent vector bonds. Ungroup elements are used

for splitting combined power connections into separate bonds. These elements must have at least one

power port element. The power ports must derive from the same domain. The top level model (i.e.

System) and Component contain Controllers. Controllers are used for modifying signals and creating

control signals. Controllers contain signals, Simulink models, mathematical operators (i.e. time variant

elements: integrator, differentiator, delay), control functions, Packs and Unpacks, which are needed to

create or use existing controller (such as Simulink model) logic. Pack elements are used for combining

signal lines together and creating signal groups. Unpack elements are used for splitting signal

connections. These elements must contain at least one input or output signal element.

FDM language has several design rules such as unique names, port connection restrictions, domain

specific restrictions. Design rules can be implemented in OCL or in the model interpreter. The difference

between the two methods is that the OCL expression is evaluated at design time and the interpreter is

executed during the model processing.

All of the elements of the model must have unique names; this design rule is implemented in OCL.

Another design rule is that 1-port elements in bond graphs must have only one bond connection.

Therefore, input signal ports must have one input connection. However, between the input and output

ports there are 16 different connections using the hierarchy concept. We use Table 1 for designing

constraint rules of signal connections. The table contains all possible cases of the signal connections

22

between input and output ports. Cross sign () represents the illegal connections and check sign ()

represents legal connections.

Table III.2: Legal and illegal signal connections

 Destination

 Same level Child

 Output Input Output Input

Source

Same level
Output
Input

Child
Output
Input

The minimum value must be less than or equal the maximum value on each power port. Power ports

can be connected to each other if the power port type of the source and the destination is the same.

Another design rule is the dimension checking on Group and Ungroup elements. The output vector

dimension of a Group must be equal to the sum of the input vector dimensions. Therefore, the input

vector dimension of Ungroup must be equal to the sum of the output vector dimensions.

A Control function is a computational block, and it is used to perform calculations with signals. The

input and the output of a control function must be signals. The input and the output variables are

determined by the direction of the connections between the control function and the signals. The

control function elements have a string attribute, which must contain an executable code in the form of

a script using the syntax of Embedded MATLAB Functions (EMF). The function header, which is the first

line of the script, must have EMF syntax. The listed names of input/output variables on the function

header must match the names of the connected input/output signals’ names must be identical.

23

CHAPTER IV

DESIGN OF THE MODEL INTERPRETER

One of the duties of the FDM Model Interpreter (FDMMI) is to check the design rules (i.e., those of

the abstract syntax) that must be satisfied by the model. The model interpreter marks the conflicts in

the models. After the interpreter has processed the GME models, it will list all the errors and warnings in

the GME console. These messages are shown with a hyperlink to the elements causing the design rule

conflict. Modelers must fix those problems to generate semantically correct models.

FDMMI traverses the user-built model once using Depth First Search algorithm. The interpreter

collects and stores all the information that it needs to generate the output model of the system, and

stores it in a special temporary data structure (such as the causal directions of the bonds). This data

structure contains the source and destination of the bonds, and a causal direction attribute. Then the

model is processed, and the interpreter determines the causal directions on each bond.

Power ports can be connected to other power ports, which come from the same domain, through

power connections. Power ports also can be connected to junctions. The path between the connected

junctions through power connections called power propagation. Figure IV.19 shows examples for power

propagations and their representation with additional bond connections. The pseudo code of the

implemented algorithm is shown below, which processes all power propagations in the model and

creates a flat bond graph for the SCAP algorithm.

24

AddDestJunctionAndPropagate(PowerPorts)
 for PowerPort in PowerPorts
 dstJunctions += PowerPort.GetJunctionConnections()
 AddDestJunctionAndPropagate(PowerPort.GetPowerPortConnections())

for thisPowerPort in allPowerPorts
 If (thisPowerPort has only source power port connection)
 srcPowerPorts += thisPowerPort
for srcPowerPort in srcPowerPorts
 srcJunctions = srcPowerPort.GetJunctionConnections()
 AddDestJunctionAndPropagate(srcPowerPort.GetPowerPortConnections())
ConnectWithBonds(srcJunctions, dstJunctions) //connect all src-s to all dst-s

Figure IV.19: Power propagation example.

After the interpreter produced the flat bond graph in a special data structure, it can determine the

causal strokes on the bonds. We use the Sequential Causality Assignment Procedure (SCAP) algorithm

for determining the causal strokes on the bonds. Processing the bond graph using SCAP is needed to

create either the mathematical equations or the block diagram of the system. When the modelers have

one of them, they can simulate and analyze the system behavior using some kind of software tool (e.g.

MATLAB Simulink).

1
0

1

0

0

1

1

1

0

1

1

0

0

1

Flat graph Hierarchical graph

sources destinations sources destinations

25

Function Propagate(thisjunction)
 Set causal direction on bonds for this junction and 2 port elements if needed
 If (causality changed) Propagate(thisjunction.GetConnectedJunctions())

Algorithm (SCAP) pseudo code
// step #1
While ((srcElement = pick a source element) != null) // source elements: Se and Sf
 setcausality(srcElement.bond)
 Propagate(srcElement.GetConnectedJunction())
// step #2
While ((srcElement = pick a storage element) != null) // storage elements: C and I
 setcausality(srcElement.bond) // integral causality
 Propagate(srcElement.GetConnectedJunction())
// step #3
While ((srcElement = pick a resistor element) != null) // resistor element: R
 setcausality(srcElement.bond) // integral causality
 Propagate(srcElement.GetConnectedJunction())
// step #4
While (allbonds.causality != SET)
 Pick a bond and set the causality
 Propagate(srcElement.GetConnectedJunctions())

FDMMI generates MATLAB script that will construct a Simulink model according to the GME model.

On the generated Simulink model the hierarchy and the layout of the subsystems is the same as in GME.

Each model in GME can be mapped to a Simulink model or a special subsystem (except power ports)

during the graph traversal. These subsystems and sub-models are connected together (except power

connections and bonds) according to the connections in GME. The bond and power connections cannot

be produced in one graph traversal. However, the model interpreter stores the source, the destination,

and the causal direction of each bond. When the SCAP algorithm has the result, the model interpreter

can generate the remaining connections between the bond graph elements and the necessary power

ports in the Simulink model.

After the Simulink model is generated, the modeler can extend it with additional elements that can

be connected to the top-level models. Top-level models can be connected together through input and

output ports. Those additional elements are usually various sources (inputs), and the outputs (scopes),

which allow the modeler to analyze the system behavior using different initial conditions and sources.

26

When the modelers work with a large project that contains many systems, and are interested in

analyzing only a subset of the systems at a time, the FDMMI supports this feature. If the FDMMI

processes only one or some systems, it takes less time than to interpret the whole project.

Table IV.3 contains some of the bond graph elements and their generated Simulink models. The

source of flow is similar to source of effort, but it has effort input and flow output. The resistor element

has one input that can be either the flow or the effort, and the CalcOutput function calculates either the

effort or the flow according to the current causality. The inertia element is similar to the capacitor

element, but the input of the inertia is effort, assuming integral causality, and the output is the flow. The

0- and 1-junction structures are the same, the difference is in the meaning of the inputs and outputs.

The gyrator element contains two gain elements that are either multiplication or division, depending on

the causality. The transformer element is similar to the gyrator element.

27

Table IV.3: Simulink models of the bond graph elements

Bond graph element in GME Generated Simulink subsystem

28

CHAPTER V

CASE STUDY

In this section, we will describe an example that shows the FDM language and the FDMMI in action.

We will build the bond graph model of a system and generate the corresponding MATLAB model using

FDMMI tool. Our example system can be analyzed and simulated by MATLAB’s simulation engine. The

input source of the system is an (electrical) voltage source and the output of the system is (mechanical)

rotation speed.

Figure V.20: System diagram

The example contains two different physical domains: electrical domain and mechanical rotation

domain. The transformation of the quantities between the domains is made by an electro/mechanical

device: a motor. This motor can be modeled as a gyrator in bond graph terminology. The electrical part

contains an ideal voltage source (i.e. source of effort), a resistor (i.e. resistor), and an inductance (i.e.

inertia). All electrical elements are connected to each other with serial (i.e. 1- junction) connections. The

mechanical part of the system has two elements: a load mass (i.e. inertia) and a friction element (i.e.

resistor).

The final bond graph of the system is shown in Figure V.21. The input source can be connected to the

In input signal, which is the input voltage of the system. The Electrical Source produces voltage on its

E(t)

R L

M

m Rfric

KT,KEMF

29

output. This electrical output is connected to the input of the motor. The motor is modeled as a gyrator

(KT=0.8
𝑁𝑚

𝐴
, KEMF=0.8

𝑉𝑠

𝑟𝑎𝑑
, r=0.8), a resistor (Rarm=8 Ω), and an inductance (Larm=400 mH). The current of

the motor can be ‘read’ by the Iarm `detect` flow element. The output I signal represents the current of

the motor. The output of the motor is in the mechanical rotation domain. The Mechanical Load can be

connected to the Motor. The load contains a mechanical friction element (Rfric=0.2
𝑁𝑚𝑠

𝑟𝑎𝑑
) and a mass

(m=0.4
𝑁𝑚𝑠2

𝑟𝑎𝑑
). The angular velocity of the rod can be ‘read’ by the Dfw detect flow element. The output

signal (w) represents the ω.

Figure V.21: Bond graph of the system in GME

The model of the system is given by a bond graph and we can use the FDM model interpreter to

transform the FDM model to a Simulink model. The parameter values of the elements can be set up in

GME and the generated Simulink model will reflect those values. This is done in two steps. The first step

30

is to run the interpreter and the second one is to execute the generated MATLAB script, which

generates the Simulink model. The generated Simulink model is shown in Figure V.22.

Figure V.22: Generated Matlab Simulink model

The input of the system is a step function with 0 V initial value at t=0 s and 24 V final value at t=1 s.

Scopes are connected to the output signals for plotting the step response of the system. The plots show

the current of the Motor and the angular velocity of the rod in Figure V.23.

31

The MATLAB allows for the modeler to simulate the system using different input functions such as

sine, square, etc. The scopes and the input signals are not generated by the FDMMI, so the modelers

shall add these elements to their systems.

Figure V.23: Step response of the system

The overshoot of the current in the electrical side of the motor is (2.893-2.144)/2.144 = 35 %. The

time constant of the mechanical side of the motor is (5.885-1) s=4.885 s.

32

CHAPTER VI

SUMMARY AND CONCLUSIONS

Summary

This thesis described two results: FDM, a DSML that can be used for modeling complex physical

systems, and FDMMI, a model interpreter that generates Simulink models from the FDM models. The

DSML is based on the hybrid bond graphs with some extensions: simple controller elements, sensors,

actuation elements, modulation functions, switching functions, information links, and power links. The

model interpreter checks some of the design rules, generates the causal graph of the system, and

generates a MATLAB script, which can construct the Simulink model of the system. The modeler can

simulate and analyze the system using the simulation engine of MATLAB.

Conclusion

When the models are large, using a graphical modeling language is more efficient than using only the

mathematical equations of the system. These graphical modeling languages often support hierarchy and

ports for easier modeling and understanding the system and its behavior. Usually, the modelers can

choose a modeling language, which will be the basis of their DSML. However, that language should be

extended other elements regarding the problem domain. Bond graphs provide a very common modeling

technique in physical system modeling. The basic bond graph language does not support sensing,

actuation, and mathematical operator elements. However, the physical systems have observed

variables, control variables. Thus, we extended our language with explicit elements for sensing and

actuation. On the other hand, transferring energy between the components usually has power loss. This

33

power loss linkage also can be modeled with bond graphs, but that power link element must be

different than other component elements.

Future work

Modelers can use the tool in its current form, but there are some development opportunities. The

meta-model can be extended with fault elements. The connections of fault elements can represent the

fault injection point to the model, and the fault propagation through the system.

The model interpreter can also be extended to support the vector bond graphs and an optimal

algorithm for the switching behavior of the junctions. The tool can be extended with other model

interpreters. The model interpreters might generate models for other simulation engines (e.g. Modelica

[15] and 20-Sim [16]).

34

BIBLIOGRAPHY

[1] D. C. Karnopp, D. Margolis, and R. Rosenberg, System Dynamics: Modeling and Simulation of
Mechatronic Systems, 4th ed. New Jersey: John Wiley & Sons Inc., 2006.

[2] I. Roychoudhury, M. Daigle, G. Biswas, X. Koutsoukos, and P. J. Mosterman, “A method for
efficient simulation of hybrid bond graphs," in International Conference on Bond Graph Modeling
and Simulation (ICBGM 2007), Jan. 2007, pp. 177-184.

[3] Bakay A. and Magyari E. The UDM Framework, November 2005. Available with the UDM
Framework, http://repo.isis.vandebilt.edu.

[4] Ledeczi, A., M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomasson, G. Nordstrom, J. Sprinkle, and

P. Volgyesi, "The Generic Modeling Environment", Workshop on Intelligent Signal Processing,
Budapest, Hungary, May, 2001.

[5] Balasubramanian, D., A. Narayanan, C. van Buskirk, and G. Karsai, "The Graph Rewriting and
Transformation Language: GReAT", Electronic Communications of the EASST, vol. 1, 2006.

[6] Sztipanovits, J., and G. Karsai, "Model-Integrated Computing", IEEE Computer, vol. 30, pp. 110--
112, April, 1997.

[7] G. Karsai, et al., Model-driven architecture for embedded software: A synopsis and an example,

Science of Computer Programming (2008), doi:10.1016/j.scico.2008.05.006

[8] Peter C. Breedveld, MODELING AND SIMULATION OF DYNAMIC SYSTEMS USING BOND GRAPHS, in

Control Systems, Robotics and Automation, from Encyclopedia of Life Support Systems (EOLSS),
Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK,
[http://www.eolss.net]

[9] Pilone, Dan. UML Pocket Reference. Sebastopol, CA: O’Reilly Media Inc, 2003

[10] MATLAB®/Simulink®, Available: http://www.mathworks.com/products/simulink/.

[11] François E. Cellier and Dirk Zimmer, “Wrapping multi-bond graphs: A structured approach to

modeling complex multi-body dynamics”, European Conference on Modeling and Simulation,
Germany, 2006

[12] Object Management Group (OMG); Object Constraint Language OMG Available Specification

Version 2.0, May 2006

[13] Karsai, G., Maroti, M., Ledeczi, A., Gray, J., and Sztipanovits, J.: “Type Hierarchies and Composition

in Modeling and Meta-Modeling Languages,” IEEE Transactions on Control Systems Technology,
Vol. 12, No. 2, pp. 263-276, March, 2004

http://repo.isis.vandebilt.edu/
http://www.isis.vanderbilt.edu/biblio/author/25
http://www.isis.vanderbilt.edu/biblio/author/52
http://www.isis.vanderbilt.edu/biblio/author/172
http://www.isis.vanderbilt.edu/biblio/author/36
http://www.isis.vanderbilt.edu/biblio/author/198
http://www.isis.vanderbilt.edu/biblio/author/199
http://www.isis.vanderbilt.edu/biblio/author/186
http://www.isis.vanderbilt.edu/biblio/author/121
http://www.isis.vanderbilt.edu/biblio/author/22
http://www.isis.vanderbilt.edu/node/3724
http://www.isis.vanderbilt.edu/biblio/author/42
http://www.isis.vanderbilt.edu/biblio/author/43
http://www.isis.vanderbilt.edu/biblio/author/89
http://www.isis.vanderbilt.edu/biblio/author/36
http://www.isis.vanderbilt.edu/node/3505
http://www.isis.vanderbilt.edu/node/3505
http://www.isis.vanderbilt.edu/biblio/author/53
http://www.isis.vanderbilt.edu/biblio/author/36
http://www.isis.vanderbilt.edu/node/3807
http://www.eolss.net/
http://www.mathworks.com/products/simulink/

35

[14] Mosterman, P. J., Biswas, G.: A theory of discontinuities in physical system models, Journal of the

Franklin Institute, Volume 335, Issue 3, April 1998, Pages 401-439

[15] Modelica, Available: http://www.modelica.org/

[16] 20-Sim, Available: http://www.20sim.com/

http://www.sciencedirect.com/science/journal/00160032
http://www.sciencedirect.com/science/journal/00160032
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235636%231998%23996649996%2313925%23FLP%23&_cdi=5636&_pubType=J&view=c&_auth=y&_acct=C000006878&_version=1&_urlVersion=0&_userid=86629&md5=ee362b0e5674d93f8923a80262ac3e53
http://www.modelica.org/
http://www.20sim.com/

