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Abstract— This paper presents a novel multi-rate digital-
control system which preserves stability while providing robust-
ness to time-delay and data loss. In addition, this architecture
allows for high-order anti-aliasing filters to be included which
do not adversely affect system stability. Therefore, it allows for
improved noise-rejection and system performance as compared
to traditional digital control systems. It is shown that this frame-
work, based on passivity-based networked control principles,
can be used to control not only passive-(dissipative) systems
(systems inside the sector [0, cc]) but conic-(dissipative) systems
which are inside the sector [a,b] in which |a| < b, 0 < b < oo.
We demonstrate the applicability of our result through the direct
position control of two three-degree of freedom haptic paddles
which are inside the sector [—7, co] in which 0 < 7 < co.

I. INTRODUCTION

Our team has investigated the use of passivity for the
design of Networked Control Systems (NCS) [1] in the
presences of time-varying delays [2], [3]. This paper presents
an important new step in the design of networked control
systems as it applies to control of a conic-(dissipative) plant
inside the sector [a,b] in which |a] < b, 0 < b < 0.
Passive systems [4] are a special case of conic-(dissipative)
systems inside the sector [0, oc], thus this paper expands the
applicability of our framework.

Our approach employs wave variables to transmit infor-
mation over the network for the feedback control while
remaining passive when subject to arbitrary fixed time delays
and data dropouts [5], [6]. The primary advantage of using
wave variables is that they tolerate most time-varying delays,
such as those occurred when using the TCP/IP transmission
protocol. In addition, our architecture adopts a multi-rate
digital control scheme to account for: i) different time scales
at different part of the network; and ii) bandwidth constraints.

This paper provides sufficient conditions for stability of
conic systems that are interconnected over wireless networks,
and which can tolerate networked delays and data loss. The
continuous-time bounded results can be achieved for linear
and nonlinear conic systems. The paper also demonstrates
how the proposed architecture can be implemented using
a new linear passive sampler. Finally, our architecture can
be used to isolate wideband and correlated noise without
affecting stability through the use of a discrete-time anti-
aliasing filter Hyp(z) which was synthesized by applying
the conic-preserving IPESH-Transform to a high-order But-
terworth filter Hy,p(s).

In order to motivate our analysis, Section II recalls the
classic point mass model for a single degree of freedom
haptic paddle in which we wish to directly control by
using position feedback instead of indirectly using velocity
feedback. Section III describes our new high-performance
digital control system and provides the analysis and stability
results. Section IV validates our results by applying our
architecture to control the position of a simulated single
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Fig. 1. High Performance, multi-rate digital control network for continuous-
time systems.

Fig. 2. Plant Dynamics Hy(s)

degree of freedom haptic paddle. Section VI provides the
conclusions of our paper.

II. MOTIVATION

In [2] we proved that a fixed-rate (M = 1) digital control
framework depicted in Fig. 1 could be used to control the
position of a nonlinear robotic systems H,, by i) rendering it
strictly output passive (inside the sector [0,b,], b, < 00)
with velocity feedback and gravity compensation; and ii)
applying a digital controller H. to indirectly control the
robot’s position by integrating its velocity error e.(j) with
a lag compensator. As a result of being restricted to use
indirect velocity feedback, the robotic manipulators position
may drift due to imperfect cancellation of gravitational
effects, contacting immovable obstacles, and losing data. One
way to address this drift problem is to directly control the
position of the robot y,(t); however, it is well known that
the relationship between the position of the robot and the
controlling torque input esp(t) is not passive, a sufficient
condition required of the earlier results presented in [2].
Therefore, we will show how to weaken this condition such
that the continuous-time plant is only required to be a conic
(dissipative) system inside the sector [a,, b,] |ap| < b, < 0o
and derive the corresponding conditions required of the
digital controller inside the sector [a., b.].

For simplicity of discussion, we will neglect gravitational
effects and consider a LTI model of a single degree of
freedom haptic paddle with mass M, which is subject to
a low-pass filtered velocity feedback whose time constant
is 7 > 0 as depicted in Fig. 2. By selecting K = @,
the resulting transfer function for this system is Hp(s) =
?E/’;((Z)) = S(TQSTQSITls 5 which is clearly not positive real
(or equivalently passive) [7]. However the following system
H(s) = (Hp(s) + 7) is indeed passive as it has the following
three required properties [7, Theorem 3] i) all elements of
H(s) are analytic in Re[s] > 0, il) H(—jw) + H(jw) > 0
for all w € R in which jw (# j0) is not a pole of H(s), and
iii) for the only simple pure imaginary pole jw, = j0O our
associated residue matrix H, = lim,_, j,,, (s —jw,)H(s) =1
is clearly nonnegative definite Hermitian (H, = H} > 0).
One important property of passive systems such as H(s) is




that they are Lyapunov stable as a result H,(s) = H(s)—7 is
obviously Lyapunov stable as well. In addition both systems
are interior conic-dissipative systems in which H (s) is inside
the sector [0,00] (as are all linear and nonlinear passive-
dissipative systems) and H,(s) is inside the sector [—7, o0]
(as are many Lyapunov stable dissipative systems which
have the same number of inputs and outputs). Additional
details with respect to interior conic-dissipative systems,
their properties and the system architecture are presented in
Section III

III. HIGH PERFORMANCE DIGITAL CONTROL
NETWORKS

Fig. 1 depicts a multi-rate digital control network which
interfaces a conic digital controller H. : e, — y. to a
continuous-time conic plant H, : e, — y, [8]-[10]. The
digital control network is a hybrid network consisting of both
continuous-time wave variables (u,(t), v,(t))) and discrete-
time wave variables (uc(j),vc(j)) in which j = |77
[5], [6], [11]. The relationships between the continuous-
time and discrete-time wave variables is determined by the
multi-rate passive sampler (denoted PS : MTs) and multi-
rate passive hold (denoted PH : MT}). These two elements
are a combination of the passive sampler and passive hold
blocks (which have been instrumental in showing how to
interconnect digital controllers to continuous-time systems
in order to achieve Li'-stability [2], [11]; see [12]-[15] for
interconnecting continuous-time plants to continuous-time
controllers over digital networks) and a discrete-time passive
upsampler and passive downsampler [3]. At the interface to
the digital controller is an inner product equivalent sample
(IPES) and zero-order (ZOH) hold block y..(t) = ys(j), t €
[IMTs, (j + 1)MTs) [11] which are used for analysis in
order to relate continuous-time control inputs r.(t) and
continuous-time control outputs y.(t) to the continuous-time
plant inputs 7,(t) and outputs y, ().

The architecture has the following advantages over tradi-
tional digital control systems: 1) L5*-stability can be guaran-
teed for all (non)linear (dissipative)-conic plants H,, inside
the sector [ay,b,] in which |a,| < by, 0 < b, < o0; 2)
the PS : MT, can be implemented as a high order anti-
aliasing filter in order to more effectively remove wideband,
and correlated noise introduced into the signal y,(¢) without
adversely affecting stability.

By choosing, to use wave variables, a negative output
feedback loop is introduced for both the plant and controller
in which we provide the analysis to determine its effects in
Section III-A. Section III-B presents the multi-rate passive
sampler and multi-rate passive hold which consists of a
simplified linear passive sampler and our main stability re-
sults. Section III-C provides the necessary results to construct
conic digital filters (which are inside the sector [ay, bs] from
conic continuous-time filters which are inside the sector

[afa bf]'

A. Control of Conic-Dissipative Systems

In order to leverage the pioneering work of [8], [9] in
regards to the control of conic systems and connect it to

dissipative systems theory [16], we shall consider the follow-
ing class of causal nonlinear finite-dimensional continuous-
time (discrete-time) systems H : u — y which are affine in
control:

#(t) = f(z(t) + G(z(t)u(t), 2(0) =0 =0, t >0 (1)
y(t) = h(z(t)) + J(2(t))u(t)

for the continuous-time case in which the functions indicated
in (1) are sufficiently smooth to make the system well defined
[17], and

x(j +1) = f(x(h) + Gx()ud), z(0) =z0=0 ()
y(4) = h(z(3)) + J(x(5))u(d)

for the discrete time case (j = {0,1,...}) in which z €
R™, w,y € R™ in which n and m are positive integers.
In addition it is assumed that there exists a finite square-
integrable (summable) function u(-) such that all z € R”
are reachable from the zero-state x(. Finally it is assumed
that z( is the only equilibrium point such that f(zg) = 0
and f(x) # 0 when x # z,. Finally, we shall consider the
following interior conic-dissipative supply function s(u,y)
as it relates to conic-dissipative systems which are inside the
sector [a, b] (a < b) [18]-[20]:

—yTy+ (a+b)yTu—abuTu, |a|,|b| < oo
s(u,y) =9 1 - _
y'u—au'u, |a] < oo, b= occ.
3)
Definition 1: The continuous-time system H : u — v,
2o = x(0) = 0 whose dynamics are determined by (1) is
a continuous conic-dissipative system inside the sector [a, b]
with respect to the supply (3) if:

T
/ s(u,y)dt >0, T € RT. 4)
0

Analogously the discrete-time system H : v — y, o =
2(0) = 0 whose dynamics are determined by (2) is a discrete
conic-dissipative system inside the sector [a, b] with respect
to the supply (3) if:

N-1

> s(u,y) =0, VN € {1,2,...}. (5)

=0

NB. the snjloothness condition required by [17] appears
to limit the discussion to systems which have finite state
space descriptions and the resulting control system we will
examine will be subject to time delays which result in an
infinite state space. Therefore, if functions indicated in (1)
are not sufficiently smooth but (4) is satisfied then the system
H : u — y is a continuous conic system inside the sector
[a, b]. Finally the following notation will be used in order to
represent time integrals, sums and norms:

T
(yu)r = / yTOudt W)zl = W u)r
0
N-1
ouyny =Yy GuG) @3 = w9
j=0

Iy = Jm [@)rl3 IyG)IE = Jim @B
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Fig. 3. Nominal closed-loop system H resulting from ¢ and H.

If it is clear that y is either a continuous or discrete-time
function then the two-norm of y will be denoted simply ||y||2.

From [17], [20] in regards to Lyapunov stability and from
[8]-[10] in regards to L3* (I3*) stability conic-dissipative
systems have the following important properties:

Property 1: There exists a storage function V(x) > 0
Y # 0, V(0) = 0 such that V(x) < s(u, y) for a continuous
conic-dissipative system and V(z(j + 1)) — V(z(j)) <
s(u(j),y(4)) for a discrete-time conic-dissipative system.
Therefore if H : u — y is inside the sector [a, b]:

i) and zero-state detectable !(implies V (z) > 0 Va # 0)
and |a| < oo, b = oo it is Lyapunov stable.
ii) and zero-state detectable and |al, |b| < oo it is asymp-
totically stable.
iii) and |al, |b] < oo then it is inside the sector [—v,~] in
which v = max{|al, |b|}. Therefore, it is L5*(I5*)-stable
in which:

lyllz < ~llulle. 6)

iv) and k > 0 then kH is inside the sector [ka, kb]; —kH
is inside the sector [—kb, —ka].

v) (Sum Rule) if in addition H; : uy — yp is inside the
sector [a1,bq] then (H + Hy) : w — (y + y1) is inside
the sector [a + a1, b + by].

We are particularly interested in determining the resulting
gain g(Ha) (|(9)rll> < g(Ha)l[(rar)zl2) when closing the
loop of a conic system H which is inside the sector [a, b] as
depicted in Fig. 3.

Theorem 1: Let the conic system H : e — y depicted in
Fig. 3 be inside the sector [a, b], € > 0. The input e is related
to the reference r¢ and output y by the following feedback
equation: e(t) = rq(t) —ey(t), Vt > 0. The resulting closed-
loop system is denoted H : v — y. For the case when:

I. 0<a<b< oo, Hy is inside the sector [ﬁ, ﬁ]

in which g(Ha) = ;-

I a<0,—a<b<oo,0<e<—5(L+1) then Hy is
inside the sector | in which g(Hq) =
Proof:

L. If (a+b) > 0 then our conic system H : e — y satisfies

1
> 24 77 2
W r > — Il + - E)rlB
Substituting in the feedback equation for e results in

(s rahr > (e+ ) Iw)r I3+
||(7"cl

_a L] _b
14e€a’ 1+eb 1+eb”

0 ey)r2
a+b yrilz:

Lif u(t) = y(t) = h(x(t)) = 0 for all t > to and as t — oo z(t) = 0

a+ b+ 2ead
a+b
Solving for the norm of the feedback error results in

>1—|—e(a+b)+62ab

Denote ¢; =

2
ey ra)r 2L ) B+
ab
2l (ra)r .
Dividing both sides by c¢; results in
2 acibel 2
s Te + Tc
(wra)r > W)l + 22 a3
b
in which aq = L, by = .
1+ea 1+eb

II. We observe when a < 0 and —a < b < oo then if
0<e< f% (% + %) holds then ¢; > 0 therefore all
the inequalities for proving the previous case hold.

g(Hy) = ﬁ is a direct result from Property 1-iii). [ |

1) Wave Variable Networks: In order to analyze the
closed-loop effects on H,, and H, we recall our use of wave
variables. As discussed in [11], scattering [21] — or their
reformulation known as the wave variable networks — allow
controller and plant variables (y.(j),yp(t)), to be transmit-
ted over a network while remaining passive when subject to
arbitrary fixed time delays and data dropouts [5]. Denote
I € R™*™ ag the identity matrix. When implementing
the wave variable transformation the continuous time plant
“outputs” (u,(t),yac(t)) are related to the corresponding
“inputs” (vp(t), yp(t)) as follows (Fig. 1):

Y (t) —V/2¢l eI (t)
Next, the discrete time controller “outputs”
are related to the corresponding “inputs” (u.

follows (Fig. 1):
1
R |FH

|::'-Zp( } \f] 1[ ye(g)

It has been shown that the digital control network for M =
1 depicted in Fig. 1 results in a L5'-stable system if the
discrete-time controller H,. is strictly output passive (inside
the sector [0, b.]) and the continuous-time plant H,, is strictly
output passive (inside the sector [0,bp]) [2], [11]. In order
to study the case when H), is not passive we need to: i)
explicitly consider the network structure which results from
using wave variables; and ii) use Assumption 1.

Assumption 1: The plant depicted in Fig. 1 H,, is inside
the sector [ap,bp]; in addition the controller H. is inside
the sector [ac,bc] (a. > 0); the scattering gain e satisfies
the following bounds: i) 0 < € < oo, if a, > 0; or ii)
0<e<—§(i+é),ifap<o.

Assumption 1, Lemma 4 and Lemma 5 (see Appendix) allow
us to state Theorem 2.

Theorem 2: The plant-controller network depicted in
Fig. 1 can be transformed to the final form depicted in Fig. 4
if Assumption 1 is satisfied. The transformed plant subsystem
V2eH, pe : €clp — Ype is denoted with the shorthand notation
V2eH,, in which: i) éqp(t) = \/%rp(t) + v, (t); and
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Fig. 5. Multi-rate passive sampler, passive hold.
ii) Ype(t) = V2ey,(t) — écp(t) hold. In addition the trans-

formed control subsystem \/che
with the shorthand notation \/EHCe in which: i) éqc(y) =

\/77*C +ue(7); and i) yee () = f\/gyc(j)+éc|c(j) hold.

Each is a conic- d1ss1pat1ve system such that

—1 eb,—1

Vv 2eHp, is inside the sector {ZZZ 1 sz )
2 —b. €—ac

che is inside the sector [6 ,6 a } .
€ €+ bc €+ ac

B. Multi-Rate Passive Sampler(Hold)

Fig. 5 depicts our proposed multi-rate passive sampler
(PS:MTy), and passive hold (PH:MTs) subsystem. The
multi-rate passive sampler (PS:MT%) consists of a cascade of
a linear passive sampler (linear-PS:7T;) and a passive down-
sampler (PDS:M). The multi-rate passive hold (PH:MT%)
subsystem consists of a cascade of a hold-passive upsampler
(hold-PUS: M) and passive hold (PH:T}). For simplicity of
discussion the figure is for the single-input, single-output
(SISO) case but we note all elements depicted can be
diagonalized to handle m-dimensional waves. The standard
anti-aliasing downsampler (Hpp(z),) M) system depicted
in Fig. 5 has been shown to be a PDS, in addition the hold-
PUS depicted is a PUS [3, Definition 4]. A valid PDS:M

: €cc — Yee 18 denoted

} and

and PUS: M satisfy the following inequalities:

I(ue())n I3 < [1(up(@) 2w 3 ©
1(wp (@) arn I3 < [l(ve(5)) w113 (10)

which hold VN > 0 2. The scaled ZOH block in which
vp(t) = Fv,(i), t € [iTs, (i + 1)T) has been shown to be
a valid passive hold system PH:T in which

1(vs (1)) 5 < Iwp(@) w3 (11)

[2]. A valid passive sampler will satisfy the following
inequality

1 (up (D) a 13 < 11 (up (1))

unlike the nonlinear averaging passive sampler [11, Defini-
tion 6] implementation which was shown to be a valid PS
we choose to implement a linear version which is a filtered
and appropriately scaled version of the passive interpolative
downsampler [15] in order to satisfy (12).

Definition 2: The linear passive sampler (Fig. 5) with
input u,(t) and output u,(¢) is implemented as follows:

12)

1. u,(t) passes through an analog low-pass anti-aliasing
filter denoted H| p.(s) whose magnitude \Hch(jw)| <1
with passband w,, = ﬁ and stopband w,; = -+ [22].

2. the output of Hipc(s) we denote as uprpc(t) 1n which

1 T
up(z) = \/7Ti Jo (upLPc(t) Ts))dt (13)
Lemma 1: The linear passive sampler (Definition 2) sat-

isfies (12).

Proof: Since u,(t) =0, t < 0 by assumption, and the
low-pass filter is assumed to be causal therefore u,(0) =
0 which implies that 0 = [[(up())ol3 < [I(up(t))ol3.
Next we note that (13) can be equivalently written as
up(i) = f DT, uprpc(t)dt and after squaring both

s1des results in ul(i) = Ti(f(lle)T uprpe(t)dt)?. Af-
ter applying the Schwarz Inequality results in u2(i) <

P
T, 71
7 Jusnr, w21 p.(t)dt. Therefore

- upLPc(t -

I (up (i) aen I3 =

MN-—-1
< c )dt
; /’L 1T, pLP
< [ (uprpe(®) men—1y7, 13
< [ (uprpe(t)) ren, |I3-

Since the low-pass ﬁlter has a gain less than or equal to one
(I (uppe®)arnr. 3 < [I(up(t)arnr, [3) then (12) clearly
results from these last two inequalities. |
Finally, from (9) and (12) it is obvious that the following
inequality holds for the multi-rate passive sampler PS:M T

1 Cuc())nlI3 < Nl Cup())

2N.B. our downsamplmg operation is a sampled weighted average
(ue(j) = \ﬁ ZZ G—1)M+1 upr,p(2)) which results in the same in-
equality given by (9) if uc(j) = uprp(My).

(14)




and from (11) and (10) the following holds for the multi-rate
passive hold PH: M T}

1(vp (1)) 3 < N3

With these two inequalities established, and Theorem 2 we
can now prove the following Lemma.

Lemma 2: Denote the L3'-gain of the plant subsystem
\/%Hpe t €dp — Ype aS Ype in Which [|(ype) nT,ll2 <
Voel| (écip) MnT, ||2. In addition, denote the [5*-gain of

5)

the controller subsystem y/2Hc : éac — Yee as

Yee in which ||(yee)nllz2 < Yeell(ac)n ]2 In addition
we shall use the following shorthand notation in which

Eclp = H(éclp) s Eclc = H(éclc)N 25 Rp =
[(rp)mnT,[l2, and R. = ||(7“c)N||2 If YpeYee < 1
then Fuyo < jﬁ (\f R.+ - and By, <
'Yce+1 € 4
1_'7Pe'Yce (\/;Rc + \/7
Proof: From the triangle inequality we have:
1
[(éctp) N, <\ﬁ\|(7"p)MNT 2 + [|(vp) 2 (16)
(el < \fn (re)wlla + lwnlls (A7)

[ (ue)nll2 < Ypell (écp) T, ll2 + \/—H(Tp)MNT 2 (18)

o e < el ol +/SIrowla 19

in which the final two inequalities were a direct result of
(14) and (15) respectively. Substituting (19) into (16) results

in
1 €
Eap < YeeFre + (\@RP + \/;RC> .o
Similarly substituting (18) into (17) results in
Fae < vpeFap + | =Ry +1/ <R 1)
cle = YpeLiclp \/Z D 2 c |-

Substltutmg (20) into (21) results in the following inequality

Eclc < ’Ype’YCeEclc + ('Ype ( L R +[R) which
simplifies to Fge < 1”";?( 26R +5 R) likewise,

substltutmg (21) into (20) results in the following inequality

Eclp < ’Ype’YceEclp + (ch + ]. ( 1 R +\/>R> which
’YCG+1

< 2t (R, + /3R, ). NB. the

final inequalities only result if 'ype'yce < 1. ]

Next we note the following observation that v,e =

g(\/ZHpe) = 9(_\/%Hpe) and Ve = g(\/che) =

g(—\/che) therefore using Theorem 1, Theorem 2 the
following Corollary follows.
Corollary 1:

simplifies to Edp

ea, — 1 eb, — 1
e = g(V2eHy) = P P 22
Yoo = 9(V2¢Hpe) max{ eap—|—1‘7 eb,,—|—1‘} (22)
2 e—b.| |e—ac
wce:g(\ﬁﬂca:max{ . EMC} 23)

Therefore:

1. when the plant is passive (a, = 0, b, = 00) then ,e =1
which implies Ype7ce < 1 if the controller is strictly input-
output passive 0 < a. < b, < oo (and vice versa).

2. when the plant is inside the sector [a,, co| in which a, <
0 then Ypeyee < 1 if the controller is inside the sector
[@c, be] in which —€2a, < a.,b. < =*

As was shown in [11] the IPESH blocks can be used to aid

with analysis such that

(24)

1Ye)nll2 =

1
VAT Kar, )

holds. In addition, the following inequality result from ap-
plying the Schwarz inequality as demonstrated in [23, proof
of Theorem 1-II1I].

(25)

[(re)nll2 <

Theorem 3: When ~pece < 1 the digital control network
depicted in Fig. 1 is L3'-stable in which there exists a 0 <
v < oo such that ||y(t)[|2 < «||u(t)]|2 in which
yT(6) = [y] (£), y%(0)] and wT(t) = [r] (£), 75, (1)].

Proof: (Sketch) From Corollary 4 in the Appendix we

have that Hyc : eqc — Y. has finite gain g(Hgc) = 6+g and

\/%Eclc

ﬁyem%mumm%wmm<$
substituting (24) for the left-hand- 51de results in

m”(yct) €+b fEdc Similarly
(yp) v, |2 < \F 2eEp holds since from Corollary 3
in the Appendix we Ignow that the closed- loop plant H, :
edp — Ycp has finite gain g(Hgp) m and that

\/EEAdp = ||(ecp) 2. Finally, we observe that (25)
along with the other continuous-time norm inequalities can
be substituted into the final two inequalities of Lemma 2 such
that both inequalities involve only continuous-time norms in
which the outputs y,(t) and y.(t) are bounded by the inputs
rp(t) and 7 (t). Therefore, when Ypevee < 1 the digital
control network depicted in Fig. 1 is L3*-stable. |

C. Conic Digital Filters

The section shows how an engineer can synthesize a
discrete-time controller/filter from a continuous-time refer-
ence model. In particular, we show how a continuous-time
conic system can be transformed into a discrete-time conic
system using the inner product equivalent sample and hold
(IPESH). Additionally, we present a corollary for trans-
forming a continuous-time conic single-input, single-output
(SISO) linear time-invariant (LTI) system into a discrete-
time conic SISO LTI system using the IPESH-Transform.
We begin by recalling the definition for the IPESH which is
based on the earlier work of [24], [25].

Definition 3: [26, Definition 4] Let a continuous one-port
plant be denoted by the input-output mapping H : Ly' —
L;’z. Denote continuous time as ¢, the discrete time index
as 4, the sample and hold time as T, the continuous input
as u(t) € L3, the continuous output as y(t) € Ly', the
transformed discrete input as u(i) € /5", and the transformed
discrete output as y(i) € 5. The inner product equivalent
sample and hold (IPESH) is implemented as follows: I.



a(t) = [yy(r)dr L y(i) = o((i + 1)Ty) — x(iT,); 1L
u(t) = u(z), Vt € [iTs, (i+1)Ts). As aresult (y(i), u(i)) n
( ) (t)>NT holds VIV > 1.
Lemma 3: If H,, is inside the sector [a, b] and |a| < b then
H, resulting from the IPESH is inside the sector [aT, bT].
Proof: Since H,, is inside the sector [a, b] and (a+b) >
0, then

1 ab
> 24— 2. 26
e = —— Wl + =Sl o
But, from Definition 3-III. it can be shown that
()3 = Tull(w) 3. 27

Additionally, from Definition 3-II. and the Schwarz inequal-
ity, the following inequality can be shown to hold [23, proof
of Theorem 1-II1I]

1
1@)l3 > = @) wllz-

Finally, we use the equivalence of the discrete-time and
continuous-time inner products combined with (27) and (28),
and substitute into (26) to obtain

(28)

() > s | + 2 )l
- 1 o (aTy)(bTy)
B mH<y)N||2 + mn(u)ﬂb

|
The IPESH similar to the bilinear transform can be used
to synthesize stable digital controllers from continuous-time
models. Therefore, we recall the IPESH-Transform definition
as it applies to SISO LTT systems.

Definition 4:  [3, Definition 5] Let H,(s) and H,(2)
denote the respective continuous and discrete time trans-
fer functions which describe a plant. Furthermore, let T
denote the respective sample and hold time. Finally, de-
note Z{F(s)} as the z-transform of the sampled time
series whose Laplace transform is the expression of F(s),
given on the same line in [27, Table 8.1 p.600]. Hy(z) is
generated using the following IPESH-Transform H,(z) =

(z,;slz)2 z { HZZES) }

N.B. the term 27’12 {Hg—ﬁg)} represents the exact discrete

equivalent for the LT7 system H”T(g) preceded by a ZOH
[27, p. 622] as noted in a detailed proof of [3, Lemma 5]
which shows that the IPESH-Transform is a scaled version
(k=7 L) of the IPESH (Definition 3). The scaling property
(Property 1-iv) and Lemma 3 lead directly to Corollary 2.

Corollary 2: If a SISO LTI system H(s) is inside the
sector [a, b] then H,(z) resulting from applying the IPESH-
Transform to Hy(s) is inside the sector [a, b].

IV. CONTROLLER VALIDATION & SIMULATION

Next, we validate our results through the control of an ide-
alized single degree of freedom haptic paddle as described in
Section II and depicted in Fig. 2. This nominal plant system
H,(s) will be controlled using our digital control network
depicted in Fig. 1 in which we shall use a proportional

; MT,
Ts+1 _.\l|'>y,,p(j)

Fig. 6. The classical digital control design for position tracking
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Fig. 7. Baseline tracking response with minimal delay n(t) # 0.

controller y.(j) = kece.(j) in which the gain k. is chosen
to satisfy the cond1t10ns in Corollary 1 such that fezap =
Er < ke < 1= . In addition Ky, = MTy is
chosen so that r, (j) = yp(t) at steady-state. Fig. 6 depicts
a classic digital position feedback control scheme in which
Te(J) = Yp—classic (jMTs) at steady-state when n(t) = 0.

In order to compare the effects of band-limited noise n(t),
the low-pass filtered and noise-corrupted feedback signal
Ynp(j) is periodically sampled every MT; seconds for the
classical scheme whereas the signal y,, depicted in Fig. 1 is
corrupted similarly such that y,(t) = (Hpep(t) + n(t)). For
our high-performance system we filter the noise corrupted
signal using the multi-rate passive sampler subsystem (Fig. 5)
described in Section III-B in which Hp.(s) = Tsl+1' In
addition a second stage digital anti-aliasing filter Hpp(z)
was synthesized by applying the IPESH-Transform to a
sixth order low-pass Butterworth filter model H p(s) with
passband w, = ﬁ [22, Section 9.7.5].

The simulation parameters are as follows: € = 2, M, = 2
kg, Ts = .01 seconds, M = 10, 7 = # f < k =
3 < 107 and Ky, = V/MTs. Fig. 7 indicates that our
high-performance position y,(t) response tracks the desired
reference r5(j) closer than the classic digital control system
response Yp—classic(t) when subject to band-limited noise
within the frequency band |7~ T T, 7 ]. Finally, Fig. 8 indicates
that our proposed system is significantly less sensitive to the
introduction of a 0.5 second delay between the controller and
the plant.

V. APPLICATION FOR TELEMANIPULATION

The Novint Falcon [28] is a low cost haptic interface which
provides a 10 cm x 10 cm x 10 cm workspace providing
position information y, € R® while allowing for up to a 10
N force input emp € R3 to be applied to the user in each
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Fig. 8. Position response with 0.5 second delay.

Fig. 9. Haptic Paddle Dynamics Hy,

L €pl — Ypl-

of the three directions. Although the kinematics are quite
complex [29] the standard drivers provided by Novint and
standard Simulink interface provided by the Haptik Library
[30] adequately allow us to model the haptic interface as
a three dimensional point mass system. As was previously
discussed for the single input-output point mass system
applies to the three dimensional systems Hp : ep — ypi
I € {1,2} with filtered velocity compensation depicted in
Fig. 9. In order to simplify discussion we ignore the effects
of gravity which can be compensated for by either i) the
human operator, ii) adding an appropriate bias term to r.(j)
for the telemanipulation control subsystem H. : e. — ¥,
ec = [ed1 e’y ye = (Y1, 9] e ya € R depicted in
Fig. 10 or iii) adding gravity compensation directly to each
paddle subsystem H,. The role of the controller is to make
Yp1 = Yp2 and enmp1 = —emp2 While satisfying the constraints
required by Corollary 1 which are sufficient for stability.
We therefore choose to couple each plant Hy : ep — ypl
subsystem such that Hy, : e, — y, in which e, = [e]}, e]]T
and y, = [yJ}, ypo] T It is obvious that such a coupling can be
accomplished with either one or two synchronized embedded
controllers since the inputs and outputs are in parallel. In
addition the control subsystem can be implemented on either
a shared or an entirely separate embedded controller in which
data between each devices can be exchanged using wave

Fig. 10. Telemanipulation Controller Hc

ec — Ye.

Leader PC/
Controller

Leadr
Robot

Follower
Robot

Fig. 11. Experimental Setup for Telemanipulation

variables and subjected to appropriately handled time delays
and data loss without adversely affecting stability.

The control subsystem depicted in Fig. 10 is designed
such that H. : e. — y. is inside the sector [a.,b.]. This
1

1
V2|1 T
orthogonal matrix such that RTR = I. Using Theorem 4
in Appendix II we can verify that the intermediate ma-
(Lc—‘rbCI 0

0 Zacke |
Spec1ﬁcally K. can be thought of two subsystems in which
Hyger : f (ec1 — €c2) I\(@ (ec1 — ecp) is inside the sector
[a ;b 9 ac;b ] and HKc2 ﬁ (ecl + ec2) — I\(/g (ecl + ec2)
is inside the sector | 2%’;; , 3‘?}7 . We choose %<fe > 2“#;;;
in order to make Ypq1 =~ Ypd2 (1o = 0) (Ideally a. =
0 however if a, < 0 then we will need some minimal
feedthrough). Therefore a + b = M = a. + b, and

a‘i’b = 4;222222(1‘&?3) =2 +b Flnally, from Theorem 5 in
Appendix II since R is an orthogonal matrix then RK.R"
is inside the sector [a, b.].

Fig. 11 shows an experimental setup designed for the
application of the framework for telemanipulation. The ex-
perimental setup consists of two Novint Falcons, connected
using a networked computing platform with one paddle
acting as the “Leader” and the other the “Follower”. The
computing platform consists of two networked Windows
PCs with Matlab/Simulink. The haptic paddles are each
connected to two respective PCs via USB interface utilizing
Matlab/Simulink APIs. The haptic paddle API also enables
a user to feel the feedback of forces and this in a sense
enables transparency. In the setup, the “Follower” runs on
one of the PCs denoted “Follower PC” and the “Leader”
paddle runs on the other PC. The controller described in
Fig. 10 is implemented as a Simulink model and runs on the
same PC as the “Leader” paddle.

can be verified by noting that: R = is an

trix K. is inside the sector [ac, b].
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Fig. 12. Plot of Leader and Follower paddles’ x-position

In [30], the authors described the sampling rate limitation
in accessing the position information from the haptic paddles.
Due to this limitation, a continuous signal of the position can
not be obtained through the haptic paddle interface therefore
the multi-rate passive sampler (PS : MT) and passive hold
(PH : MT,) are not used. Instead, the experiment was carried
out using discrete-time the wave variables and the passive
upsampler (PUS : M) and passive downsampler (PDS : M)
as described in [3]. Through a series of experiments, the
passive upsampler and passive downsampler were evaluated
and it was noticed that the apparent stiffness in controlling
the “Follower” manipulator decreases as we increase M.
Hence, using a small M allows for a better control of the
“Follower” manipulator.

The sampling time,Ts, of 0.04 seconds was used in the
course of the experiment. The other parameters for the

experiment are as follows: M = 1, M, = 0.164kg, b = 1,
o= MT, K = Mp*m (bz)*Q*Ts b, — T
I P T 2«Ts> ¢ T s > Y T (2%T's) "
During the course of the experiments, it was observed that

the paddles experience a large amount of friction which
limits tracking performance. In order to improve performance
without adversely affecting stability, the input to the haptic
paddle systems paddle,ep, is amplified by a value of 4 before
sending it to the haptic paddle systems.

In a typical operation using this setup, when a paddle is
moved the position signal in x-y-z coordinates is sent to a
Matlab/Simulink haptic paddle interface block. This signal
is then transformed into wave variables and then sent to
the controller. The controller, using the position information
from both paddles, calculates the required control signal
needed to maintain position tracking. The computed control
signal is sent as wave variables over the network to the
“Follower” paddle and locally to the “Leader” paddle.

Fig. 12 shows a plot of the x-positions of the “Leader”
and “Follower” paddles after a trial run. From the figure,
it can be seen that the “Follower” paddle closely tracks the
position of the “Leader” paddle. Also, from the plot there
is slight discernible difference between the positions of the
“Leader” and “Follower” paddles. This can be attributed to
the excessive friction in the paddles which slightly affects
tracking performance.

VI. CONCLUSIONS

We have provided a set of sufficient conditions to guar-
antee delay independent stability for non-passive systems
H, inside the sector [a,,b,] —oo < a, < b, for our
networked control architecture depicted in Fig. 1. In par-
ticular, Theorem 1 and Assumption 1 allow us to derive
Theorem 2 which describe the internal network structure
depicted in Fig. 4. Lemma 1 shows that a linear passive
sampler depicted in Fig. 5 satisfied the key inequality (12).
As a result linear anti-aliasing filters can be introduced which
do not adversely affect stability or performance. Lemma 2
and Corollary 1 provide the sufficient sector conditions for
the controller and plant to achieve the small gain conditions
required of Theorem 3 in order to guarantee L73'-stability.
Corollary 2 shows that the IPESH-Transform can be applied
to an analog controller to synthesize a digital controller such
that both controllers are inside the sector [a,b]. Simulation
results of our proposed architecture applied to direct position
control of a haptic paddle indicate good performance with
low sensitivity to band-limited noise and networked delay.

REFERENCES

[1] P. J. Antsaklis and J. Baillieul, Eds., Special Issue: Technology of
Networked Control Systems. Proceedings of the IEEE, 2007, vol. 95
no. 1.

[2] N. Kottenstette, X. Koutsoukos, J. Hall, J. Sztipanovits, and P. Antsak-
lis, “Passivity-Based Design of Wireless Networked Control Systems
for Robustness to Time-Varying Delays,” Real-Time Systems Sympo-
sium, 2008, pp. 15-24, 2008.

[3] N. Kottenstette, J. F. Hall, X. Koutsoukos, P. Antsaklis, and J. Szti-
panovits, “Digital control of multiple discrete passive plants over
networks,” International Journal of Systems, Control and Communi-
cations (IJSCC), no. Special Issue on Progress in Networked Control
Systems, 2011, to Appear.

[4] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output
Properties. Orlando, FL, USA: Academic Press, Inc., 1975.

[5] G. Niemeyer and J.-J. E. Slotine, “Telemanipulation with time delays,”
International Journal of Robotics Research, vol. 23, no. 9, pp. 873 —
890, 2004.

[6] R. Anderson and M. Spong, “Asymptotic stability for force reflecting
teleoperators with time delay,” The International Journal of Robotics
Research, vol. 11, no. 2, pp. 135-149, 1992.

[7]1 N. Kottenstette and P. Antsaklis, “Relationships between positive real,
passive dissipative, & positive systems,” American Control Confer-
ence, pp. 409-416, 2010.

[8] G. Zames, “On the input-output stability of time-varying nonlinear
feedback systems. i. conditions derived using concepts of loop gain,
conicity and positivity,” IEEE Transactions on Automatic Control, vol.
AC-11, no. 2, pp. 228 — 238, 1966.

[9] J. C. Willems, The Analysis of Feedback Systems.
USA: MIT Press, 1971.

[10] N. Kottenstette and J. Porter, “Digital passive attitude and altitude
control schemes for quadrotor aircraft,” Dec. 2009, pp. 1761 —1768.

[11] N. Kottenstette and N. Chopra, “Lm2-stable digital-control networks
for multiple continuous passive plants,” Ist IFAC Workshop on Esti-
mation and Control of Networked Systems (NecSys’09), 2009.

[12] S. Hirche and M. Buss, “Transparent Data Reduction in Networked
Telepresence and Teleaction Systems. Part II: Time-Delayed Commu-
nication,” Presence: Teleoperators and Virtual Environments, vol. 16,
no. 5, pp. 532-542, 2007.

[13] N. Chopra, P. Berestesky, and M. Spong, “Bilateral teleoperation over
unreliable communication networks,” IEEE Transactions on Control
Systems Technology, vol. 16, no. 2, pp. 304-313, 2008.

[14] S. Hirche, T. Matiakis, and M. Buss, “A distributed controller ap-
proach for delay-independent stability of networked control systems,”
Automatica, vol. 45, no. 8, pp. 1828-1836, 2009.

Cambridge, MA,



'_Hclp c/p"yp

1l

[

Fig. 13.  Plant-rp-vp-yp-up-network realization and initial transformation.

[15] M. Kuschel, P. Kremer, and M. Buss, “Passive haptic data-compression
methods with perceptual coding for bilateral presence systems,” IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, vol. 39, no. 6, pp. 1142 — 1151, Nov. 2009.

[16] D.J. Hill, “Dissipative nonlinear systems: Basic properties and stabil-
ity analysis,” Proceedings of the 31t IEEE Conference on Decision
and Control, pp. 3259-3264, 1992.

[17] D. J. Hill and P. J. Moylan, “The stability of nonlinear dissipative
systems,” IEEE Transactions on Automatic Control, vol. AC-21, no. 5,
pp. 708 — 11, 1976.

[18] ——, “Stability results for nonlinear feedback systems,”
vol. 13, pp. 377-382, 1977.

[19] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and
Control.  Englewood Cliffs, New Jersey 07632: Prentice-Hall, Inc.,
1984.

[20] W. M. Haddad and V. S. Chellaboina, Nonlinear Dynamical Systems
and Control: A Lyapunov-Based Approach. Princeton, New Jersey,
USA: Princeton University Press, 2008.

[21] R. J. Anderson and M. W. Spong, “Bilateral control of teleoperators
with time delay,” Proceedings of the IEEE Conference on Decision and
Control Including The Symposium on Adaptive Processes, pp. 167 —
173, 1988.

[22] A. Oppenheim, A. Willsky, and S. Nawab, Signals and systems.
Prentice hall Upper Saddle River, NJ, 1997.

[23] N. Kottenstette and P. Antsaklis, “Wireless Control of Passive Systems
Subject to Actuator Constraints,” 47" [EEE Conference on Decision
and Control, 2008. CDC 2008, pp. 2979-2984, 2008.

[24] S. Stramigioli, C. Secchi, A. J. van der Schaft, and C. Fantuzzi, “Sam-
pled data systems passivity and discrete port-hamiltonian systems,”
IEEE Transactions on Robotics, vol. 21, no. 4, pp. 574 — 587, 2005.

[25] J.-H. Ryu, Y. S. Kim, and B. Hannaford, “Sampled- and continuous-
time passivity and stability of virtual environments,” IEEE Transac-
tions on Robotics, vol. 20, no. 4, pp. 772 — 6, 2004.

[26] N. Kottenstette and P. Antsaklis, “Stable digital control networks for
continuous passive plants subject to delays and data dropouts,” 46"
IEEE Conference on Decision and Control, pp. 4433-4440, 2007.

[27] G. E Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control
of Dynamic Systems, 5th ed. Prentice-Hall, 2006.

[28] NOVINT Falcon. [Online]. Available: http://home.novint.com/
products/novint_falcon.php

[29] S. Martin and N. Hillier, “Characterisation of the novint falcon
haptic device for application as a robot manipulator,” Australasian
Conference on Robotics and Automation (ACRA), pp. 1-9, 2009.

[30] M. de Pascale and D. Prattichizzo, “The Haptik Library: a compo-
nent based architecture for uniform access to haptic devices,” IEEE
Robotics and Automation Magazine, vol. 14, no. 4, pp. 64-75, 2007.

[31] J. T. Wen and M. Arcak, “A unifying passivity framework for
network flow control,” IEEE Transactions on Automatic Control,
vol. 49, no. 2, pp. 162 — 174, 2004. [Online]. Available:
http://dx.doi.org/10.1109/TAC.2003.822858

Automatica,

APPENDIX I
WAVE VARIABLE NETWORK PROPERTIES

Fig. 13 depicts a graphical realization of (7) on the left-
hand-side (LHS), and the first obvious graphical transfor-
mation on the right-hand-side (RHS) in which we denote
closed-loop transformation of the plant [, in terms of the
feedback gain € as Hyp : ecp — ¥, in which

ecp(t) = 1p(t) + V2evy (1) = ey (1) +eyp(t).  (29)

—
-1 eb,—1
ca, +l b, +l

I ZeH mstde

Fig. 15.
mation.

Controller-rc-uc-ep-ve-network realization and initial transfor-

In order to simplify discussion and to leverage Theorem 1
we use Assumption 1 in order to derive Corollary 3:

Corollary 3: If Assumption 1 is satisfied then Hp
e T,
Next we transform the RHS realization in Fig. 13 to the final
form depicted in Fig. 14.

Lemma 4: The RHS of Fig. 13 can be transformed to
the final form depicted in Fig. 14 (in which H, eedp =

V2 2eHpecip — redp) In addition if Assumption 1 is satis-

fied, then v/2€Hpeéqp(t) is inside the sector [ZZZJ&? ng;ﬂ
Proof: From Fig. 14 it is clear that,

caplt) = VEE (=rn(®) + 1(0)) = 1y(0) + VB, 1)
which satisfies (29), next from Fig. 14 it is clear that,
1
up(t) :\/Z?yp(t) \/:eclp( )+ \/> 7p(t)
=V2euy(t) = = (1al0) + V2ewy (1)) +
:\/Zyp(t) — vp(1).

which satisfies (7) in regards to u,(t). From Corollary 3
we have that Hgp €dp — Yp 1s inside the sector

€clp — Yp 18 inside the sector [

1
\/72?7"11(15)

[1 f:a )1 feb } From the scaling property (Property 1-iv),
we have that Hdp\/z = \/inp in which \/ZHdp is
inside the sector [\/ﬂl f:fap, 261f—'§bp . Using the sum
rule (Property 1-V) we have that H pe 1 inside the sec-

1 :
tor {ﬁ + V2 Hm , f + V2 1+Eb solving for ape we
2eap—cap—l

=1 /Do — 1
\/26 + 61+ea,, V2 eap+1

fore Hpe is inside the sector [\/12? (zzzﬁ) , \/12? (Zgzﬂ)}
finally from the scaling property we have that v/2eHp. is
eap—1 eby,—1

€ap+17 eby+1 u
Fig. 15 depicts a graphical realization of (8) on the left-hand-
side (LHS), and the first obvious graphical transformation on

the right-hand-side (RHS) in which we denote closed-loop

have ape = ) there-

inside the sector {



Fig. 16. Final Controller-r¢-uc-y.-v.-network realization.

transformation of the controller H,. in terms of the feedback
gain 1 as Hc : ecc — ye in which

eclc(j) = Tc(j) + \/fuc(]) = ec(.j) + %yC(]) (30)

Which allows us to state the following corollary:
Corollary 4: If Assumption 1 is satisfied then Hc

€a, eb.
e+a.’ e+be
Next we transform the RHS realization in Fig. 15 to the final

form depicted in Fig. 16.
Lemma 5: The RHS of Fig. 15 can be transformed to
the final form depicted in Fig. 16 (in which Heeqc =

f\/EHdcec.c + \/E ecic)- In addition if Assumption 1 is sat-

€cle — Ye 1s inside the sector

isfied, then \/>Hceec|c(j) is inside the sector [2;22, :gf}
Proof: From Fig. 16 it is clear that,

caeti) =2 (e + 1) = e+ e

which satisfies (30), next from Fig. 16 it is clear that,

et - [0
- \/fycu) + \/E (w) "
- \/fyc(j) + ue(j)-

which satisfies (8) in regards to v.(j). From Corollary 4

we have that Hqyc : eqec — y. is inside the sector
. _eb. :
[Efac, . ] From the scaling property, we have that

— C|C\/j = f\/>Hc|c in which \/>HC|C is inside the

€ac
sector [ \/:E+b , 2 Eﬂij . Using the sum rule we have

H. is inside the sector

ViV iV

solving for b.. we have
€
bce = \/g

\/5 €ae (4 2a,
ee—|—ac 2 €+ ac

therefore He is inside the sector

V() e ()]

finally from the scaling property we have that

y:%w)—¢§uﬂ

Fig. 17. Concatenation of m conic systems H : u — y.

2 . €—
\/7HCe is inside the sector [
€ €+

APPENDIX I1
ADDITIONAL PROPERTIES OF CONIC SYSTEMS

b, €—a.
b. e+a.|’

Fig. 17 depicts a concatenation of m conic systems H; :
u; — y; inside the sector [a;, b;] in which 0 < |a;],b; < oo,
(by+a;) >0, u=1[u,...,ur T and y = [y],...,yL]T,
I € {1,...,m} which we denote H : u — y.

Theorem 4: The concatenated system H : u — y depicted

in Fig. 17 is inside the sector [a, b] in which:

a—|—b—max{al+bl}
P 1n{ }Vl e {1,...,m}

and V(z) = 3", a‘fiil V( 0)- .

Proof: Assuming each subsystem H; : u; — y; is a
conic-dissipative system in which 0 < (b; + a;) < oo we
have that

ab

albl
ar + b

1
— (Vi (7)) -

Summing both sides of (31) w.rt. I € {1,...,

(w13

Vi(:(0))) .

(yi, w)r ()l +

>
a + b
_|_

3D

m} results in:

aiby 2
Xﬂa+bymm )3

+mimu«m@»wmmm}.
1
faggﬁjﬂunm+mm w3
(@(T)) = Vi(2:(0)))
_a+ﬂ<h@+;§ﬂwnﬁ
1

—— V(a(T) = V().

The proof for the discrete-time case follows analogously. B
Fig. 18 consists of orthogonal matrices RT and R (RTR = I)
and a conic-dissipative system H : RTu — y which is



[
u—> RT I H:RTu—y—» R TRy
[

T T T T THpuoRy T T T T
inside the sector |a, b]

Fig. 18.  Orthogonal matrices RT R = I preserve conic properties of
H:Ru—y.

inside the sector [a,b]. For the more general case when R
is simply a full column rank matrix that passivity is always
conserved as is done for passivity based network flow control
problems [31]. However, in order to preserve the overall
conic properties of the system we need to restrict the matrices
to be orthogonal.

Theorem 5: If the matrix R is an orthogonal matrix
(RTR) then H : R"u — y is a conic-dissipative system
inside the sector [a,b] iff Hp : v — Ry is inside the sector
[a, b].

Proof: Since u' R"Ru = u"w and if H : RTu — y is
inside the sector [a, b] then

—y" b)y"RTu — abu’ bl <
S(RT’U,7y) _ Ty $+ (CL +-|— )y U —adu u, |CL|,| | S
y' ' R'u—au'u, |a| < oo, b= o0.

Next we assume that Hp : u — Ry is inside the sector [a, b]
and since y' RT Ry = y"y then:

—yTy+ (@+b)y"RTu—abuu, |a|,|b| < oo
y"RTu — au'u, |a] < oo, b= oo.

s(u, Ry) = {

Since s(u, Ry) = s(R"u,y) if @ = a and b = b then Hp :
u — Ry is inside the sector [a, b]. Necessity can be easily
shown by changing the order of assumptions. |



