
1

Institute for Software Integrated Systems

Vanderbilt University

Nashville, Tennessee, 37235

Multi-Rate Networked Control of Conic Systems

Nicholas Kottenstette, Heath LeBlanc, Emeka Eyisi, Xenofon Koutsoukos

TECHNICAL REPORT

ISIS-09-108

Original: 09/2009

Revised: 04/2010



2

Abstract— Implementation uncertainties such as time-
varying delay and data loss and having to typically implement
a discrete-time-controller can cause significant problems in the
design of networked control systems. This paper describes a
novel multi-rate digital-control system which preserves stability
and provides robustness to such implementation uncertainties.
We present necessary conditions for stability of conic systems
interconnected over digital-control-networks which can tolerate
networked delays and data-loss. We also compare the perfor-
mance using simulation results of the proposed architecture
to that of a classic-digital-control-implementation applied to
controlling position of a single-degree of freedom robotic
manipulator.

I. INTRODUCTION

Our team has investigated the use of passivity for the

design of Networked Control Systems (NCS) [1] in the

presences of time-varying delays [2], [3]. This paper presents

an important new step in the design of networked control

systems as it applies to control of a conic-(dissipative) plant

inside the sector [a, b] in which −∞ < a < b, 0 < b ≤ ∞.

Passive systems [4] are a special case of conic-(dissipative)

systems inside the sector [0,∞], thus this paper expands the

applicability of our framework.

Our approach employs wave variables to transmit infor-

mation over the network for the feedback control while

remaining passive when subject to arbitrary fixed time delays

and data dropouts [5], [6]. The primary advantage of using

wave variables is that they tolerate most time-varying delays,

such as those occurred when using the TCP/IP transmission

protocol. In addition, our architecture adopts a multi-rate

digital control scheme to account for: i) different time scales

at different part of the network; and ii) bandwidth constraints.

This paper provides sufficient conditions for stability of

conic systems to be interconnected over wireless networks

which can tolerate networked delays, and data-loss. The

continuous-time bounded results can be achieved for linear

and nonlinear conic systems. The paper also demonstrates

how the proposed architecture can be implemented using

a new linear passive-sampler. Finally, our architecture can

be used to isolate wide-band and correlated noise without

affecting stability through the use of a discrete-time anti-

aliasing-filter HLP (z) which was synthesized by applying

the conic-preserving-IPESH-Transform to a high-order But-

terworth filter HLP (s).
Section II describes our new high-performance digital

control system and provides the analysis and stability results.

Section III validates our results by applying our architecture

to control the position of a simulated single-degree of free-

dom haptic paddle. Section IV provides the conclusions of

our paper.

II. HIGH PERFORMANCE DIGITAL CONTROL NETWORKS

Fig. 1 depicts a multi-rate digital control network which

interfaces a conic-digital-controller Hc : ec → yc to a

0

Contract/grant sponsor (number): NSF (NSF-CCF-0820088)
Contract/grant sponsor (number): Air Force (FA9550-06-1-0312)

Fig. 1. High Performance, multi-rate digital control network for continuous-
time systems.

continuous-time conic plant Hp : ep → yp [7]–[9]. The

digital control network is a hybrid-network consisting of both

continuous-time wave variables (up(t), vp(t))) and discrete-

time wave variables (uc(j), vc(j)) in which j = ⌊ t
MTs

⌋
[5], [6], [10]. The relationships between the continuous-

time and discrete-time wave variables is determined by the

multi-rate-passive-sampler (denoted PS : MTs) and multi-

rate-passive-hold (denoted PH : MTs). These two elements

are combination of the passive-sampler and passive-hold

blocks (which have been instrumental in showing how to

interconnect digital-controllers to continuous-time systems

in order to achieve Lm
2 -stability [2], [10] see [11], [12] for

interconnecting continuous time-plants to continuous-time-

controllers over digital networks) and a discrete-time passive-

up-sampler and passive-down-sampler [3]. At the interface to

the digital controller is an inner-product-equivalent sample

and zero-order hold block yct(t) = ys(j), t ∈ [jMTs, (j +
1)MTs) [10] which are used for analysis in order to relate

continuous-time-control-inputs rct(t) and continuous-time-

control-outputs yct(t) to the continuous-time-plant inputs

rp(t) and outputs yp(t).

The architecture has the following advantages over tradi-

tional digital control systems: 1) Lm
2 -stability can be guaran-

teed for all (non)-linear (dissipative)-conic plants Hp inside

the sector [ap, bp] in which −∞ < ap < bp, 0 ≤ bp ≤ ∞,

|ap| < bp; 2) the PS : MTs can be implemented as a high-

order anti-alliasing filter in order to more effectively remove

wide-band, and correlated noise introduced into the signal

yp(t) without adversely affecting stability.

By choosing, to use wave-variables, a negative output

feedback loop is introduced for both the plant and controller

in which we provide the analysis to determine its effects in

Section II-A. This analysis in which we consider bounded-

ness results for digital control is inspired by the insightful

continuous-time control results presented in [13] in which the

plant-disturbance was not considered (rp(t) = 0). Section II-

B introduces the multi-rate-passive-sampler and multi-rate-

passive-hold which includes a new linear passive-sampler

which will encourage further analysis and simplify imple-

mentation, it also includes our main stability results. Sec-

tion II-C provides the necessary results to construct conic-

digital-filters (which are inside the sector [af , bf ] from conic-

continuous-time-filters which are inside the sector [af , bf ].

A. Control of Conic-Dissipative Systems

In order to leverage the pioneering work of [7], [8] in

regards to the control of conic-systems and connect it to
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dissipative systems theory [14]. We shall consider the follow-

ing class of causal non-linear finite-dimensional continuous-

time (discrete-time) systems H : u → y which are affine in

control:

ẋ(t) = f(x(t)) + G(x(t))u(t), x(0) = x0 = 0, t ≥ 0 (1)

y(t) = h(x(t)) + J(x(t))u(t)

for the continuous-time case in which the functions indicated

in (1) are sufficiently smooth to make the system well defined

[15], and

x(j + 1) = f(x(j)) + G(x(j))u(j), x(0) = x0 = 0 (2)

y(j) = h(x(j)) + J(x(j))u(j)

for the discrete time case (j = {0, 1, . . . }) in which x ∈
R

n, u, y ∈ R
m in which n and m are positive integers.

In addition it is assumed that there exists a finite-square-

integrable (summable) function u()̇ such that all x ∈ R
n

are reachable from the zero-state x0. Finally it is assumed

that x0 is the only equilibrium point such that f(x0) = 0
and f(x) 6= 0 when x 6= x0. Finally, we shall consider the

following interior conic-dissipative supply function s(u, y)
as it relates to conic-dissipative systems which are inside the

sector [a, b] (a < b) [16]–[18]:

s(u, y) =

{

−yTy + (a + b)yTu − abuTu, |a|, |b| < ∞
yTu − auTu, |a| < ∞, b = ∞.

(3)

Definition 1: The continuous-time system H : u → y,

x0 = x(0) = 0 whose dynamics are determined by (1) is

a continuous-conic-dissipative system inside the sector [a, b]
with respect to the supply (3) if:

∫ T

0

s(u, y)dt ≥ 0, T ∈ R ≥ 0. (4)

Analogously the discrete-time system H : u → y, x0 =
x(0) = 0 whose dynamics are determined by (2) is a

discrete-conic-dissipative system inside the sector [a, b] with

respect to the supply (3) if:

N−1
∑

j=0

s(u, y) ≥ 0, ∀N ∈ {1, 2, . . . }. (5)

NB. the smoothness condition required by [15] appears

to limit the discussion to systems which have finite-state-

space descriptions and the resulting control system we will

examine will be subject to time-delays which result in an

infinite state-space. Therefore, if functions indicated in (1)

are not sufficiently smooth but (4) is satisfied then the system

H : u → y is a continuous-conic system inside the sector

[a, b]. Finally the following notation will be used in order to

represent time integrals, sums and norms:

〈y, u〉T =

∫ T

0

yT(t)u(t)dt; ‖(y)T ‖2
2 = 〈y, y〉T

〈y, u〉N =

N−1
∑

j=0

yT(j)u(j); ‖(y)N‖2
2 = 〈y, y〉N

‖y(t)‖2
2 = lim

T→∞
‖(y)T ‖2

2; ‖y(j)‖2
2 = lim

N→∞
‖(y)N‖2

2.

Fig. 2. Nominal closed-loop system Hcl resulting from ǫ and Hs.

If it is clear that y is either a continuous or discrete-time

function then the two-norm of y will be denoted simply ‖y‖2.

From [15], [18] in regards to Lyapunov stability and

from [7]–[9] in regards to Lm
2 (lm2 ) stability conic-dissipative

systems have the following important properties:

Property 1: There exists a storage function V (x) ≥ 0
∀x 6= 0, V (0) = 0 such that: i) V̇ (x) ≤ s(u, y) for a

continuous-conic-dissipative system; and

ii) V (x(j+1))−V (x(j)) ≤ s(u(j), y(j)) for a discrete-time-

conic-dissipative system. If in addition h(x0) = J(x)0 = 0
and h(x) 6= 0 when x 6= 0 so that H : u → y is zero-state

detectable then V (x) > 0 ∀x 6= 0. Therefore if H : u → y

is inside the sector [a, b]:

i) and zero-state detectable and |a| < ∞, b = ∞ it is

Lyapunov stable.

ii) and zero-state detectable and |a|, |b| < ∞ it is asymp-

totically stable.

iii) and |a|, |b| < ∞ then it is inside the sector [−γ, γ] in

which γ = max{|a|, |b|}. Therefore, it is Lm
2 (lm2 )-stable

in which:

‖y‖2 ≤ γ‖u‖2. (6)

iv) and k ≥ 0 then kH is inside the sector [ka, kb]; −kH

is inside the sector [−kb,−ka].
v) (Sum Rule) if in addition H1 : u1 → y1 is inside the

sector [a1, b1] then (H + H1) : u → (y + y1) is inside

the sector [a + a1, b + b1].
We are particularly interested in determining the resulting

gain g(Hcl) (‖(ys)T ‖2 ≤ g(Hcl)‖(rcl)T ‖2) when closing the

loop of a conic-system Hs which is inside the sector [as, bs]
as depicted in Fig. 2.

Theorem 1: The conic-system H : e → y depicted in

Fig. 2 is inside the sector [a, b], ǫ > 0. The input e is related

to the reference rcl and output y by the following feedback

equation: e(t) = rcl(t)−ǫy(t), ∀t ≥ 0. The resulting closed-

loop system is denoted Hcl : rcl → y. For the case when:

I. 0 ≤ a < b ≤ ∞, Hcl is inside the sector [ a
1+ǫa

, b
1+ǫb

]

in which g(Hcl) = b
1+ǫb

.

II. a < 0, −a < b ≤ ∞, 0 ≤ ǫ < − 1
2

(

1
a

+ 1
b

)

then Hcl is

inside the sector [ a
1+ǫa

, b
1+ǫb

] in which g(Hcl) = b
1+ǫb

.

Proof:

I. If (a+b) > 0 then our conic-system H : e → y satisfies

〈y, e〉T ≥ 1

a + b
‖(y)T ‖2

2 +
ab

a + b
‖(e)T ‖2

2.

Substituting in the feedback equation for e results in

〈y, rcl〉T ≥
(

ǫ +
1

a + b

)

‖(y)T ‖2
2+

ab

a + b
‖(rcl − ǫy)T ‖2

2.
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Denote c1 =
a + b + 2ǫab

a + b
.

Solving for the norm of the feedback-error results in

c1〈y, rcl〉T ≥1 + ǫ(a + b) + ǫ2ab

a + b
‖(y)T ‖2

2+

ab

a + b
‖(rcl)T ‖2

2.

Dividing both sides by c1 results in

〈y, rcl〉T ≥ 1

acl + bcl

‖(y)T ‖2
2 +

aclbcl

acl + bcl

‖(rcl)T ‖2
2

in which acl =
a

1 + ǫa
, bcl =

b

1 + ǫb
.

II. We observe when a < 0 and −a < b ≤ ∞ then if

0 ≤ ǫ < − 1
2

(

1
a

+ 1
b

)

holds then c1 > 0 therefore all

the inequalities for proving the previous case hold.

g(Hcl) = b
1+ǫb

is a direct result from Property 1-iii).

1) Wave Variable Networks: In order to analyze the

closed-loop effects on Hp and Hc we recall our use of

wave-variables. As discussed in [10] scattering [19] or their

reformulation known as the wave-variable-networks allow

controller and plant variables (yc(j), yp(t)), to be transmit-

ted over a network while remaining passive when subject to

arbitrary fixed time delays and data dropouts [5]. Denote

I ∈ R
m×m as the identity matrix. When implementing

the wave variable transformation the continuous time plant

“outputs” (up(t), ydc(t)) are related to the corresponding

“inputs” (vp(t), yp(t)) as follows (Fig. 1):
[

up(t)
ydc(t)

]

=

[

−I
√

2ǫI

−
√

2ǫI ǫI

] [

vp(t)
yp(t)

]

(7)

Next, the discrete time controller “outputs” (vc(j), ydp(j))
are related to the corresponding “inputs” (uc(j), yc(j)) as

follows (Fig. 1):

[

vc(j)
ydp(j)

]

=





I −
√

2
ǫ
I

√

2
ǫ
I − 1

ǫ
I





[

uc(j)
yc(j)

]

(8)

It has been shown that the digital control network for

M = 1 depicted in Fig. 1 results in a Lm
2 -stable system

if the discrete-time-controller Hc is strictly-output-passive

(inside the sector [0, bc]) and the continuous-time plant Hp

is strictly-output-passive (inside the sector [0, bp]) [2], [10].

In order to study the case when Hp is not passive we need

to: i) explicitly consider the network structure which results

from using wave variables; and ii) use Assumption 1.

Assumption 1: The plant depicted in Fig. 1 Hp is inside

the sector [ap, bp] in addition the controller Hc is inside the

sector [ac, bc] (ac ≥ 0) in addition the scattering gain ǫ

satisfies the following bounds: i) 0 < ǫ < ∞, if ap ≥ 0;

or ii) 0 < ǫ < − 1
2

(

1
ap

+ 1
bp

)

, if ap < 0.

Assumption 1, Lemma 4 and Lemma 5 (see Appendix) allow

us to state Theorem 2.

Theorem 2: The plant-controller-network depicted in

Fig. 1 can be transformed to the final form depicted in Fig. 3

if Assumption 1 is satisfied. The transformed plant subsystem√
2ǫHpe : êclp → ype is denoted with the shorthand notation√
2ǫHpe in which: i) êclp(t) = 1√

2ǫ
rp(t) + vp(t); and

Fig. 3. Final Controller-Plant-wave-network realization.

Fig. 4. Multi-rate passive-sampler, passive-hold.

ii) ype(t) =
√

2ǫyp(t) − êclp(t) hold. In addition the trans-

formed control subsystem

√

2
ǫ
Hce : êclc → yce is denoted

with the shorthand notation

√

2
ǫ
Hce in which: i) êclc(j) =

√

ǫ
2rc(j) + uc(j); and ii) yce(t) =

√

2
ǫ
yc(j) + êclc(j) hold.

Each is a conic-dissipative system such that

√
2ǫHpe is inside the sector

[

ǫap − 1

ǫap + 1
,
ǫbp − 1

ǫbp + 1

]

and

√

2

ǫ
Hce is inside the sector

[

ǫ − bc

ǫ + bc

,
ǫ − ac

ǫ + ac

]

.

B. Multi-Rate-Passive-Sampler(Hold)

Fig. 4 depicts our proposed multi-rate passive-sampler

(PS:MTs), and passive-hold (PH:MTs) subsystem. The

multi-rate passive-sampler (PS:MTs) consists of a cas-

cade of a linear-passive-sampler (linear-PS:Ts) and a

passive-downsampler (PDS:M ). The multi-rate passive-hold

(PH:MTs) subsystem consists of a cascade of a hold-passive-

upsampler (hold-PUS:M ) and passive-hold (PH:Ts). For

simplicity of discussion the figure is for the single-input-

single-output (SISO) case but we note all elements depicted

can be diagonalized to handle m-dimensional waves. The

standard anti-aliasing down-sampler (HLP (z), ↓ M) system

depicted in Fig. 4 has been shown to be a PDS, in addition

the hold-PUS depicted is a PUS [3, Definition 4]. A valid
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PDS:M and PUS:M satisfy the following inequalities:

‖(uc(j))N‖2
2 ≤ ‖(up(i))MN‖2

2 (9)

‖(vp(i))MN‖2
2 ≤ ‖(vc(j))N‖2

2 (10)

which hold ∀N ≥ 0. The scaled-ZOH block in which

vp(t) =
1

Ts

vp(i), t ∈ [iTs, (i + 1)Ts)

has been shown to be a valid passive-hold system PH:Ts in

which

‖(vp(t))MNTs
‖2
2 ≤ ‖(vp(i))MN‖2

2 (11)

[2]. A valid passive-sampler will satisfy the following

inequality

‖(up(i))MN‖2
2 ≤ ‖(up(t))MNTs

‖2
2, (12)

unlike the non-linear averaging-passive-sampler [10, Defini-

tion 6] implementation which was shown to be a valid PS

we choose to implement a linear version.

Definition 2: The linear-passive-sampler (Fig. 4) with in-

put up(t) and output up(i) is implemented as follows:

1. up(t) passes through an analog low-pass anti-aliasing

filter denoted HLPc(s) whose magnitude |HLPc(jω)| ≤ 1
with passband ωp = π

MTs
and stop-band ωs = π

Ts
[20].

2. the output of HLPc(s) we denote as upLPc(t) in which

up(i) =
1√
Ts

∫ iTs

0

(upLPc(t) − upLPc(t − Ts))dt (13)

Lemma 1: The linear-passive-sampler (Definition 2) sat-

isfies (12).

Proof: Since up(t) = 0, t < 0 by assumption, and the

low-pass-filter is assumed to be causal therefore up(0) = 0
which implies that

0 = ‖(up(i))0‖2
2 ≤ ‖(up(t))0‖2

2.

Next, we note that (13) can be equivalently written as

up(i) =
1√
Ts

∫ iTs

(i−1)Ts

upLPc(t)dt

squaring both sides we have

u2
p(i) =

1

Ts

(

∫ iTs

(i−1)Ts

upLPc(t)dt)2

applying the Schwarz Inequality we have

u2
p(i) ≤

Ts

Ts

∫ iTs

(i−1)Ts

u2
pLPc(t)dt

therefore

‖(up(i))MN‖2
2 =

MN−1
∑

i=0

u2
p(i)

≤
MN−1
∑

i=0

∫ iTs

(i−1)Ts

u2
pLPc(t)dt

≤ ‖(upLPc(t))(MN−1)Ts
‖2
2

≤ ‖(upLPc(t))MNTs
‖2
2

since the low-pass-filter has a gain less than or equal to one

(‖(upLPc(t))MNTs
‖2
2 ≤ ‖(up(t))MNTs

‖2
2) then (12) clearly

results from these last two inequalities.

Finally, from (9) and (12) it is obvious that the following

inequality holds for the multi-rate-passive-sampler PS:MTs

‖(uc(j))N‖2
2 ≤ ‖(up(t))MNTs

‖2
2 (14)

and from (11) and (10) the following holds for the multi-

rate-passive-hold PH:MTs

‖(vp(t))MNTs
‖2
2 ≤ ‖(vc(j))N‖2

2 (15)

With these two inequalities established, and Theorem 2 we

can now prove the following Lemma.

Lemma 2: Denote the Lm
2 -gain of the plant-subsystem√

2ǫHpe : êclp → ype as γpe in which ‖(ype)MNTs
‖2 ≤

γpe‖(êclp)MNTs
‖2. In addition, denote the lm2 -gain of the

controller-subsystem

√

2
ǫ
Hce : êclc → yce as γce in which

‖(yce)N‖2 ≤ γce‖(êclc)N‖2. In addition we shall use the fol-

lowing shorthand notation in which Êclp = ‖(êclp)MNTs
‖2,

Êclc = ‖(êclc)N‖2, Rp = ‖(rp)MNTs
‖2, and Rc =

‖(rc)N‖2. If γpeγce < 1 then

Êclc ≤
γpe + 1

1 − γpeγce

(
√

ǫ

2
Rc +

1√
2ǫ

Rp

)

Êclp ≤ γce + 1

1 − γpeγce

(
√

ǫ

2
Rc +

1√
2ǫ

Rp

)

Proof: From the triangle inequality we have:

‖(êclp)MNTs
‖2 ≤ 1√

2ǫ
‖(rp)MNTs

‖2 + ‖(vp)MNTs
‖2 (16)

‖(êclc)N‖2 ≤
√

ǫ

2
‖(rc)N‖2 + ‖(uc)N‖2 (17)

‖(uc)N‖2 ≤ γpe‖(êclp)MNTs
‖2 +

1√
2ǫ

‖(rp)MNTs
‖2 (18)

‖(vp)MNTs
‖2 ≤ γce‖(êclc)N‖2 +

√

ǫ

2
‖(rc)N‖2 (19)

in which the final two inequalities were a direct result of (14)

and (15) respectively. and substituting (19) into (16) results

in

Êclp ≤ γceÊclc +

(

1√
2ǫ

Rp +

√

ǫ

2
Rc

)

(20)

similarly substituting (18) into (17) results in

Êclc ≤ γpeÊclp +

(

1√
2ǫ

Rp +

√

ǫ

2
Rc

)

(21)

Substituting (20) into (21) results in the following

Êclc ≤ γpeγceÊclc + (γpe + 1)

(

1√
2ǫ

Rp +

√

ǫ

2
Rc

)

Êclc ≤
γpe + 1

1 − γpeγce

(

1√
2ǫ

Rp +

√

ǫ

2
Rc

)

likewise, substituting (21) into (20) results in the following

Êclp ≤ γpeγceÊclp + (γce + 1)

(

1√
2ǫ

Rp +

√

ǫ

2
Rc

)

Êclp ≤ γce + 1

1 − γpeγce

(

1√
2ǫ

Rp +

√

ǫ

2
Rc

)
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note that the inequalities only result if γpeγce < 1.

Next we note the following observation that γpe =

g(
√

2ǫHpe) = g(−
√

2ǫHpe) and γce = g(
√

2
ǫ
Hce) =

g(−
√

2
ǫ
Hce) therefore using Theorem 1, Theorem 2 the

following Corollary follows.

Corollary 1:

γpe = g(
√

2ǫHpe) = max

{∣

∣

∣

∣

ǫap − 1

ǫap + 1

∣

∣

∣

∣

,

∣

∣

∣

∣

ǫbp − 1

ǫbp + 1

∣

∣

∣

∣

}

(22)

γce = g(

√

2

ǫ
Hce) = max

{∣

∣

∣

∣

ǫ − bc

ǫ + bc

∣

∣

∣

∣

,

∣

∣

∣

∣

ǫ − ac

ǫ + ac

∣

∣

∣

∣

}

(23)

Therefore:

1. when the plant is passive (ap = 0, bp = ∞) then γpe = 1
which implies γpeγce < 1 if the controller is strictly-input-

output-passive 0 < ac ≤ bc < ∞ (and vice-versa).

2. when the plant is inside the sector [ap,∞] in which ap <

0 then γpeγce < 1 if the controller is inside the sector

[ac, bc] in which −ǫ2ap < ac, bc < −1
ap

.

As was shown in [10] the IPESH blocks can be used to aid

with analysis such that

‖(yc)N‖2 =
1√

MTsKMTs

‖(yct)MNTs
‖2 (24)

holds. In addition, the following inequality result from ap-

plying the Schwarz inequality as demonstrated in [21, proof

of Theorem 1-III].

‖(rc)N‖2 ≤
√

MTsKMTs
‖(rct)MNTs

‖2 (25)

Theorem 3: When γpeγce < 1 the digital control network

depicted in Fig. 1 is Lm
2 -stable in which there exists a 0 <

γ < ∞ such that ‖y(t)‖2 ≤ γ‖u(t)‖2 in which

yT(t) = [yT
p (t), yT

ct(t)] and uT(t) = [rT
p (t), rT

ct(t)].
Proof: (Sketch) From Corollary 4 in the Appendix we

have that Hclc : eclc → yc has finite gain g(Hclc) = ǫbc

ǫ+bc
and

√

2
ǫ
Êclc = ‖(eclc)N‖2, therefore ‖(yc)N‖2 ≤ ǫbc

ǫ+bc

√

2
ǫ
Êclc

substituting (24) for the left-hand-side results in
1√

MTsKMTs

‖(yct)MNTs
‖2 ≤ ǫbc

ǫ+bc

√

2
ǫ
Êclc. Similarly

‖(yp)MNTs
‖2 ≤ bp

1+ǫbp

√
2ǫÊclp holds since from Corollary 3

in the Appendix we know that the closed-loop plant Hclp :

eclp → yclp has finite-gain g(Hclp) =
bp

1+ǫbp
and that√

2ǫÊclp = ‖(eclp)MNTs
‖2. Finally, we observe that (25)

along with the other continuous-time-norm inequalities can

be substituted into the final-two inequalities of Lemma 2 such

that both inequalities involve only continuous-time norms in

which the outputs yp(t) and yct(t) are bounded by the inputs

rp(t) and rct(t). Therefore, when γpeγce < 1 the digital

control network depicted in Fig. 1 is Lm
2 -stable.

C. Conic Digital Filters

The section shows how an engineer can synthesize a

discrete-time controller/filter from a continuous-time refer-

ence model. In particular, we show how a continuous-time

conic system can be transformed into a discrete-time conic

system using the inner-product equivalent sample and hold

(IPESH). Additionally, we present a corollary for trans-

forming a continuous-time conic single-input-single-output

(SISO) linear time-invariant (LTI) system into a discrete-

time conic SISO LTI system using the IPESH-Transform.

We begin by recalling the definition for the IPESH which is

based on the earlier work of [22], [23].

Definition 3: [24, Definition 4] Let a continuous one-port

plant be denoted by the input-output mapping Hct : Lm
2e

→
Lm

2e
. Denote continuous time as t, the discrete time index

as i, the sample and hold time as Ts, the continuous input

as u(t) ∈ Lm
2e

, the continuous output as y(t) ∈ Lm
2e

, the

transformed discrete input as u(i) ∈ lm2e
, and the transformed

discrete output as y(i) ∈ lm2e
. The inner-product equivalent

sample and hold (IPESH) is implemented as follows:

I. x(t) =
∫ t

0
y(τ)dτ

II. y(i) = x((i + 1)Ts) − x(iTs)
III. u(t) = u(i),∀t ∈ [iTs, (i + 1)Ts)

As a result 〈y(i), u(i)〉N = 〈y(t), u(t)〉NTs
holds ∀N ≥ 1.

Lemma 3: If Hct is inside the sector [a, b] then Hd

resulting from the IPESH is inside the sector [aTs, bTs].
Proof: Since Hct is inside the sector [a, b], we can write

〈y, u〉T ≥ 1

a + b
‖(y)T ‖2

2 +
ab

a + b
‖(u)T ‖2

2. (26)

But, from Definition 3-III it can be shown that

‖(u)T ‖2
2 = Ts‖(u)N‖2

2. (27)

Additionally, from Definition 3-II and the Schwarz inequal-

ity, the following inequality can be shown to hold [21, proof

of Theorem 1-III]

‖(y)T ‖2
2 ≥ 1

Ts

‖(y)N‖2
2. (28)

Finally, we use the equivalence of the discrete-time and

continuous-time inner products combined with (27) and (28),

and substitute into (26) to obtain

〈y, u〉N ≥ 1

Ts(a + b)
‖(y)N‖2

2 +
abTs

a + b
‖(u)N‖2

2

=
1

(aTs) + (bTs)
‖(y)N‖2

2 +
(aTs)(bTs)

(aTs) + (bTs)
‖(u)N‖2

2.

The IPESH similar to the bilinear-transform can be used

to synthesize stable digital controllers from continuous-time

models. Therefore, we recall the IPESH-Transform definition

as it applies to SISO LTI systems.

Definition 4: [3, Definition 5] Let Hp(s) and Hp(z)
denote the respective continuous and discrete time transfer

functions which describe a plant. Furthermore, let Ts de-

note the respective sample and hold time. Finally, denote

Z{F (s)} as the z-transform of the sampled time series

whose Laplace transform is the expression of F (s), given on

the same line in [25, Table 8.1 p.600]. Hp(z) is generated

using the following IPESH-Transform

Hp(z) =
(z − 1)2

Tsz
Z
{

Hp(s)

s2

}

.

N.B. the term z−1
z

Z
{

Hp(s)
s2

}

represents the exact discrete

equivalent for the LTI system
Hp(s)

s
preceded by a ZOH
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Fig. 5. Plant Dynamics Hp(s)

Fig. 6. The classical digital-control-design for position tracking

[25, p. 622] as noted in a detailed proof of [3, Lemma 5]

which shows that the IPESH-Transform is a scaled version

(k = 1
Ts

) of the IPESH (Definition 3). The scaling property

(Property 1-iv) and Lemma 3 lead directly to Corollary 2.

Corollary 2: If a SISO LTI system H(s) is inside the

sector [a, b] then Hp(z) resulting from applying the IPESH-

Transform to Hp(s) is inside the sector [a, b].

III. CONTROLLER VALIDATION & SIMULATION

These results can be readily applied to telemanipulation

systems and virtual reality interfaces which use haptic-

paddles [11]. Therefore we choose to validate our results

through the control of an idealized single-degree-of-freedom

haptic paddle. Fig. 5 depicts the idealized LTI-model (ne-

glecting gravitational effects) for a single-degree-of-freedom

haptic-paddle with mass Mp. The haptic-paddles velocity

is controlled with an analog feedback loop in which the

control torque is proportional to the feedback gain K. In

addition the velocity feedback signal vp(t) is subject to a

low-pass filter with time-constant τ . It can be verified that

for Hp(s) =
Yp(s)
Ep(s) if

K =
Mp

τ
then Hp(s) is inside the sector [ap,∞], ap = −τ.

This nominal plant-system Hp(s) will be controlled using

our digital-control network depicted in Fig. 1 in which we

shall use a proportional-controller yc(j) = kcec(j) in which

the gain kc is chosen to satisfy the conditions in Corollary 1

such that

−ǫ2ap = ǫ2τ < kc <
1

τ
= − 1

ap

.

In addition KMTs
is chosen so that rct(t) = yp(t) at

steady-state. The term rp(t) can be thought of as an over-

riding position reference in this framework since force-

disturbances are rejected by the velocity feedback loop. If

the haptic-paddle hits a wall the resulting steady-state error

(rc(t)− yp(t)) can be applied to an operator proportional to

the control gain kc. Fig. 6 depicts a classic-digital-position-

feedback control scheme in which rc(j) = yp−classic(jMTs)
at steady-state when n(t) = 0.

In order to compare the effects of band-limited noise n(t),
the low-pass filtered and noise-corrupted feedback signal

ynp(j) is periodically sampled every MTs seconds for the

classical-scheme whereas the signal yp depicted in Fig. 1
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Fig. 7. Baseline tracking response with minimal delay n(t) 6= 0.
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Fig. 8. Position response with 0.5 second delay.

is corrupted similarly such that yp(t) = (Hpep(t) + n(t)).
For our high-performance system we filter the noise cor-

rupted signal using the multi-rate-passive-sampler subsystem

(Fig. 4) described in Section II-B in which HLPc(s) = 1
τs+1

(the same analog anti-aliasing low-pass filter used for the

classical design). In addition a second-stage digital anti-

aliasing filter HLP (z) was synthesized by applying the

IPESH-Transform to a sixth-order low-pass Butterworth-

filter model HLP (s) with passband ωp = π
MTs

[20, Sec-

tion 9.7.5].

The simulation parameters are as follows: ǫ = 2, Mp =
2 kg, Ts = .01 seconds, M = 10, τ = MTs

π
, .4

π
<

kc = 5 < 10π and KMTs
= 1

4 . Fig. 7 indicates that

our high-performance position yp(t) response tracks the

desired reference rc(t) closer than the classic-digital-control-

system response fp−classic(t) when subject to band-limited

noise within the frequency band [ π
MTs

, π
Ts

]. In addition

Fig. 8 indicates that our proposed system is significantly less

sensitive to the introduction of a 0.5 second delay between

the controller and the plant. In addition, the controller-term

yct(t) in our high-performance-digital control network can

provide additional force-feedback to an operator if steady-

state error occurs when the haptic-paddle contacts a wall.
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IV. CONCLUSIONS

We have provided a set of sufficient conditions to guar-

antee delay-independent stability for non-passive systems

Hp inside the sector [ap, bp] −∞ < ap < bp for our

networked control architecture depicted in Fig. 1. In par-

ticular, Theorem 1 and Assumption 1 allow us to derive

Theorem 2 which describe the internal network structure

depicted in Fig. 3. Lemma 1 shows that a linear-passive

sampler depicted in Fig. 4 satisfied the key-inequality (12).

As a result linear anti-aliasing filters can be introduced which

do not adversely affect stability or performance. Lemma 2

and Corollary 1 provide the sufficient sector conditions for

the controller and plant to achieve the small-gain conditions

required of Theorem 3 in order to guarantee Lm
2 -stability.

Corollary 2 shows that the IPESH-Transform can be applied

to an analog-controller to synthesize a digital-controller s.t.

both controllers are inside the sector [a, b]. Simulation results

of our proposed architecture applied to direct position control

of a haptic paddle indicate good performance with low

sensitivity to band-limited noise and networked delay.
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APPENDIX

Fig. 9 depicts a graphical realization of (7) on the

left-hand-side (LHS), and the first obvious graphical-

transformation on the right-hand-side (RHS) in which we

denote closed-loop-transformation of the plant Hp in terms

of the feedback-gain ǫ as Hclp : eclp → yp in which

eclp(t) = rp(t) +
√

2ǫvp(t) = ep(t) + ǫyp(t). (29)

In order to simplify discussion and to leverage Theorem 1

we use Assumption 1 in order to state the following corol-

lary:

Corollary 3: If Assumption 1 is satisfied then Hclp :

eclp → yp is inside the sector
[

ap

1+ǫap
,

bp

1+ǫbp

]

.

Next we transform the RHS realization in Fig. 9 to the final

form depicted in Fig. 10.
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Fig. 11. Controller-rc-uc-ep-vc-network realization and initial transfor-
mation.

Lemma 4: The RHS of Fig. 9 can be transformed to

the final form depicted in Fig. 10 (in which Hpeeclp =√
2ǫHclpeclp − 1√

2ǫ
eclp). In addition if Assumption 1 is

satisfied, then√
2ǫHpeêclp(t) is inside the sector

[

ǫap−1
ǫap+1 ,

ǫbp−1
ǫbp+1

]

.

Proof: From Fig. 10 it is clear that,

eclp(t) =
√

2ǫ

(

1√
2ǫ

rp(t) + vp(t)

)

= rp(t) +
√

2ǫvp(t)

which satisfies (29), next from Fig. 10 it is clear that,

up(t) =
√

2ǫyp(t) −
1√
2ǫ

eclp(t) +
1√
2ǫ

rp(t)

=
√

2ǫyp(t) −
1√
2ǫ

(

rp(t) +
√

2ǫvp(t)
)

+
1√
2ǫ

rp(t)

=
√

2ǫyp(t) − vp(t).

which satisfies (7) in regards to up(t). From Corollary 3

we have that Hclp : eclp → yp is inside the sector
[

ap

1+ǫap
,

bp

1+ǫbp

]

. From the scaling property (Property 1-iv),

we have that Hclp

√
2ǫ =

√
2ǫHclp in which

√
2ǫHclp is

inside the sector
[√

2ǫ
ap

1+ǫap
,
√

2ǫ
bp

1+ǫbp

]

. Using the sum-rule

(Property 1-v) we have that

Hpe is inside the sector
[ −1√

2ǫ
+

√
2ǫ

ap

1 + ǫap

,
−1√
2ǫ

+
√

2ǫ
bp

1 + ǫbp

]

solving for ape we have

ape =
−1√
2ǫ

+
√

2ǫ
ap

1 + ǫap

=
1√
2ǫ

(

2ǫap − ǫap − 1

ǫap + 1

)

therefore Hpe is inside the sector
[

1√
2ǫ

(

ǫap − 1

ǫap + 1

)

,
1√
2ǫ

(

ǫbp − 1

ǫbp + 1

)]

finally from the scaling property we have that

√
2ǫHpe is inside the sector

[

ǫap − 1

ǫap + 1
,
ǫbp − 1

ǫbp + 1

]

.

Fig. 11 depicts a graphical realization of (8) on the

left-hand-side (LHS), and the first obvious graphical-

transformation on the right-hand-side (RHS) in which we

denote closed-loop-transformation of the controller Hc in

terms of the feedback-gain 1
ǫ

as Hclc : eclc → yc in which

eclc(j) = rc(j) +

√

2

ǫ
uc(j) = ec(j) +

1

ǫ
yc(j). (30)

Fig. 12. Final Controller-rc-uc-yc-vc-network realization.

Which allows us to state the following corollary:

Corollary 4: If Assumption 1 is satisfied then Hclc :

eclc → yc is inside the sector
[

ǫac

ǫ+ac
, ǫbc

ǫ+bc

]

.

Next we transform the RHS realization in Fig. 11 to the final

form depicted in Fig. 12.

Lemma 5: The RHS of Fig. 11 can be transformed to

the final form depicted in Fig. 12 (in which Hceeclc =

−
√

2
ǫ
Hclceclc +

√

ǫ
2eclc). In addition if Assumption 1 is

satisfied, then
√

2

ǫ
Hceêclc(j) is inside the sector

[

ǫ − bc

ǫ + bc

,
ǫ − ac

ǫ + ac

]

.

Proof: From Fig. 12 it is clear that,

eclc(j) =

√

2

ǫ

(
√

ǫ

2
rc(j) + uc(j)

)

= rc(j) +

√

2

ǫ
uc(j)

which satisfies (30), next from Fig. 12 it is clear that,

vc(j) = −
√

2

ǫ
yc(j) +

√

ǫ

2
eclc(j) −

√

ǫ

2
rc(j)

= −
√

2

ǫ
yc(j) +

√

ǫ

2

(

rc(j) +

√

2

ǫ
uc(j)

)

−
√

ǫ

2
rc(j)

= −
√

2

ǫ
yc(j) + uc(j).

which satisfies (8) in regards to vc(j). From Corollary 4

we have that Hclc : eclc → yc is inside the sector
[

ǫac

ǫ+ac
, ǫbc

ǫ+bc

]

. From the scaling property, we have that

−Hclc

√

2
ǫ

= −
√

2
ǫ
Hclc in which −

√

2
ǫ
Hclc is inside the

sector
[

−
√

2
ǫ

ǫbc

ǫ+bc
,−
√

2
ǫ

ǫac

ǫ+ac

]

. Using the sum-rule we have

that

Hce is inside the sector
[

√

ǫ

2
−
√

2

ǫ

ǫbc

ǫ + bc

,

√

ǫ

2
−
√

2

ǫ

ǫac

ǫ + ac

]

solving for bce we have

bce =

√

ǫ

2
−
√

2

ǫ

ǫac

ǫ + ac

=

√

ǫ

2

(

1 − 2ac

ǫ + ac

)

therefore Hce is inside the sector
[
√

ǫ

2

(

ǫ − bc

ǫ + bc

)

,

√

ǫ

2

(

ǫ − ac

ǫ + ac

)]

finally from the scaling property we have that
√

2

ǫ
Hce is inside the sector

[

ǫ − bc

ǫ + bc

,
ǫ − ac

ǫ + ac

]

.


