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Abstract

This paper presents a formal method to design a digitaliaderontrol system for quad-rotor aircraft. In particuldr,
formalizes how to use approximate passive models in ordéndiify the initial design of passive controllers. Fundantad
limits are discussed with this approach in particular howelates to the control of systems consisting of cascadebreét
or more integrators in which input actuator saturation isspnt. Ultimately, two linear proportional derivative (Ppassive
controllers are proposed to be combined with a non-line@ration element. It is also shown that yaw control can béopered
independently of the inertial controller, providing a dgreaal of maneuverability for quad-rotor aircraft. A coeol, based on
the sector stability theorem provided by Zames and lateeigdized for the multiple-input-output case by Willemsatet the
allowable range of; for the linear negative feedback controllef in which the dynamic systenil; : z1 — y; is inside the
sector|a, b1], in which —oo < a1, 0 < b1 < oo, andb; > ai1. This corollary provides a formal method to verify stalyilit
both in simulation and in operation for a given family of itiar set-points given to the quad-rotor inertial controll€he
controller is verified to perform exceptionally well whenptipd to a detailed model of the STARMAC, which includes ldad
flapping dynamics.

. INTRODUCTION

Quadrotor aircraft are agile aircraft which are lifted anopelled by four rotors. Unlike, traditional helicoptethey
do not require a tail-rotor to control yaw and can use four lEemdixed pitched rotors. By having smaller rotors, these
vehicles can achieve higher velocities before blade flapgifiects begin to destabilize and limit performance. Hosvev
without an attitude control system, it is difficult if not irapsible for a person to successfully fly and maneuver such a
vehicle. Thus, most research has focused on small unmaramiad @ehicles in which advanced embedded control systems
could be developed to control these aircraft. In [1] a Lyapwuilike control approach is used to develop a non-lineattialer
controller which relies on robust stability results inviolg control elements with nested saturation blocks [2], [8][4]
it is shown that a simple, model-independent quaternisetdgroportional derivative (PD) controller performs quitell
in controlling attitude as compared to other more involved-tinear controllers. In [5], image based visual servotauin
algorithms are presented which exploit passivity-likepgandies of the dynamic model in order to derive Lyapunov cant
algorithms which rely on backstepping techniques. All tihhewe papers, and others contain fairly detailed models hvhic
describe their overall control design. Most of the Lyapucontrol proposals typically are fairly computationallypexsive
and it is not clear how robust they are to model uncertaintiegparticular, all of the above papers appear to neglect a
significant time lag characteristic related to the motousthicommand and the corresponding thrust which resultsalthest
compression of air. With [1] as an exception, almost all papeglect the limited control thrust due to motor saturatio
All these papers neglect effects such as sampling delaytigation, etc. In order to address these effects we profiae
Corollary 2 provides a formal manner terify that the sector stability condition is satisfied for a givamily of inertial
position inputs which can easily be verified through bothudation and field testing.

As depicted in Fig. 1 we propose to use two PD controllersdtihas PD Cont. in Fig. 1). The most inner-loop controller
is a 'fast’ PD attitude controller in which attitude is deibed by the Euler angles. The attitude controller design is initially
justified assuming that the controller and dynamics areiypms§ext, we further assume that the resulting attitudetroder
is 'fast’ enough that we can close the loop with a second PRtiadecontroller in which the inertial position is denoted a
¢. These initial assumptions allow us to propose a contrdesysvhich will guarantee an overally*-stable (or bounded)
system. However, this initial design will not work due to ttedlowing limitations. First, there is a significant lag beten
a rotor thrust command and the resulting thrust which is epyly due to the compression of the air columns above their
respective rotors [6]. In order to compensate for this lagadd an additional lead compensator to minimize this effect
(denoted as Lead Comp. in Fig. 1). Second, the rotors canappjy a fixed range of thrust (denoted?,) in which 7,
denotes the corresponding thrust command vector) due tageolimits to drive the motors which in turn drive the rotors
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Fig. 1. Proposed quad-rotor control system.



It can be inferred from [1] that the relationship between §9), pitch @), and thrusfl” to the corresponding desired inertial
position approximates to a cascade of four integratorsestibp input actuator saturation. As noted in [2] it has bdews
that when the actuator input is subject to saturation it igdssible to implement a linear control law (such as using BRo
controllers) in order to stabilize a system which consi§tsascades of three or more integrators. However, by chgdsin
limit the linear control output using appropriately desidrsaturation blocks there exists a linear control law shahdlobal
stability can be achieved [2, Theorem 2.2]. This fundanidimtatation essentially requires us to naturally limit thange

of attitude commands to our inner-loop PD controller in terofi pitch and roll to the intervgl-7, 7] using the saturation
function which is denoted as.() in Fig. 1. In simulations, we noticed that control of our quatbr aircraft worked quite
well until the velocity reached a point in which significamttar flapping effects began to destabilize the system. So we
chose to limit the maximum velocities by adding a positiote rehange limiter (depicted as 'Rate Limiter’ in Fig. 1) to
the desired inertial position set-point (denoted,g@s The rate change limiter includes an additional secont&opre-filter
applied to(s in order to minimize overshoot. A similar filter is applied tite yaw set-point); as well. Other non-ideal
effects such as non-passive attitude coordinates (Eulglesin) quantization, single-precision floating point math esror
and sample-rate delay can be addressed by using Corollaryerify that the sector stability condition is satisfied over a
large family of inertial position inputs.

Section Il introduces a few definitions regarding passiwtyundedness and corollaries in regards to stability.i@e¢t
provides an appropriate model to describe the quad-rotoamhjcs as it relates to statements in regards to designing a
controller for the quad-rotor. Section IV provides a dgstion of our control implementation and corresponding iitsib
arguments which lead us to an overall feasible control ades&gction V provides a detailed discussion of a detailed
simulation of our control system used to control a detailestiel of the STARMAC quad-rotor helicopter which includes
highly non-linear blade-flapping effects [6]. Section Viepents our conclusions and points to future research iinsct

Il. PASSIVITY AND SECTORSTABILITY

In order to discuss the (boundedness) or stability progeif the quad-rotor with our proposed control system wellreca
the following nomenclature, definitions and present Cargll2 in order toverify stability. Let 7 be the set of time of
interest in whichZ = R™* for continuous time signals ard = Z™* for discrete time signals. Lef be a linear spac&™
and denote by the spaéé as all functionsu : 7 — V which satisfy the following:

3= [ aTOuat < oc, @
0
for continuous time systemd.%*), and

lull3 = uT(i)uli) < oo, )
0

for discrete time systemg%*). Similarly we will denote byH. as the extended space of functionswas 7 — V by
introducing the truncation operator:
x(t), t < T,
t =
@r(?) {0, t>T

for continuous time, and

. x(t), 1 <T,
IT(Z)_{O(Z)'>T

for discrete time. The extended spake satisfies the following:

T
llurl3 = / u' (Hu(t)dt < oo; VT € T 3)
0
for continuous time systemd.5?), and
T-1
lurll3 =" u()u(i) < oo; VT € T (4)
0

for discrete time system@Z?).
Definition 1: A dynamic systen# : H. — H. is L5* stable if

ue Ly = Hue L. (5)

in which Hu = y corresponds to the dynamic output of the system, and theevaliu{u at timet will be denoted as
Hu(t) = y(t).



Definition 2: A dynamic systen# : H. — H. is [5* stable if
uely = Huely. (6)

in which Hu = y corresponds to the dynamic output of the system, and thee\aflii/ « at discrete time will be denoted
as Hu(i) = y(i).
The inner product over the intervfll, T'] for continuous time is denoted as follows:

T
(y, )z = / yT (Byut)dt

similarly the inner product over the discrete time interf@J1,...,7 — 1} is denoted as follows:

T—1
{y,uyr = yT(@u(i).
0

For simplicity of discussion we note the following equivate for our inner-product space:

((Hu)p,ur) = ((Hu)r,u) = (Hu,ur) = (Hu, u)r.

Definition 3: Assuming thatH«(0) = y(0) = 0, then a dynamic systet : H. — H. is (strictly) inside the sector

[a,b], b>0, a<b, e>0Iif
lyrl|2 = (a+ b){y, u)r + abllur|? < 0 (< —€|lur|2) @)

Definition 4: Assuming thatH«(0) = y(0) = 0, then a dynamic systeri{ : H. — H, is (strictly) interior conic with

centerc € R and radius:, € > 0 if
I(Hu — cu)r|| < rllur]| (< (r+ ) Jurl]) )

Corollary 1: A dynamic systemH : H. — H. is (strictly) interior conic with centee € R and radius-, ¢ > 0 if and
only if H is (strictly) inside the sectd, b] with a = ¢ —r andb = ¢ + r.

Remark 1:Corollary 1 follows directly from [7, Theorem 2.8] and notéaf the single-input-output case in [8].

Property 1: Assume the following dynamic systeni$ : v — y, H; : u; — y; are inside their respective sectors
[a,b], [a1,b1], andk > 0 is a constant then:

(i) I can be said to be insidg, 1], [e, 1] YO < e < 1, or strictly inside[0,1 + ¢] VO < e < 1.

(i) kH is inside[ka, kb)
(i) Sum Rule: (H + Hy) is inside[a + a1, b + b1].

Remark 2: The first two properties are obvious, and follow along thepprties listed for the single-input-output case
stated in [8, Section 4.2]. The Sum Rule is not at all obvidugoul use the sector constraint, however as shown for the
single-input-output case in [8] we can establish thdt+ H,) is interior conic with cente& (b + by + a + a1) and radius
2(b+ b1 — a — a1) which is equivalent to being inside the secfort a1, b+ b;] (due to Corollary 1).

I((H + Hy)u - %((bﬂl) + (b1 + ar))u)r|l <

(Fu — %(b +a)u)rl| + | (Hyu — %(b1 +an)u)r|

due to the triangle inequality.

IN

1
(b—a)llur|l + (b1 — ay)||ur|

IN
N~ =

(b+ by —a—ar)llur].

Definition 5: If we assume that/«(0) = 0, then if H is inside the sector:

i) [0,00] it is @ passive (positive) system

i) [0,b], b < oo, itis strictly output passive

i) [e,00], € > 0 or strictly inside the sectol0, oo] it is strictly input passive

iv) [a,b], a >0, b< oo itis strictly input-output passive

V) [a,b], —o0 < a, b < oo itis a boundedif’-stable for discrete time, ak3’-stable for continuous time) system.
Let us denote the state of a systemuas R™. Let the supply rate(u, y) have the following form:

1 ab

(a+b) CEDRAY ®)

yT(t)y(t) —

r(u,y) =y (Hu(t) —
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Fig. 2. Bounded syster : [u],ul]T — [y],yJ]T.
for the continuous time case or
1 b
rwy) =T Ould) = gy Ou) = e u) (10)

for the discrete time case.
Remark 3:Let us assume that we can describe our systénm terms of the following state-space equations:

z(t) = f(z(t),u(t)), z(0) =z, t>0
y(t) = h(z,u(t))

for the continuous time case, or

x(i+1) = f(x(i),u()), x(0) =z, >0
y(i) = h(x (i), u(i))

for the discrete time case. Then if there existstarage functionV (z) : R* — R > 0, Vo # 0 andV(0) = 0 in which
there exists & > 0, a < b and:
1) V(z) < r(u,y), andV (z) is continuously differentiable, theH is inside the sectoju, b] for the continuous time case.
2) V(z(i+1)) = V(z() <r(u,y), Vi € T, thenH is inside the sectofa, b] for the discrete time case.
The following Theorem serves as the basis for proposingitteat PD controllers depicted in Fig. 1. It is a weaker form
of the passivity theorem [9] which considers when the inputs 0. Parts of the theorem have appeared in [10]-[13], we
generalize it slightly by adding! to the structure.
Theorem 1:Assume that the combined systéih: u; — y1, us = 0 depicted in Fig. 2 had < k£ < oo and consists of
two dynamic systemé/; : u; — y; and Hs : us — y» Which are either:
i) respectively inside the sectdq,b1], a; = 0,b1 < oo (H; is strictly output passive) and inside the sedtaro] (Ho
is passive) or
ii) respectively inside the sectddy, b1], a1 = 0,b; = oo (H; is passive) and inside the secfag, co] (H is strictly input
passive),
thenH : u; — y; is strictly output passive and boundédf (stable for the discrete time case,df* stable for the continuous
time case).
Proof: First we recall the property that the combined systefh is inside the sectofka,, kb;] and thate; = uy — s
therefore

i)
1 2
<y17 61>T 2 kbl ||(y1)TH2

1

(i, u)r > (Y2, y1)7 + — (1) |l3
kb
1

(y1,ur)r > k_blH(yl)TH%

in which the final (strictly output passive) inequality réswsince H, is passive.
ii)
(y1,e1)r >0
(y1, ur)r = (Y2, 1)1
(y1,ui)r > as||(y1)rll3

in which the final (strictly output passive) inequality réésusince Hs is strictly input passive.
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Fig. 3. UAV with depiction of inertial and body frames.
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Remark 4:Theorem 1-i provides the basis for constructing asymptstibilizing controllers for systems which can be
described as a cascade of two passive systBins= H; H,. The first half of the systenil; is rendered strictly output
passive by closing the inner-loop in a manner which satisftessorem 1-ii, then the outer-loop is closed with the outgut o
Hs.

Although, Theorem 1 provides a sound and intuitive basisotwstruct stable attitude control systems, it does not allsw
to provide a formal way to verify the effects of cascading astf attitude controller with a slower PD inertial contegll
The following corollary provides a way to verify stabilityh@n passivity constraints of the closed loop system can met m
the previously mentioned constraints. In particular we @mcerned with the case whéf is inside the sectofu;, co] in
which —c0 < a1 < 0.

Corollary 2: Assume that the combined dynamic systé [u],uJ]" — [yf,yd]T depicted in Fig. 2 consists of two
dynamic systemdd; : u; — y; and Hy : us — yo which are respectively inside the secter, b;] and strictly inside the
sector[0,1 + €], for all e > 0. Then H is bounded [5* stable for the continuous time case l§f stable for the discrete
time case) if:

1 .
O<k<——, ifar <0
a1

0<k<oo, ifag=0
1 .
—— <k<oo, ifa; >0.

ay
Remark 5: Corollary 1 follows directly from [7, Corollary 4.3.3, ca8for the multi-input-output case and [8, Theorem 2a,
case 2] for the single-input-output case.

I1l. QUAD-ROTORMODEL

LetZ = {en, er, ep} (North-East-Down) denote the inertial frame, add= {e,, e,, e, } denote a frame rigidly attached
to the aircraft as depicted in Fig. 3. Létdenote inertial position; denote the vector of Euler anglgs = [¢, 0, w}T
in which ¢ is the roll, § is the pitch andy is the yaw.R(n) € S0(3) is the orthogonal rotation matrix{’ R = I) which
describes the orientation of the airframe in whiBf) describes the rotation matrix from the inertial frame to busly
frame as is the convention used in [14], [15]. The rotatiortrimallows coordinates relative to the inertial frame swash
inertial angular velocityv; to coordinates relative to the body frame such as the angelacity w as follows

wr = R"(n)w.



The standard equations of motion are as follows:

{=wvr
mv; = fr = mgep — TR"(n)e. (12)
Iwo=—-wxIw+T (12)
n=J(nw. (13)

Which results in a cascade structure, where the inertigkf¢f;) depends on the orientation as described by the Euler angle
7. (13) relates the frame angular velocityto the rate change of the Euler anglevhich depends on the frame control
torquel’™ = [v.,7,,7-]T- In which each control torque is applied about each cornedjpg frame axis and positive torque
follows the right hand rule. This cascade structure is amalveon-passive structure which has many passive eleméhés
overall approach we will use in designing a controller fasthystem will be to take advantage of the passive elements to
design a ‘fast’ passive attitude controller. The closegldgnamics of the attitude controller shall be fast enougiytore
in order to implement a ‘slower’ passive inertial positioontroller which will command the desired attitude in order t
reach a desired inertial position relative to the origin loé¢ inertial frame (T = [X,Y, Z]"). In which X is the relative
distance from the origin along thg; axis,Y is the relative distance from the origin along the axis, andZ is the relative
distance from the origin along the, axis. Note thatZ < 0, Z < 0 corresponds to the UAV above the inertial origin and
flying upward.
Using the shorthand notatian = cosz ands, = sin z, the rotation matrix®(n) is related to the Euler angles as follows
[14, Section 5.6.2]:
CoCy CHSqp —Sp
R(n) = |8480Cy — CoSy 54805y +CoCy  CoSy (14)
CHSOCy T S¢Sy CHSeSy — S¢pCyp  CHCo-

The matrix.J(n) is the inverse of the Euler angle rates maf#X,;(n)] ! [14, Section 5.6.4] such that
1 singtané cos¢tanf

J(n) =10 Cos ¢ —sing | . (15)
0 sin ¢ cos ¢
cos 6 cos 0

In order to determine the range fgrin which J(n) > 0 we recall

Remark 6: [16, Remark 1] Any matrixA € R™*™ is positive definite if and only if the symmetric part of (B =
1(A+ AT)) is positive definite.
and

Theorem 2: [16, Theorem 5] IfA € R™*™ is symmetric, them is positive definite if and only if4;| > 0fori=1,...,n
in which | - | denotes the determinant and consists of the “intersection” of the firstrows and columns ofi.
Using the above two tests we can numerically verify that:

Tn) >0, 6,0 € [~ 2om, 2o, ¥ € [~ 7. (16)

Therefore the relationship betweef(n) : w; — 5 is passive for the range of given by (16). In order to determine
passivity properties relating; — n is a much more challenging task. In simulations however whegn < 0.5 and the
pitch and roll are conservatively limited within the rande[e 7, 7] the sector bounds are aroufid.004, oo in simulation
which is slightly active as compared to a passive system lwhiculd be confined to the sectfr, oo] [8]. Other attitude
parametrization such as the modified Rodrigues parameteseps a passive relationship between angular velocity and
attitude which we plan to investigate in the future [12].

Completing our discussion on the UAV dynamics we note thatéationship between inertial acceleration, contralsks

and the Euler angles is

0 C$S6Cy + SpSy
mur = | 0 | 4+ fre, fre=—T |cpS05y — 5¢Cy a7
mg CoCqp

in which f;. denotes the inertial control forcé&, = Zle T; is the total thrust applied by each rotdy, i € {1,2,3,4}.
Ignoring blade flapping effects, the control torquéand total thrus” have the following relationship:

Yo 0 -0 0 1) T
v |-k K -K K| |T (18)
T 1 1 1 1 T,

in which ¢ is the distance from the center of gravity for each rotor @ thAV along thex andy body frame axis andf;
captures the relationship between rotor velocity and spwading torques applied about thaxis. As long a®9 K; # 0, the



matrix is invertible and can be used to map a desired thrusitand7 and control torque commardto a corresponding
motor thrust command. Since passivity is not effected by commanding a desired gashyaw rate), ¢ we will allow

the user to command a desired yaw, while maintaining a dksirertial position (in order to rotate view of an on-board
camera for example). Therefore we choose to keep yaw as avdrable to control and use a small angle assumption to
relate attitude to inertial force applied by the rotors.

fre |° S Cy m
.

T~ O] + |—cy sy (19)
B 1 0 0
Therefore a desired inertial control commafﬁ = [f1ca, f1ey, fre=), Will be used to determine a desired inertial set point
as follows:
o] = [ o] i 20)
Oset | Cofy Sapy % '
Finally, there is a non-ideal lag between motor thrust comufig and the actual thrust applied by each rotor.
Ti(s)
Tui(s) = 21
()=~ (21)

in which 7 ~ .1 seconds represents the thrust lag to each rotor and can magbected in designing the controller.

IV. CONTROL IMPLEMENTATION
A. Attitude Control System

Our overall goal is to design a 'fast’ attitude control systelThere are numerous ways to approach this problem which
has been extensively studied throughout the years. Mary ta&en a Lyapunov (and/or) passivity based approach toaont
attitude [1], [4], [13], [17]-[21]. We will follow the passity based approach to control attitude by converting theppireg
H : T — w from a passive system (which we shall recall) to a strictlypat passive system which is also inside sector
[0,1]. By confiningH : I' — w to the |0, 1] sectorH,,, : k,e1 — w we can close the loop on attitude usingvhich does
not consist of a passive mappitdg,w — 1. Simulations show thaH,w — 7 is confined to thg—.004, co] sector for a
fairly large range ofy and#, which unfortunately is not sufficient to find a gdip to satisfy the sector constraints in which
H, = Hy, andk, H,,, = H; in [7, Corollary 4.3.3] (which is the multiple input-outpuérsion of [8, Theorem 2a]). In fact,
the weakest 'combined’ constraints which can be placedigrand H, is that H, must be strictly input passive and;
must essentially be passive. A more interesting case is whers strictly inside the secto0, 1 + €], ¢ > 0 (for example
H, =1 is strictly inside the sectd0, 1 + €] for all ¢ > 0). When Hy, is strictly inside the sectold, 1 + €] for e > 0, then
boundedness is guaranteed for dtdy which is inside the sectqu‘Tle, o).

Theorem 3:Any rigid body who's inertia matrix’ = IT > 0, I = 0 and dynamics satisfy the Euler-Lagrange equation
(12) in whichw, T' € R3 is a lossless passive systdi: ' — w.

Proof: The total angular energy stored in the UAV is the kinetic gger

S(w) = %lew >0,w#0

The rate change of kinetic energy has the following form

S(w) =w'Tw. (22)
We note thatvx can be represented as a skew symmetric matrix in terms' of [wy,ws,ws]":
0 —Wws w2
wX = | ws 0 —wi|, (Wx)T=—wx
—Wwo w1 O

Likewise, C(w) = w x I is also skew symmetric:
Cw)T+ Cw) =TT ((wx)T +wx)I =1T0I = 0.
Substituting (12) into (22) in terms af(w) results in
S(w)=w ' I(-I7'C(w)w + I7'T)
=wC(Ww+w'l
=w'l.

Therefore withS(w) > 0, Yw # 0, and S(w) = w'T, then the UAV angular kinematics describe a lossless passistem
H: T w. [ ]
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Fig. 4. Proposed attitude control system.

. S
S Ts+1 i 7 1
S e T diag T ]} i(T( ) diag 1 ' r
I, liss_HJ G 'rs+lj
LU I

Fig. 5. Relationship between desired inertial control éo¢€;.) and control torqud’. to actual inertial forcef; and torquel.
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Fig. 4 depicts our attitude control system. The followingatiary justifies its initial structure.

Corollary 3: The proposed closed-loop attitude control syst®p,, : n¢ — w, ky, k. > 0 depicted in Fig. 4 is bounded
if H,:w—mnandH,,:I'. — w are passive.

Remark 7:Corollary 3 is a direct result of Theorem 1. As previouslycdissed there are two limitations to the above
assumptions. First, the use of Euler angles does not resalpassive mapping fdd,, : w — 7. Second, the desired control
torquesl’. # I' as previously discussed and illustrated in Fig. 5 whichudebk a lead compensator in order to recover as
much passivity as possible due to the lag in thrust from th&éomnso
The next corollary justifies the attitude control design.ickhwe can verify the conditions have been satisfied for aelarg
family of desired attitude set pointg;.

Corollary 4: The proposed closed-loop attitude control system,, : n4 — w, k, > 0 depicted in Fig. 4 is bounded if
the cascaded syste#dy.., H,, : ke, — n are inside the sectdr, co] andk,, satisfies the bounds given in Corollary 2 such
as whena; < 0,0 < k, < —1.

Remark 8:1t can be shown that any bounded system cascaded with arratdegill be bounded by the sectat, oo]
in which co < a < 0. Typically we find thatja| < 1 which allows for a reasonable value fby. Also, the integrator makes
it possible forn = ny at steady state.

B. Inertial Control System

In discussing stability for the inertial control system waélwenote the system which includes the gravity compensati
a-Schomp : kvjevI — VI in which

0
fIc:kuleuI - 0
mg

=

Fig. 6. Proposed inertial control system.
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Fig. 7. Simulink block to verify the sector bounds.

It should be obvious for the case when. = f; that Hycomp : kv, €0, — vr is passive. Which justifies the following
corollary.

Corollary 5: The proposed closed-loop inertial control systéf: : (4 — vr, kv, > 0 depicted in Fig. 6 is bounded if
the gravity compensated systef)comp : kv, €0, — vr IS passive sincq s vy — ( IS passive.
Finally when H gcomp : kv, €, — vr is cascaded with an integrator in which

T
C:/ vrdt,
0

we denote this cascaded systemFAs,m, [ : kv, €0, — ¢ and state the following corollary.

Corollary 6: The proposed closed-loop inertial control systéf : (4 — vr, kv, > 0 depicted in Fig. 6 is bounded if
the cascaded systef comp j : kv ey, — ¢ are inside the sectdr, oo] and k¢ satisfies the bounds given in Corollary 2
such as whem; < 0, 0 < k¢ < —1.

V. SIMULATION AND VERIFICATION

A. Verifying Sector Bounds From Simulation

The sector relations from the previously given corollag#iew verification of the sector bounds in a simulation eomi
ment. Definition 3 gives the required equation in terms ofitipit  and outputy = Hx and sector limitga, b].

lyr|3 — (a+b){y, x)r + abl|ar|3 <0

To find bounds fora given input signak: and output signal;, consider the following:
. 1 a+b
i { el = 20+ aler3} <o

= —(y.2)r +alur3 <0

= —oco<a< M (23)
e+ [zl

Fig. 7 shows a Simulink implementation of this concept. Rogrsums are kept fofjzr||% and (y, z)r over time. In
order to verify a theoretical bound, we must then find inpultéclv characterize the behavior of the system with respect to
parameters that affect those bounds.

The following set of figures illustrates a nominal test flightvhich yaw is varied from-= to =, furthermore under these
flight conditions sector stability is satisfied. In partiauk; = 1.5, k,, = 11.5,

Lo 1
H¢:keee — (s msude[m, oo] and

o 1
H, : kpe, —nis |nS|de[m,

Fig. 8 shows the inertial positiog with respect to time for the test flight. Figures 9,10, and &pict the corresponding
tracking error, Euler angles, and control thrust command
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Fig. 9. Corresponding tracking error for test flight.

VI. CONCLUSIONS

This article has shown an effective way to design effectiostml systems for quad-rotor aircraft. These are extrgmel
challenging vehicles to design controllers for; howevegrbbeaking the system down in to passive components by tigeati
inertial and attitude control separately allows us to peepfairly simple yet effective PD controllers. We also shdvead
verified that yaw can be controlled independently of the réesinertial position. Furthermore, we can use a basic lead
compensator to account for non-ideal lag effects due tosthBy limiting the command range for pitch and roll we can
naturally address actuator saturation issues. Systenlitstaian then be verified over a fairly large range of operaél
conditions by means of Corollary 2. Unfortunately, for regtirequency set-point conteht will not satisfy Corollary 2,
however the quad-rotor aircraft remains stable in simaitatiThis emphasizes that Corollary 2 is only necessary &iuilly
and points towards further investigation of recent mixedspaty and small gain stability results [22], [23].

[96]" (radians)
|

Fig. 10. Corresponding Euler angles for test flight.

.
[Ty Ty TegTeal (Newtons)

40
time (s)

Fig. 11. Corresponding control thrust commandsfor test flight.
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