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Abstract

This paper presents a formal method to design a digital inertial control system for quad-rotor aircraft. In particular,it
formalizes how to use approximate passive models in order tojustify the initial design of passive controllers. Fundamental
limits are discussed with this approach in particular how itrelates to the control of systems consisting of cascades of three
or more integrators in which input actuator saturation is present. Ultimately, two linear proportional derivative (PD) passive
controllers are proposed to be combined with a non-linear saturation element. It is also shown that yaw control can be performed
independently of the inertial controller, providing a great deal of maneuverability for quad-rotor aircraft. A corollary, based on
the sector stability theorem provided by Zames and later generalized for the multiple-input-output case by Willems, states the
allowable range ofk for the linear negative feedback controllerkI in which the dynamic systemH1 : x1 → y1 is inside the
sector[a1, b1], in which −∞ < a1, 0 < b1 ≤ ∞, andb1 > a1. This corollary provides a formal method to verify stability,
both in simulation and in operation for a given family of inertial set-points given to the quad-rotor inertial controller. The
controller is verified to perform exceptionally well when applied to a detailed model of the STARMAC, which includes blade
flapping dynamics.

I. INTRODUCTION

Quadrotor aircraft are agile aircraft which are lifted and propelled by four rotors. Unlike, traditional helicopters,they
do not require a tail-rotor to control yaw and can use four smaller fixed pitched rotors. By having smaller rotors, these
vehicles can achieve higher velocities before blade flapping effects begin to destabilize and limit performance. However,
without an attitude control system, it is difficult if not impossible for a person to successfully fly and maneuver such a
vehicle. Thus, most research has focused on small unmanned aerial vehicles in which advanced embedded control systems
could be developed to control these aircraft. In [1] a Lyapunov like control approach is used to develop a non-linear inertial
controller which relies on robust stability results involving control elements with nested saturation blocks [2], [3]. In [4]
it is shown that a simple, model-independent quaternion-based proportional derivative (PD) controller performs quite well
in controlling attitude as compared to other more involved non-linear controllers. In [5], image based visual servo control
algorithms are presented which exploit passivity-like properties of the dynamic model in order to derive Lyapunov control
algorithms which rely on backstepping techniques. All the above papers, and others contain fairly detailed models which
describe their overall control design. Most of the Lyapunovcontrol proposals typically are fairly computationally expensive
and it is not clear how robust they are to model uncertainties. In particular, all of the above papers appear to neglect a
significant time lag characteristic related to the motor thrust command and the corresponding thrust which results due to the
compression of air. With [1] as an exception, almost all papers neglect the limited control thrust due to motor saturation.
All these papers neglect effects such as sampling delay, quantization, etc. In order to address these effects we proposethat
Corollary 2 provides a formal manner toverify that the sector stability condition is satisfied for a given family of inertial
position inputs which can easily be verified through both simulation and field testing.

As depicted in Fig. 1 we propose to use two PD controllers (denoted as PD Cont. in Fig. 1). The most inner-loop controller
is a ’fast’ PD attitude controller in which attitude is described by the Euler anglesη. The attitude controller design is initially
justified assuming that the controller and dynamics are passive. Next, we further assume that the resulting attitude controller
is ’fast’ enough that we can close the loop with a second PD inertial controller in which the inertial position is denoted as
ζ. These initial assumptions allow us to propose a control system which will guarantee an overallLm2 -stable (or bounded)
system. However, this initial design will not work due to thefollowing limitations. First, there is a significant lag between
a rotor thrust command and the resulting thrust which is apparently due to the compression of the air columns above their
respective rotors [6]. In order to compensate for this lag weadd an additional lead compensator to minimize this effect
(denoted as Lead Comp. in Fig. 1). Second, the rotors can onlyapply a fixed range of thrust (denotedσ(T̄c) in which T̄c
denotes the corresponding thrust command vector) due to voltage limits to drive the motors which in turn drive the rotors.

Fig. 1. Proposed quad-rotor control system.
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It can be inferred from [1] that the relationship between roll (φ), pitch (θ), and thrustT to the corresponding desired inertial
position approximates to a cascade of four integrators subject to input actuator saturation. As noted in [2] it has been shown
that when the actuator input is subject to saturation it is impossible to implement a linear control law (such as using twoPD
controllers) in order to stabilize a system which consists of cascades of three or more integrators. However, by choosing to
limit the linear control output using appropriately designed saturation blocks there exists a linear control law such that global
stability can be achieved [2, Theorem 2.2]. This fundamental limitation essentially requires us to naturally limit therange
of attitude commands to our inner-loop PD controller in terms of pitch and roll to the interval[−π

4
, π

4
] using the saturation

function which is denoted asσc() in Fig. 1. In simulations, we noticed that control of our quad-rotor aircraft worked quite
well until the velocity reached a point in which significant rotor flapping effects began to destabilize the system. So we
chose to limit the maximum velocities by adding a position rate change limiter (depicted as ’Rate Limiter’ in Fig. 1) to
the desired inertial position set-point (denoted asζs). The rate change limiter includes an additional second-order pre-filter
applied toζs in order to minimize overshoot. A similar filter is applied tothe yaw set-pointψs as well. Other non-ideal
effects such as non-passive attitude coordinates (Euler angles η) quantization, single-precision floating point math errors,
and sample-rate delay can be addressed by using Corollary 2 to verify that the sector stability condition is satisfied over a
large family of inertial position inputs.

Section II introduces a few definitions regarding passivity, boundedness and corollaries in regards to stability. Section III
provides an appropriate model to describe the quad-rotor dynamics as it relates to statements in regards to designing a
controller for the quad-rotor. Section IV provides a description of our control implementation and corresponding stability
arguments which lead us to an overall feasible control design. Section V provides a detailed discussion of a detailed
simulation of our control system used to control a detailed model of the STARMAC quad-rotor helicopter which includes
highly non-linear blade-flapping effects [6]. Section VI presents our conclusions and points to future research directions.

II. PASSIVITY AND SECTORSTABILITY

In order to discuss the (boundedness) or stability properties of the quad-rotor with our proposed control system we recall
the following nomenclature, definitions and present Corollary 2 in order toverify stability. Let T be the set of time of
interest in whichT = R

+ for continuous time signals andT = Z
+ for discrete time signals. LetV be a linear spaceRm

and denote by the spaceH as all functionsu : T → V which satisfy the following:

‖u‖2
2 =

∫

∞

0

uT(t)u(t)dt <∞, (1)

for continuous time systems(Lm2 ), and

‖u‖2
2 =

∞
∑

0

uT(i)u(i) <∞, (2)

for discrete time systems(lm2 ). Similarly we will denote byHe as the extended space of functions asu : T → V by
introducing the truncation operator:

xT (t) =

{

x(t), t < T,

0, t ≥ T

for continuous time, and

xT (i) =

{

x(i), i < T,

0, i ≥ T

for discrete time. The extended spaceHe satisfies the following:

‖uT ‖
2
2 =

∫ T

0

uT(t)u(t)dt <∞; ∀T ∈ T (3)

for continuous time systems(Lm2e), and

‖uT ‖
2
2 =

T−1
∑

0

uT(i)u(i) <∞; ∀T ∈ T (4)

for discrete time systems(lm2e).
Definition 1: A dynamic systemH : He → He is Lm2 stable if

u ∈ Lm2 =⇒ Hu ∈ Lm2 . (5)

in which Hu = y corresponds to the dynamic output of the system, and the value of Hu at time t will be denoted as
Hu(t) = y(t).



4

Definition 2: A dynamic systemH : He → He is lm2 stable if

u ∈ lm2 =⇒ Hu ∈ lm2 . (6)

in whichHu = y corresponds to the dynamic output of the system, and the value ofHu at discrete timei will be denoted
asHu(i) = y(i).
The inner product over the interval[0, T ] for continuous time is denoted as follows:

〈y, u〉T =

∫ T

0

yT(t)u(t)dt

similarly the inner product over the discrete time interval{0, 1, . . . , T − 1} is denoted as follows:

〈y, u〉T =

T−1
∑

0

yT(i)u(i).

For simplicity of discussion we note the following equivalence for our inner-product space:

〈(Hu)T , uT 〉 = 〈(Hu)T , u〉 = 〈Hu, uT 〉 = 〈Hu, u〉T .

Definition 3: Assuming thatHu(0) = y(0) = 0, then a dynamic systemH : He → He is (strictly) inside the sector
[a, b], b > 0, a ≤ b, ǫ > 0 if

‖yT‖
2
2 − (a+ b)〈y, u〉T + ab‖uT‖

2
2 ≤ 0 (≤ −ǫ‖uT‖

2
2) (7)

Definition 4: Assuming thatHu(0) = y(0) = 0, then a dynamic systemH : He → He is (strictly) interior conic with
centerc ∈ R and radiusr, ǫ ≥ 0 if

‖(Hu− cu)T ‖ ≤ r‖uT ‖ (≤ (r + ǫ)‖uT ‖) (8)
Corollary 1: A dynamic systemH : He → He is (strictly) interior conic with centerc ∈ R and radiusr, ǫ ≥ 0 if and

only if H is (strictly) inside the sector[a, b] with a = c− r andb = c+ r.
Remark 1:Corollary 1 follows directly from [7, Theorem 2.8] and notedfor the single-input-output case in [8].
Property 1: Assume the following dynamic systemsH : u → y, H1 : u1 → y1 are inside their respective sectors

[a, b], [a1, b1], andk ≥ 0 is a constant then:

(i) I can be said to be inside[1, 1], [ǫ, 1] ∀0 < ǫ ≤ 1, or strictly inside[0, 1 + ǫ] ∀0 < ǫ ≤ 1.
(ii) kH is inside[ka, kb]

(iii) Sum Rule: (H +H1) is inside[a+ a1, b+ b1].
Remark 2:The first two properties are obvious, and follow along the properties listed for the single-input-output case

stated in [8, Section 4.2]. The Sum Rule is not at all obvious if you use the sector constraint, however as shown for the
single-input-output case in [8] we can establish that(H +H1) is interior conic with center1

2
(b + b1 + a+ a1) and radius

1

2
(b+ b1 − a− a1) which is equivalent to being inside the sector[a+ a1, b+ b1] (due to Corollary 1).

‖((H +H1)u−
1

2
((b + a) + (b1 + a1))u)T ‖ ≤

‖(Hu−
1

2
(b+ a)u)T ‖ + ‖(H1u−

1

2
(b1 + a1)u)T ‖

due to the triangle inequality.

≤
1

2
(b− a)‖uT ‖ +

1

2
(b1 − a1)‖uT ‖

≤
1

2
(b+ b1 − a− a1)‖uT ‖.

Definition 5: If we assume thatHu(0) = 0, then ifH is inside the sector:

i) [0,∞] it is a passive (positive) system
ii) [0, b], b <∞, it is strictly output passive

iii) [ǫ,∞], ǫ > 0 or strictly inside the sector[0,∞] it is strictly input passive
iv) [a, b], a > 0, b <∞ it is strictly input-output passive
v) [a, b], −∞ < a, b <∞ it is a bounded (lm2 -stable for discrete time, orLm2 -stable for continuous time) system.

Let us denote the state of a system asx ∈ R
n. Let the supply rater(u, y) have the following form:

r(u, y) = yT(t)u(t) −
1

(a+ b)
yT(t)y(t) −

ab

(a+ b)
uT(t)u(t) (9)
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Fig. 2. Bounded systemH : [uT

1
, uT

2
]T → [yT

1
, yT

2
]T.

for the continuous time case or

r(u, y) = yT(i)u(i) −
1

(a+ b)
yT(i)y(i) −

ab

(a+ b)
uT(i)u(i) (10)

for the discrete time case.
Remark 3:Let us assume that we can describe our systemH in terms of the following state-space equations:

ẋ(t) = f(x(t), u(t)), x(0) = xo, t > 0

y(t) = h(x, u(t))

for the continuous time case, or

x(i+ 1) = f(x(i), u(i)), x(0) = xo, i ≥ 0

y(i) = h(x(i), u(i))

for the discrete time case. Then if there exists astorage functionV (x) : R
n → R > 0, ∀x 6= 0 andV (0) = 0 in which

there exists ab > 0, a ≤ b and:

1) V̇ (x) ≤ r(u, y), andV̇ (x) is continuously differentiable, thenH is inside the sector[a, b] for the continuous time case.
2) V (x(i+ 1)) − V (x(i)) ≤ r(u, y), ∀i ∈ T , thenH is inside the sector[a, b] for the discrete time case.

The following Theorem serves as the basis for proposing the linear PD controllers depicted in Fig. 1. It is a weaker form
of the passivity theorem [9] which considers when the inputu2 6= 0. Parts of the theorem have appeared in [10]–[13], we
generalize it slightly by addingkI to the structure.

Theorem 1:Assume that the combined systemH : u1 → y1, u2 = 0 depicted in Fig. 2 has0 < k < ∞ and consists of
two dynamic systemsH1 : u1 → y1 andH2 : u2 → y2 which are either:

i) respectively inside the sector[a1, b1], a1 = 0, b1 < ∞ (H1 is strictly output passive) and inside the sector[0,∞] (H2

is passive) or
ii) respectively inside the sector[a1, b1], a1 = 0, b1 = ∞ (H1 is passive) and inside the sector[a2,∞] (H2 is strictly input

passive),

thenH : u1 → y1 is strictly output passive and bounded (lm2 stable for the discrete time case, orLm2 stable for the continuous
time case).

Proof: First we recall the property that the combined systemkH1 is inside the sector[ka1, kb1] and thate1 = u1 − y2
therefore

i)

〈y1, e1〉T ≥
1

kb1
‖(y1)T ‖

2
2

〈y1, u1〉T ≥ 〈y2, y1〉T +
1

kb1
‖(y1)T ‖

2
2

〈y1, u1〉T ≥
1

kb1
‖(y1)T ‖

2
2

in which the final (strictly output passive) inequality results sinceH2 is passive.
ii)

〈y1, e1〉T ≥ 0

〈y1, u1〉T ≥ 〈y2, y1〉T

〈y1, u1〉T ≥ a2‖(y1)T ‖
2
2

in which the final (strictly output passive) inequality results sinceH2 is strictly input passive.
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Fig. 3. UAV with depiction of inertial and body frames.

Remark 4:Theorem 1-i provides the basis for constructing asymptoticstabilizing controllers for systems which can be
described as a cascade of two passive systemsHc = H1H2. The first half of the systemH1 is rendered strictly output
passive by closing the inner-loop in a manner which satisfiesTheorem 1-ii, then the outer-loop is closed with the output of
H2.
Although, Theorem 1 provides a sound and intuitive basis to construct stable attitude control systems, it does not allowus
to provide a formal way to verify the effects of cascading a ’fast’ attitude controller with a slower PD inertial controller.
The following corollary provides a way to verify stability when passivity constraints of the closed loop system can not meet
the previously mentioned constraints. In particular we areconcerned with the case whenH1 is inside the sector[a1,∞] in
which −∞ < a1 < 0.

Corollary 2: Assume that the combined dynamic systemH : [uT

1 , u
T

2 ]T → [yT

1 , y
T

2 ]T depicted in Fig. 2 consists of two
dynamic systemsH1 : u1 → y1 andH2 : u2 → y2 which are respectively inside the sector[a1, b1] and strictly inside the
sector[0, 1 + ǫ], for all ǫ > 0. ThenH is bounded (Lm2 stable for the continuous time case orlm2 stable for the discrete
time case) if:

0 < k < −
1

a1

, if a1 < 0

0 < k <∞, if a1 = 0

−
1

a1

< k <∞, if a1 > 0.

Remark 5:Corollary 1 follows directly from [7, Corollary 4.3.3, case3] for the multi-input-output case and [8, Theorem 2a,
case 2] for the single-input-output case.

III. QUAD-ROTOR MODEL

Let I = {eN , eE , eD} (North-East-Down) denote the inertial frame, andA = {ex, ey, ez} denote a frame rigidly attached
to the aircraft as depicted in Fig. 3. Letζ denote inertial position,η denote the vector of Euler anglesηT =

[

φ, θ, ψ
]T

in which φ is the roll, θ is the pitch andψ is the yaw.R(η) ∈ SO(3) is the orthogonal rotation matrix (RTR = I) which
describes the orientation of the airframe in whichR(η) describes the rotation matrix from the inertial frame to thebody
frame as is the convention used in [14], [15]. The rotation matrix allows coordinates relative to the inertial frame suchas
inertial angular velocityωI to coordinates relative to the body frame such as the angularvelocity ω as follows

ωI = RT(η)ω.
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The standard equations of motion are as follows:

ζ̇ = vI

mv̇I = fI = mgeD − TRT(η)ez (11)

Iω̇ = −ω × Iω + Γ (12)

η̇ = J(η)ω. (13)

Which results in a cascade structure, where the inertial force (fI) depends on the orientation as described by the Euler angle
η. (13) relates the frame angular velocityω to the rate change of the Euler angleη̇ which depends on the frame control
torqueΓT = [γx, γy, γz]

T. In which each control torque is applied about each corresponding frame axis and positive torque
follows the right hand rule. This cascade structure is an overall non-passive structure which has many passive elements. The
overall approach we will use in designing a controller for this system will be to take advantage of the passive elements to
design a ‘fast’ passive attitude controller. The closed loop dynamics of the attitude controller shall be fast enough toignore
in order to implement a ‘slower’ passive inertial position controller which will command the desired attitude in order to
reach a desired inertial position relative to the origin of the inertial frame (ζT = [X,Y, Z]T). In which X is the relative
distance from the origin along theeE axis,Y is the relative distance from the origin along theeN axis, andZ is the relative
distance from the origin along theeD axis. Note thatZ < 0, Ż < 0 corresponds to the UAV above the inertial origin and
flying upward.

Using the shorthand notationcx = cosx andsx = sinx, the rotation matrixR(η) is related to the Euler angles as follows
[14, Section 5.6.2]:

R(η) =





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ cθsφ
cφsθcψ + sφsψ cφsθsψ − sφcψ cθcφ.



 (14)

The matrixJ(η) is the inverse of the Euler angle rates matrix[E′

123(η)]
−1 [14, Section 5.6.4] such that

J(η) =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



 . (15)

In order to determine the range forη in which J(η) > 0 we recall
Remark 6: [16, Remark 1] Any matrixA ∈ R

n×n is positive definite if and only if the symmetric part ofA (B =
1

2
(A+AT)) is positive definite.

and
Theorem 2: [16, Theorem 5] IfA ∈ R

n×n is symmetric, thenA is positive definite if and only if|Ai| > 0 for i = 1, . . . , n
in which | · | denotes the determinant andAi consists of the “intersection” of the firsti rows and columns ofA.
Using the above two tests we can numerically verify that:

J(η) > 0, φ, θ ∈ [−
29

90
π,

29

90
π], ψ ∈ [−π, π]. (16)

Therefore the relationship betweenJ(η) : ωf 7→ η̇ is passive for the range ofη given by (16). In order to determine
passivity properties relatingωf 7→ η is a much more challenging task. In simulations however when|ωfi| < 0.5 and the
pitch and roll are conservatively limited within the range of [−π

4
, π

4
] the sector bounds are around[−.004,∞] in simulation

which is slightly active as compared to a passive system which would be confined to the sector[0,∞] [8]. Other attitude
parametrization such as the modified Rodrigues parameters possess a passive relationship between angular velocity and
attitude which we plan to investigate in the future [12].

Completing our discussion on the UAV dynamics we note that the relationship between inertial acceleration, control thrusts
and the Euler angles is

mv̇I =





0
0
mg



 + fIc, fIc = −T





cφsθcψ + sφsψ
cφsθsψ − sφcψ

cθcφ



 (17)

in which fIc denotes the inertial control force,T =
∑4

i=1
Ti is the total thrust applied by each rotorTi, i ∈ {1, 2, 3, 4}.

Ignoring blade flapping effects, the control torquesΓ and total thrustT have the following relationship:








γx
γy
γz
T









=









0 −δ 0 δ

δ 0 −δ 0
−Kt Kt −Kt Kt

1 1 1 1

















T1

T2

T3

T4









(18)

in which δ is the distance from the center of gravity for each rotor of the UAV along thex andy body frame axis andKt

captures the relationship between rotor velocity and corresponding torques applied about thez-axis. As long asδKt 6= 0, the
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matrix is invertible and can be used to map a desired thrust commandT and control torque commandΓ to a corresponding
motor thrust commandTi. Since passivity is not effected by commanding a desired yawand yaw rateψ, ψ̇ we will allow
the user to command a desired yaw, while maintaining a desired inertial position (in order to rotate view of an on-board
camera for example). Therefore we choose to keep yaw as a freevariable to control and use a small angle assumption to
relate attitude to inertial force applied by the rotors.

fIc

−T
≈





0
0
1



 +





sψ cψ
−cψ sψ
0 0





[

φ

θ

]

. (19)

Therefore a desired inertial control commandfT

Ic = [fIcx, fIcy, fIcz], will be used to determine a desired inertial set point
as follows:

[

φset

θset

]

=

[

sψ −cψ
cψ sψ

]

[

fIcx

fIcz
fIcy

fIcz

]

. (20)

Finally, there is a non-ideal lag between motor thrust command Ti and the actual thrust applied by each rotor.

Tai(s) =
Ti(s)

τs+ 1
(21)

in which τ ≈ .1 seconds represents the thrust lag to each rotor and can not beneglected in designing the controller.

IV. CONTROL IMPLEMENTATION

A. Attitude Control System

Our overall goal is to design a ’fast’ attitude control system. There are numerous ways to approach this problem which
has been extensively studied throughout the years. Many have taken a Lyapunov (and/or) passivity based approach to control
attitude [1], [4], [13], [17]–[21]. We will follow the passivity based approach to control attitude by converting the mapping
H : Γ 7→ ω from a passive system (which we shall recall) to a strictly output passive system which is also inside sector
[0, 1]. By confiningH : Γ 7→ ω to the [0, 1] sectorHsop : kηe1 7→ ω we can close the loop on attitude usingη which does
not consist of a passive mappingHηω 7→ η. Simulations show thatHηω 7→ η is confined to the[−.004,∞] sector for a
fairly large range ofη andη̇, which unfortunately is not sufficient to find a gainkη to satisfy the sector constraints in which
Hη = H2, andkηHsop = H1 in [7, Corollary 4.3.3] (which is the multiple input-outputversion of [8, Theorem 2a]). In fact,
the weakest ’combined’ constraints which can be placed onH1 andH2 is thatH2 must be strictly input passive andH1

must essentially be passive. A more interesting case is whenH2 is strictly inside the sector[0, 1 + ǫ], ǫ > 0 (for example
H2 = I is strictly inside the sector[0, 1 + ǫ] for all ǫ > 0). WhenH2 is strictly inside the sector[0, 1 + ǫ] for ǫ > 0, then
boundedness is guaranteed for anyH1 which is inside the sector[ −1

1+ǫ
,∞].

Theorem 3:Any rigid body who’s inertia matrixI = IT > 0, İ = 0 and dynamics satisfy the Euler-Lagrange equation
(12) in whichω, Γ ∈ R

3 is a lossless passive systemH : Γ 7→ ω.
Proof: The total angular energy stored in the UAV is the kinetic energy

S(ω) =
1

2
ωTIω > 0, ω 6= 0

The rate change of kinetic energy has the following form

Ṡ(ω) = ωTIω̇. (22)

We note thatω× can be represented as a skew symmetric matrix in terms ofωT = [ω1, ω2, ω3]
T:

ω× =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 , (ω×)T = −ω×

Likewise,C(ω) = ω × I is also skew symmetric:

C(ω)T + C(ω) = IT((ω×)T + ω×)I = IT0I = 0.

Substituting (12) into (22) in terms ofC(ω) results in

Ṡ(ω) = ωTI(−I−1C(ω)ω + I−1Γ)

= ωTC(ω)ω + ωTΓ

= ωTΓ.

Therefore withS(ω) > 0, ∀ω 6= 0, and Ṡ(ω) = ωTΓ, then the UAV angular kinematics describe a lossless passive system
H : Γ 7→ ω.
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Fig. 4. Proposed attitude control system.

Fig. 5. Relationship between desired inertial control force (fIc) and control torqueΓc to actual inertial forcefI and torqueΓ.

Fig. 4 depicts our attitude control system. The following corollary justifies its initial structure.
Corollary 3: The proposed closed-loop attitude control systemHclω : ηd → ω, kη, kω > 0 depicted in Fig. 4 is bounded

if Hη : ω → η andHωc : Γc → ω are passive.
Remark 7:Corollary 3 is a direct result of Theorem 1. As previously discussed there are two limitations to the above

assumptions. First, the use of Euler angles does not result in a passive mapping forHη : ω → η. Second, the desired control
torquesΓc 6= Γ as previously discussed and illustrated in Fig. 5 which includes a lead compensator in order to recover as
much passivity as possible due to the lag in thrust from the motors.
The next corollary justifies the attitude control design, which we can verify the conditions have been satisfied for a large
family of desired attitude set pointsηd.

Corollary 4: The proposed closed-loop attitude control systemHclω : ηd → ω, kω > 0 depicted in Fig. 4 is bounded if
the cascaded systemHkωHη : kηeη → η are inside the sector[a,∞] andkη satisfies the bounds given in Corollary 2 such
as whena1 < 0, 0 < kη < − 1

a
.

Remark 8: It can be shown that any bounded system cascaded with an integrator will be bounded by the sector[a,∞]
in which ∞ ≤ a < 0. Typically we find that|a| < 1 which allows for a reasonable value forkη. Also, the integrator makes
it possible forη = ηd at steady state.

B. Inertial Control System

In discussing stability for the inertial control system we will denote the system which includes the gravity compensation
asHgcomp : kvI

evI
→ vI in which

fIc = kvI
evI

−





0
0
mg



 .

Fig. 6. Proposed inertial control system.
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Fig. 7. Simulink block to verify the sector bounds.

It should be obvious for the case whenfIc = fI that Hgcomp : kvI
evI

→ vI is passive. Which justifies the following
corollary.

Corollary 5: The proposed closed-loop inertial control systemHclζ : ζd → vI , kvI
> 0 depicted in Fig. 6 is bounded if

the gravity compensated systemHgcomp : kvI
evI

→ vI is passive since
∫

: vI → ζ is passive.
Finally whenHgcomp : kvI

evI
→ vI is cascaded with an integrator in which

ζ =

∫ T

0

vIdt,

we denote this cascaded system asHgcomp

∫

: kvI
evI

→ ζ and state the following corollary.
Corollary 6: The proposed closed-loop inertial control systemHclζ : ζd → vI , kvI

> 0 depicted in Fig. 6 is bounded if
the cascaded systemHgcomp

∫

: kvI
evI

→ ζ are inside the sector[a,∞] andkζ satisfies the bounds given in Corollary 2
such as whena1 < 0, 0 < kζ < − 1

a
.

V. SIMULATION AND VERIFICATION

A. Verifying Sector Bounds From Simulation

The sector relations from the previously given corollariesallow verification of the sector bounds in a simulation environ-
ment. Definition 3 gives the required equation in terms of theinput x and outputy = Hx and sector limits[a, b].

‖yT‖
2
2 − (a+ b)〈y, x〉T + ab‖xT ‖

2
2 ≤ 0

To find bounds fora given input signalx and output signaly, consider the following:

lim
b→∞

{

1

b
‖yT ‖

2
2 −

a+ b

b
〈y, x〉T + a‖xT ‖

2
2

}

≤ 0

⇒ −〈y, x〉T + a‖uT ‖
2
2 ≤ 0

⇒ −∞ < a ≤
〈y, x〉T

ε+ ‖xT ‖2
2

(23)

Fig. 7 shows a Simulink implementation of this concept. Running sums are kept for‖xT ‖2
2 and 〈y, x〉T over time. In

order to verify a theoretical bound, we must then find inputs which characterize the behavior of the system with respect to
parameters that affect those bounds.

The following set of figures illustrates a nominal test flightin which yaw is varied from−π to π, furthermore under these
flight conditions sector stability is satisfied. In particular kζ = 1.5, kη = 11.5,

Hζ : kζeζ → ζ is inside[
1

1.501
,∞] and

Hη : kηeη → η is inside[
1

25.78
,∞].

Fig. 8 shows the inertial positionζ with respect to time for the test flight. Figures 9,10, and 11 depict the corresponding
tracking error, Euler angles, and control thrust commandTc.
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Fig. 8. Test flight which satisfies sector stability.
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Fig. 9. Corresponding tracking error for test flight.

VI. CONCLUSIONS

This article has shown an effective way to design effective control systems for quad-rotor aircraft. These are extremely
challenging vehicles to design controllers for; however, by breaking the system down in to passive components by treating
inertial and attitude control separately allows us to propose fairly simple yet effective PD controllers. We also showed and
verified that yaw can be controlled independently of the desired inertial position. Furthermore, we can use a basic lead
compensator to account for non-ideal lag effects due to thrust. By limiting the command range for pitch and roll we can
naturally address actuator saturation issues. System stability can then be verified over a fairly large range of operational
conditions by means of Corollary 2. Unfortunately, for higher frequency set-point contentkζ will not satisfy Corollary 2,
however the quad-rotor aircraft remains stable in simulation. This emphasizes that Corollary 2 is only necessary for stability
and points towards further investigation of recent mixed passivity and small gain stability results [22], [23].
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Fig. 10. Corresponding Euler angles for test flight.

10 20 30 40 50 60 70 80

3.8

4

4.2

4.4

4.6

4.8

time (s)

[T
c1

,T
c2

,T
c3

,T
c4

]T
 (

N
ew

to
ns

)

 

 

T
c1

(t)

T
c2

(t)

T
c3

(t)

T
c4

(t)

Fig. 11. Corresponding control thrust commandsTc for test flight.



12

REFERENCES

[1] P. Castillo, A. Dzul, and R. Lozano, “Real-time stabilization and tracking of a four-rotor mini rotorcraft,”Control Systems Technology, IEEE
Transactions on, vol. 12, no. 4, pp. 510–516, 2004.

[2] A. Teel, “Global stabilization and restricted trackingfor multiple integrators with bounded controls,”Systems & Control Letters, vol. 18, no. 3, pp.
165–171, 1992.

[3] ——, “A nonlinear small gain theorem for the analysis of control systemswith saturation,”Automatic Control, IEEE Transactions on, vol. 41, no. 9,
pp. 1256–1270, 1996.

[4] A. Tayebi and S. McGilvray, “Attitude stabilization of aVTOL quadrotor aircraft,”Control Systems Technology, IEEE Transactions on, vol. 14, no. 3,
pp. 562–571, 2006.

[5] T. Hamel and R. Mahony, “Image based visual servo controlfor a class of aerial robotic systems,”Automatica, vol. 43, no. 11, pp. 1975–1983, 2007.
[6] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Quadrotor helicopter flight dynamics and control: Theoryand experiment,”Collection

of Technical Papers - AIAA Guidance, Navigation, and Control Conference 2007, vol. 2, pp. 1670 – 1689, 2007.
[7] J. Willems, “The Analysis of Feedback Systems, volume 62of Research Monographs,” 1971.
[8] G. Zames, “On the input-output stability of time-varying nonlinear feedback systems. i. conditions derived using concepts of loop gain, conicity and

positivity,” IEEE Transactions on Automatic Control, vol. AC-11, no. 2, pp. 228 – 238, 1966.
[9] C. A. Desoer and M. Vidyasagar,Feedback Systems: Input-Output Properties. Orlando, FL, USA: Academic Press, Inc., 1975.

[10] A. van der Schaft,L2-Gain and Passivity in Nonlinear Control. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1999.
[11] N. Kottenstette and P. J. Antsaklis, “Stable digital control networks for continuous passive plants subject to delays and data dropouts,”2007 46th

IEEE Conference on Decision and Control (CDC), vol. to appear, pp. 1 – 8, 2007.
[12] P. Tsiotras, “Further passivity results for the attitude control problem,”Automatic Control, IEEE Transactions on, vol. 43, no. 11, pp. 1597–1600,

1998.
[13] F. Lizarralde and J. Wen, “Attitude control without angular velocity measurement: a passivityapproach,”Automatic Control, IEEE Transactions on,

vol. 41, no. 3, pp. 468–472, 1996.
[14] J. Diebel, “Representing Attitude: Euler Angles, UnitQuaternions, and Rotation Vectors,” Technical report, Stanford University, California, USA,

Tech. Rep., 2006.
[15] L. Mangiacasale,Flight Mechanics of a [mu]-airplane: With a Matlab SimulinkHelper. Edizioni Libreria CLUP, 1998.
[16] C. Johnson, “Positive definite matrices,”Amer. Math. Monthly, vol. 77, no. 3, pp. 259–264, 1970.
[17] B. Wie, H. Weiss, and A. Arapostathis, “Quaternion feedback regulator for spacecraft eigenaxis rotations,”Journal of Guidance, Control, and

Dynamics, vol. 12, no. 3, pp. 375 – 380, 1989, quaternion Feedback Regulator;Spacecraft Eigenaxis Rotations;Euler’s EigenaxisRotation;Quaternion
Feedback Stability Analysis;.

[18] J. Wen and K. Kreutz-Delgado, “The attitude control problem,” Automatic Control, IEEE Transactions on, vol. 36, no. 10, pp. 1148–1162, 1991.
[19] O. Egeland and J. Godhavn, “Passivity-based adaptive attitude control of a rigid spacecraft,”Automatic Control, IEEE Transactions on, vol. 39, no. 4,

pp. 842–846, 1994.
[20] O. Fjellstad and T. Fossen, “Position and attitude tracking of AUV’s: a quaternion feedbackapproach,”Oceanic Engineering, IEEE Journal of, vol. 19,

no. 4, pp. 512–518, 1994.
[21] B. Costic, D. Dawson, M. De Queiroz, and V. Kapila, “Quaternion-based adaptive attitude tracking controller without velocity measurements,”Journal

of Guidance, Control, and Dynamics, vol. 24, no. 6, pp. 1214–1222, 2000.
[22] W. Griggs, B. Anderson, and A. Lanzon, “A mixed small gain and passivity theorem in the frequency domain,”Systems & Control Letters, vol. 56,

no. 9-10, pp. 596–602, 2007.
[23] W. Griggs, B. Anderson, A. Lanzon, and R. M.C., “Interconnections of nonlinear systems with ”mixed” small gain and passivity properties and

associated input-output stability results,”Systems & Control Letters, vol. to appear, pp. 1–17, 2009.


