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Abstract— This paper presents a formal method to design
a digital inertial control system for quad-rotor aircraft. In
particular, it formalizes how to use approximate passive models
in order to justify the initial design of passive controllers. Fun-
damental limits are discussed with this approach – in particular,
how it relates to the control of systems consisting of cascades
of three or more integrators in which input actuator saturation
is present. Ultimately, two linear proportional derivative (PD)
passive controllers are proposed to be combined with a non-
linear saturation element. It is also shown that yaw control can
be performed independently of the inertial controller, providing
a great deal of maneuverability for quad-rotor aircraft. A
corollary, based on the sector stability theorem provided by
Zames and later generalized for the multiple-input-output case
by Willems, provides the allowable range ofk for the linear
negative feedback controllerkI in which the dynamic system
H1 : x1 → y1 is inside the sector[a1, b1], in which −∞ < a1,
0 < b1 ≤ ∞, and b1 > a1. This corollary provides a formal
method to verify stability, both in simulation and in operation
for a given family of inertial set-points given to the quad-
rotor inertial controller. The controller is shown to perform
exceptionally well when simulated with a detailed model of the
STARMAC, which includes blade flapping dynamics.

I. INTRODUCTION

Quadrotor helicopters are agile aircraft which are lifted
and propelled by four rotors. Unlike traditional helicopters,
they do not require a tail-rotor to control yaw and can use
four smaller fixed-pitch rotors. Smaller rotors allow these
vehicles to achieve higher velocities before blade flapping
effects begin to introduce instability and limit performance.
However, without an attitude control system it is difficult if
not impossible for a human to successfully fly and maneuver
such a vehicle. Thus, most research has focused on small
unmanned aerial vehicles in which advanced embedded
control systems could be developed to control these aircraft.
In [1] a Lyapunov-like control approach is used to develop a
non-linear inertial controller which relies on robust stability
results involving control elements with nested saturation
blocks [2], [3]. [4] shows that a simple, model-independent
quaternion-based proportional derivative (PD) controller per-
forms quite well in controlling attitude as compared to
other more involved non-linear controllers. In [5], image
based visual servo control algorithms are presented which
exploit passivity-like properties of the dynamic model in
order to derive Lyapunov control algorithms which rely on
backstepping techniques. All the above papers, and others
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Fig. 1. Proposed quad-rotor control system.

contain fairly detailed models which guide their overall con-
trol design. Most of the Lyapunov control proposals typically
are fairly computationally expensive and it is not clear how
robust they are to model uncertainties. In particular, all of
the above papers appear to neglect a significant time lag
characteristic related to the motor thrust command and the
corresponding thrust which results due to the accelerationof
the air column. With [1] as an exception, almost all other
model descriptions neglect the limited control thrust due to
motor saturation. More significant all model descriptions in
previous litterature neglect digital platform implementation
effects such as sampling delay, quantization, etc. In orderto
address these effects we propose that Corollary 2 provides a
formal manner toverify that the sector stability condition
is satisfied for a given family of inertial position inputs
which can easily be verified through both simulation and
field testing.

As depicted in Fig. 1 we propose to use two PD con-
trollers (denoted as PD Cont. in Fig. 1). The inner-most
loop controller is a ’fast’ PD attitude controller in which
attitude is described by Euler anglesη. The attitude controller
design is initially justified by assuming that the controller
and dynamics are passive. Next, we further assume that the
resulting attitude controller is ’fast’ enough that we can close
the loop with a second PD inertial controller (the inertial
position is denotedζ). These initial assumptions allow us
to propose a control system which will guarantee an overall
Lm2 -stable (or bounded) system. However, this initial design
will not work due to the following limitations: First, there
is a significant lag between rotor thrust commands and the
resulting change in thrust. The lag is apparently due to the
acceleration of the air columns above their respective rotors
[6]. In order to compensate for this lag we add an additional
lead compensator to minimize this effect (denoted as Lead
Comp. in Fig. 1). Second, the rotors can only apply a fixed
range of thrust (denotedσ(T̄c) in which T̄c denotes the
corresponding thrust command vector) due to motor driver
voltage limits. It can be inferred from [1] that the relationship
between roll (φ), pitch (θ), and thrustT to the corresponding
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desired inertial position can be approximated as a cascade
of four integrators subject to input actuator saturation. [2]
shows that a saturated actuator input makes it impossible
to implement a linear control law (such as using two PD
controllers) in order to globally stabilize a system which
consists of cascades of three or more integrators. However,
by choosing to limit the linear control output by using
appropriately designed saturation blocks there does exista
linear control law such that global stability can be achieved
[2, Theorem 2.2]. This fundamental limitation essentially
requires us to naturally limit the range of attitude commands
to our inner-loop PD controller in terms of pitch and roll
to the interval[−π

4 ,
π
4 ] using the saturation function which

is denoted asσc() in Fig. 1. In simulations, the control of
our quad-rotor aircraft worked quite well until the velocity
reached a point in which significant rotor flapping effects
began to destabilize the system. We chose to limit the
maximum velocities by adding a position rate change limiter
(depicted as ’Rate Limiter’ in Fig. 1) to the desired inertial
position set-point (denoted asζs). The rate change limiter
includes an additional second-order pre-filter applied toζs
in order to minimize overshoot. A similar filter is applied to
the yaw set-pointψs as well. Other non-ideal effects – non-
passive attitude coordinates (Euler anglesη), quantization,
single-precision floating point math errors, and sample-rate
delay can be addressed by using Corollary 2 toverify that
the sector stability condition is satisfied over a large family
of inertial position inputs.

Section II introduces a few definitions regarding passivity,
boundedness, and corollaries regarding stability. Section III
provides an appropriate model to describe the quad-rotor
dynamics as it relates to statements regarding the design
of a controller for the quad-rotor. Section IV provides a
description of our control implementation and corresponding
stability arguments which lead us to an overall feasible
control design. Section V provides a detailed discussion of
a detailed simulation of our control system used to control
a detailed model of the STARMAC quad-rotor helicopter
which includes highly non-linear blade-flapping effects [6].
Section VI presents our conclusions and points to future
research directions.

II. PASSIVITY AND SECTORSTABILITY

In order to discuss the (boundedness) or stability properties
of the quad-rotor with our proposed control system we
recall the following nomenclature, definitions and present
Corollary 2 in order toverify stability. Let T be the set
of times of interest in whichT = R

+ for continuous-time
signals andT = Z

+ for discrete-time signals. LetV be a
linear spaceRm and denote asH the space of all functions
u : T → V which satisfy the following:

‖u‖2
2 =

∫

∞

0

uT(t)u(t)dt <∞, (1)

for continuous-time systems(Lm2 ), and

‖u‖2
2 =

∞
∑

0

uT(i)u(i) <∞, (2)

for discrete-time systems(lm2 ). Similarly, we will denote
by He the extended space of functions (u : T → V) by
introducing the truncation operator:

xT (t) =

{

x(t), t < T,

0, t ≥ T

for continuous time, and

xT (i) =

{

x(i), i < T,

0, i ≥ T

for discrete time. The extended spaceHe satisfies the fol-
lowing:

‖uT ‖
2
2 =

∫ T

0

uT(t)u(t)dt <∞; ∀T ∈ T (3)

for continuous time systems(Lm2e), and

‖uT ‖
2
2 =

T−1
∑

0

uT(i)u(i) <∞; ∀T ∈ T (4)

for discrete time systems(lm2e).
Definition 1: A dynamic systemH : He → He is Lm2

stable if
u ∈ Lm2 =⇒ Hu ∈ Lm2 . (5)

in which Hu = y corresponds to the dynamic output of the
system, and the value ofHu at time t will be denoted as
Hu(t) = y(t).

Definition 2: A dynamic systemH : He → He is lm2
stable if

u ∈ lm2 =⇒ Hu ∈ lm2 . (6)

in which Hu = y corresponds to the dynamic output of
the system, and the value ofHu at discrete timei will be
denoted asHu(i) = y(i).
The inner product over the interval[0, T ] for continuous time
is denoted as follows:

〈y, u〉T =

∫ T

0

yT(t)u(t)dt

similarly the inner product over the discrete time interval
{0, 1, . . . , T − 1} is denoted as follows:

〈y, u〉T =

T−1
∑

0

yT(i)u(i).

For simplicity of discussion we note the following equiva-
lence for our inner-product space:

〈(Hu)T , uT 〉 = 〈(Hu)T , u〉 = 〈Hu, uT 〉 = 〈Hu, u〉T .

Definition 3: Assuming thatHu(0) = y(0) = 0, then a
dynamic systemH : He → He is (strictly) inside the sector
[a, b], b > 0, a ≤ b, ǫ > 0 if

‖yT ‖
2
2 − (a+ b)〈y, u〉T + ab‖uT ‖

2
2 ≤ 0 (≤ −ǫ‖uT ‖

2
2) (7)

Definition 4: Assuming thatHu(0) = y(0) = 0, then a
dynamic systemH : He → He is (strictly) interior conic
with centerc ∈ R and radiusr, ǫ ≥ 0 if

‖(Hu− cu)T ‖ ≤ r‖uT ‖ (≤ (r + ǫ)‖uT ‖) (8)
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Corollary 1: A dynamic systemH : He → He is
(strictly) interior conic with centerc ∈ R and radiusr, ǫ ≥ 0
if and only if H is (strictly) inside the sector[a, b] with
a = c− r andb = c+ r (c = a+b

2 , r = b−a
2 ).

Remark 1:Corollary 1 follows directly from [7, Theo-
rem 2.8] and originally developed for the single-input-output
case in [8].

Property 1: Assume the following dynamic systemsH :
u → y, H1 : u1 → y1 are inside their respective sectors
[a, b], [a1, b1], andk ≥ 0 is a constant then:

(i) I can be said to be inside[1, 1], [ǫ, 1] ∀0 < ǫ ≤ 1, or
strictly inside[0, 1 + ǫ] ∀0 < ǫ ≤ 1.

(ii) kH is inside[ka, kb]

(iii) Sum Rule: (H +H1) is inside[a+ a1, b+ b1].
Remark 2:The first two properties are obvious, and fol-

low the properties listed for the single-input-output case
stated in [8, Section 4.2]. The Sum Rule is not at all obvious
when using the sector constraint, however as shown for the
single-input-output case in [8] we can establish that(H+H1)
is interior conic with center12 (b + b1 + a + a1) and radius
1
2 (b + b1 − a − a1) which is equivalent to being inside the
sector[a+ a1, b+ b1] (due to Corollary 1).

‖((H +H1)u−
1

2
((b+ a) + (b1 + a1))u)T ‖ ≤

‖(Hu−
1

2
(b+ a)u)T ‖ + ‖(H1u−

1

2
(b1 + a1)u)T ‖

due to the triangle inequality.

≤
1

2
(b− a)‖uT ‖ +

1

2
(b1 − a1)‖uT ‖

≤
1

2
(b+ b1 − a− a1)‖uT ‖.

The second to last inequality results when we recall that
H(1) is interior conic with centerc(1) =

a(1)+b(1)
2 and radius

r(1) =
b(1)−a(1)

2 .
Definition 5: If we assume thatHu(0) = 0, then ifH is

inside the sector:

i) [0,∞] it is a passive (positive) system
ii) [0, b], b <∞, it is strictly output passive
iii) [ǫ,∞], ǫ > 0 or strictly inside the sector[0,∞] it is

strictly input passive
iv) [a, b], a > 0, b <∞ it is strictly input-output passive
v) [a, b], −∞ < a, b < ∞ it is a bounded (lm2 -stable for

discrete time, orLm2 -stable for continuous time) system.
Let us denote the state of a system asx ∈ R

n. Let the supply
rater(u, y) have the following form:

r(u, y) = yT(t)u(t)−
1

(a+ b)
yT(t)y(t)−

ab

(a+ b)
uT(t)u(t)

(9)
for the continuous time case or

r(u, y) = yT(i)u(i)−
1

(a+ b)
yT(i)y(i)−

ab

(a+ b)
uT(i)u(i)

(10)
for the discrete time case.

Fig. 2. Bounded systemH : [uT

1
, uT

2
]T → [yT

1
, yT

2
]T.

Remark 3: In a slightly less general manner as was done
in [9], let us assume that we can describe our systemH in
terms of the following state-space equations:

ẋ(t) = f(x(t), u(t)), x(0) = xo, t > 0

y(t) = h(x, u(t))

for the continuous-time case, or

x(i+ 1) = f(x(i), u(i)), x(0) = xo, i ≥ 0

y(i) = h(x(i), u(i))

for the discrete-time case. Then if there exists astorage
function V (x) : R

n → R > 0, ∀x 6= 0 and V (0) = 0
in which there exists ab > 0, a ≤ b and:

1) V̇ (x) ≤ r(u, y), and V̇ (x) is continuously differ-
entiable, thenH is inside the sector[a, b] for the
continuous-time case.

2) V (x(i + 1)) − V (x(i)) ≤ r(u, y), ∀i ∈ T , thenH is
inside the sector[a, b] for the discrete-time case.

The following Theorem serves as the basis for proposing the
linear PD controllers depicted in Fig. 1. It is a weaker form
of the passivity theorem [10] which considers when the input
u2 6= 0. Parts of the theorem have appeared in [11]–[14], we
generalize it slightly by addingkI to the structure.

Theorem 1:Assume that the combined systemH : u1 →
y1, u2 = 0 depicted in Fig. 2 has0 < k < ∞ and consists
of two dynamic systemsH1 : u1 → y1 andH2 : u2 → y2
which are either:

i) respectively inside the sector[a1, b1], a1 = 0, b1 < ∞
(H1 is strictly output passive) and inside the sector
[0,∞] (H2 is passive) or

ii) respectively inside the sector[a1, b1], a1 = 0, b1 = ∞
(H1 is passive) and inside the sector[a2,∞] (H2 is
strictly input passive),

thenH : u1 → y1 is strictly output passive and bounded
(lm2 stable for the discrete time case, orLm2 stable for the
continuous time case).

Proof: First we recall the property that the combined
systemkH1 is inside the sector[ka1, kb1] and thate1 =
u1 − y2 therefore

i)

〈y1, e1〉T ≥
1

kb1
‖(y1)T ‖

2
2

〈y1, u1〉T ≥ 〈y2, y1〉T +
1

kb1
‖(y1)T ‖

2
2

〈y1, u1〉T ≥
1

kb1
‖(y1)T ‖

2
2
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in which the final (strictly output passive) inequality
results sinceH2 is passive.

ii)

〈y1, e1〉T ≥ 0

〈y1, u1〉T ≥ 〈y2, y1〉T

〈y1, u1〉T ≥ a2‖(y1)T ‖
2
2

in which the final (strictly output passive) inequality
results sinceH2 is strictly input passive.

Remark 4:Theorem 1-i provides the basis for construct-
ing asymptotic stabilizing controllers for systems which can
be described as a cascade of two passive systemsHc =
H1H2. The first half of the systemH1 is rendered strictly
output passive by closing the inner-loop in a manner which
satisfies Theorem 1-ii, then the outer-loop is closed with the
output ofH2.
Although, Theorem 1 provides a sound and intuitive basis to
construct stable attitude control systems, it does not allow us
to provide a formal way to verify the effects of cascading a
’fast’ attitude controller with a slower PD inertial controller.
The following corollary provides a way to verify stability
when passivity constraints of the closed loop system can not
meet the previously mentioned constraints. In particular we
are concerned with the case whenH1 is inside the sector
[a1,∞] in which −∞ < a1 < 0.

Corollary 2: Assume that the combined dynamic system
H : [uT

1 , u
T

2 ]T → [yT

1 , y
T

2 ]T depicted in Fig. 2 consists of
two dynamic systemsH1 : u1 → y1 andH2 : u2 → y2
which are respectively inside the sector[a1, b1] and strictly
inside the sector[0, 1+ǫ], for all ǫ > 0. ThenH is bounded
(Lm2 stable for the continuous time case orlm2 stable for the
discrete time case) if:

0 < k < −
1

a1
, if a1 < 0

0 < k <∞, if a1 = 0

−
1

a1
< k <∞, if a1 > 0.

Remark 5:Corollary 1 follows directly from [7, Corol-
lary 4.3.3, case 3] for the multi-input-output case and [8,
Theorem 2a, case 2] for the single-input-output case.

III. QUAD-ROTORMODEL

Let I = {eN , eE , eD} (North-East-Down) denote the
inertial frame, andA = {ex, ey, ez} denote a frame rigidly
attached to the aircraft as depicted in Fig. 3. Letζ denote
inertial position,η denote the vector of Euler anglesηT =
[

φ, θ, ψ
]T

in which φ is the roll, θ is the pitch and
ψ is the yaw.R(η) ∈ SO(3) is the orthogonal rotation
matrix (RTR = I) which describes the orientation of the
airframe in whichR(η) describes the rotation matrix from
the inertial frame to the body frame as is the convention used
in [15], [16]. The rotation matrix allows coordinates relative
to the inertial frame such as inertial angular velocityωI to

Fig. 3. UAV with depiction of inertial and body frames.

coordinates relative to the body frame such as the angular
velocity ω as follows

ωI = RT(η)ω.

The standard equations of motion are as follows:

ζ̇ = vI

mv̇I = fI = mgeD − TRT(η)ez (11)

Iω̇ = −ω × Iω + Γ (12)

η̇ = J(η)ω. (13)

Which results in a cascade structure, where the inertial force
(fI ) depends on the orientation as described by the Euler
angleη. (13) relates the frame angular velocityω to the rate
change of the Euler anglėη which depends on the frame
control torqueΓT = [γx, γy, γz]

T. Each control torque is
applied about each corresponding frame axis and positive
torque follows the right hand rule. This cascade structure
is an overall non-passive structure which has many passive
elements. The overall approach in designing a controller for
this system will be to take advantage of the passive elements
to design a ‘fast’ passive attitude controller. The closed-
loop dynamics of the attitude controller will be fast enough
to ignore in order to implement a ‘slower’ passive inertial
position controller which will command the desired attitude
in order to reach a desired inertial position relative to the
origin of the inertial frame (ζT = [X,Y,Z]T). In the inertial
frame,X is the relative distance from the origin along the
eE axis,Y is the relative distance from the origin along the
eN axis, andZ is the relative distance from the origin along
theeD axis. Note thatZ < 0, Ż < 0 corresponds to the UAV
above the inertial origin and flying upward.

Using the shorthand notationcx = cosx and sx = sinx,
the rotation matrixR(η) is related to the Euler angles as
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follows [15, Section 5.6.2]:

R(η) =





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ cθsφ
cφsθcψ + sφsψ cφsθsψ − sφcψ cθcφ.



 (14)

The matrixJ(η) is the inverse of the Euler angle rates matrix
[E′

123(η)]
−1 [15, Section 5.6.4] such that

J(η) =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



 . (15)

In order to determine the range forη in which J(η) > 0 we
recall

Remark 6: [17, Remark 1] Any matrixA ∈ R
n×n is

positive definite if and only if the symmetric part ofA (B =
1
2 (A+AT)) is positive definite.
and

Theorem 2: [17, Theorem 5] IfA ∈ R
n×n is symmetric,

thenA is positive definite if and only if|Ai| > 0 for i =
1, . . . , n in which |·| denotes the determinant andAi consists
of the “intersection” of the firsti rows and columns ofA.
Using the above two tests we can numerically verify that:

J(η) > 0, φ, θ ∈ [−
29

90
π,

29

90
π], ψ ∈ [−π, π]. (16)

Therefore the relationship betweenJ(η) : ωf 7→ η̇ is passive
for the range ofη given by (16). Determining passivity
properties relatingωf 7→ η is a much more challenging
task. However, in simulations where|ωfi| < 0.5, and the
pitch and roll are conservatively limited within the range of
[−π

4 ,
π
4 ] the sector bounds are near[−.004,∞] – which is

slightly active when compared to a passive system which
would be confined to the sector[0,∞] [8]. Other attitude
parametrization such as the modified Rodrigues parameters
possess a passive relationship between angular velocity and
attitude which we plan to investigate in the future [13].

Completing our discussion on the UAV dynamics we note
that the relationship between inertial acceleration, control
thrusts, and the Euler angles is

mv̇I =





0
0
mg



 + fIc, fIc = −T





cφsθcψ + sφsψ
cφsθsψ − sφcψ

cθcφ



 (17)

in which fIc denotes the inertial control force,T =
∑4
i=1 Ti

is the total thrust applied by each rotorTi, i ∈ {1, 2, 3, 4}.
Ignoring blade flapping effects, the control torquesΓ and
total thrustT have the following relationship:









γx
γy
γz
T









=









0 −δ 0 δ

δ 0 −δ 0
−Kt Kt −Kt Kt

1 1 1 1

















T1

T2

T3

T4









(18)

in which δ is the distance from the center of gravity for
each rotor of the UAV along thex and y body frame axis
andKt captures the relationship between rotor velocity and
corresponding torques applied about thez-axis. As long as
δKt 6= 0, the matrix is invertible and can be used to map a
desired thrust commandT and control torque commandΓ to

a corresponding motor thrust commandTi. Since passivity
is not affected by commanding a desired yaw and yaw rate
ψ, ψ̇ we will allow the user to command a desired yaw while
maintaining a desired inertial position (e.g, in order to rotate
the view of an on-board camera). Therefore we choose to
keep yaw as a free variable to control and use a small-angle
assumption to relate attitude to inertial force applied by the
rotors.

fIc

−T
≈





0
0
1



 +





sψ cψ
−cψ sψ
0 0





[

φ

θ

]

. (19)

Therefore a desired inertial control commandfT

Ic =
[fIcx, fIcy, fIcz], will be used to determine a desired inertial
set point as follows:

[

φset

θset

]

=

[

sψ −cψ
cψ sψ

]

[

fIcx

fIcz
fIcy

fIcz

]

. (20)

Finally, there is a non-ideal lag between motor thrust
commandTi and the actual thrust applied by each rotor.

Tai(s) =
Ti(s)

τs+ 1
(21)

in which τ ≈ .1 seconds represents the thrust lag to each
rotor and can not be neglected in designing the controller.

IV. CONTROL IMPLEMENTATION

A. Attitude Control System

Our overall goal is to design a ’fast’ attitude control
system. There are numerous ways to approach this problem,
which has been extensively studied throughout the years.
Many have taken a Lyapunov (and/or) passivity based ap-
proach for controlling attitude [1], [4], [14], [18]–[22].We
will follow the passivity-based approach to control attitude
by converting the mappingH : Γ 7→ ω from a passive system
(which we shall recall) to a strictly output passive system
which is also inside sector[0, 1]. By confiningH : Γ 7→ ω

to the [0, 1] sectorHsop : kηe1 7→ ω we can close the loop
on attitude usingη, which does not consist of a passive
mappingHηω 7→ η. Simulations show thatHηω 7→ η is
confined to the[−.004,∞] sector for a fairly large range
of η and η̇, which unfortunately is not sufficient to find a
gain kη to satisfy the sector constraints in whichHη = H2,
andkηHsop = H1 in [7, Corollary 4.3.3] (this is the multiple
input-output version of [8, Theorem 2a]). In fact, the weakest
’combined’ constraints which can be placed onH1 and
H2 is thatH2 must be strictly input passive andH1 must
essentially be passive. A more interesting case is whenH2

is strictly inside the sector[0, 1 + ǫ], ǫ > 0 (for example
H2 = I is strictly inside the sector[0, 1 + ǫ] for all ǫ > 0).
WhenH2 is strictly inside the sector[0, 1 + ǫ] for ǫ > 0,
then boundedness is guaranteed for anyH1 which is inside
the sector[ −1

1+ǫ ,∞].
Theorem 3:Any rigid body with inertia matrixI = IT >

0, İ = 0 and dynamics satisfying the Euler-Lagrange
equation (12) (in whichω, Γ ∈ R

3) is a lossless passive
systemH : Γ 7→ ω.
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Fig. 4. Proposed attitude control system.

Proof: The total angular energy stored in the UAV is
the kinetic energy

S(ω) =
1

2
ωTIω > 0, ω 6= 0

The rate change of kinetic energy has the following form

Ṡ(ω) = ωTIω̇. (22)

We note thatω× can be represented as a skew symmetric
matrix in terms ofωT = [ω1, ω2, ω3]

T:

ω× =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 , (ω×)T = −ω×

Likewise,C(ω) = ω × I is also skew symmetric:

C(ω)T + C(ω) = IT((ω×)T + ω×)I = IT0I = 0.

Substituting (12) into (22) in terms ofC(ω) results in

Ṡ(ω) = ωTI(−I−1C(ω)ω + I−1Γ)

= ωTC(ω)ω + ωTΓ

= ωTΓ.

Therefore withS(ω) > 0, ∀ω 6= 0, and Ṡ(ω) = ωTΓ,
then the UAV angular kinematics describe a lossless passive
systemH : Γ 7→ ω.
Fig. 4 depicts our attitude control system. The following
corollary justifies its initial structure.

Corollary 3: The proposed closed-loop attitude control
systemHclω : ηd → ω, kη, kω > 0 depicted in Fig. 4
is bounded ifHη : ω → η andHωc : Γc → ω are passive.

Remark 7:Corollary 3 is a direct result of Theorem 1. As
previously discussed there are two limitations to the above
assumptions. First, the use of Euler angles does not result in a
passive mapping forHη : ω → η. Second, the desired control
torquesΓc 6= Γ as previously discussed and illustrated in
Fig. 5 include a lead compensator in order to recover as
much passivity as possible due to the lag in thrust from the
motors.
The next corollary justifies the attitude control design, for
which we can verify the satisfactaion of desired conditions
for a large family of desired attitude set pointsηd.

Corollary 4: The proposed closed-loop attitude control
systemHclω : ηd → ω, kω > 0 depicted in Fig. 4 is bounded
if the cascaded systemHkωHη : kηeη → η are inside the

Fig. 5. Relationship between desired inertial control force (fIc) and control
torqueΓc to actual inertial forcefI and torqueΓ.

Fig. 6. Proposed inertial control system.

sector[a,∞] andkη satisfies the bounds given in Corollary 2
such as whena1 < 0, 0 < kη < − 1

a
.

Remark 8: It can be shown that many bounded systems
cascaded with an integrator can be bounded by the sector
[a,∞] in which −∞ < a < 0. Typically we find that
|a| < 1 which allows for a reasonable value forkη. Also,
the integrator makes it possible forη = ηd at steady state.

B. Inertial Control System

In discussing stability for the inertial control system we
will denote the system which includes the gravity compen-
sation asHgcomp : kvI

evI
→ vI in which

fIc = kvI
evI

−





0
0
mg



 .

It should be obvious for the case whenfIc = fI that
Hgcomp : kvI

evI
→ vI is passive. Which justifies the

following corollary.
Corollary 5: The proposed closed-loop inertial control

systemHclζ : ζd → vI , kvI
> 0 depicted in Fig. 6

is bounded if the gravity-compensated systemHgcomp :
kvI

evI
→ vI is passive, since

∫

: vI → ζ is passive.
Finally, whenHgcomp : kvI

evI
→ vI is cascaded with an

integrator in which

ζ =

∫ T

0

vIdt,

we denote this cascaded system asHgcomp

∫

: kvI
evI

→ ζ

and state the following corollary.
Corollary 6: The proposed closed-loop inertial control

systemHclζ : ζd → vI , kvI
> 0 depicted in Fig. 6 is

bounded if the cascaded systemHgcomp

∫

: kvI
evI

→ ζ

are inside the sector[a,∞] andkζ satisfies the bounds given
in Corollary 2 such as whena1 < 0, 0 < kζ < − 1

a
.
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Fig. 7. Simulink block to verify the sector bounds.

V. SIMULATION AND VERIFICATION

A. Verifying Sector Bounds From Simulation

The sector relations from the previously given corollaries
allow verification of the sector bounds in a simulation
environment. Definition 3 gives the required equation in
terms of the inputx and outputy = Hx and sector limits
[a, b].

‖yT ‖
2
2 − (a+ b)〈y, x〉T + ab‖xT ‖

2
2 ≤ 0

To find bounds fora given input signalx and output signal
y, consider the following:

lim
b→∞

{

1

b
‖yT ‖

2
2 −

a+ b

b
〈y, x〉T + a‖xT ‖

2
2

}

≤ 0

⇒ −〈y, x〉T + a‖uT ‖
2
2 ≤ 0

⇒ −∞ < a ≤
〈y, x〉T

ε+ ‖xT ‖2
2

(23)

Fig. 7 shows a Simulink implementation of this concept.
Running sums are kept for‖xT ‖2

2 and〈y, x〉T over time. In
order to verify a theoretical bound, we must then find inputs
which characterize the behavior of the system with respect
to parameters that affect those bounds.

The following set of figures illustrates a nominal test
flight in which yaw is varied from−π to π, furthermore
under these flight conditions sector stability is satisfied.In
particularkζ = 1.5, kη = 11.5,

Hζ : kζeζ → ζ is inside[
1

1.501
,∞] and

Hη : kηeη → η is inside[
1

25.78
,∞].

Fig. 8 shows the inertial positionζ with respect to time for
the test flight. Figures 9,10, and 11 depict the corresponding
tracking error, Euler angles, and control thrust commandTc.

VI. CONCLUSIONS

We have shown a way to design effective control systems
for quad-rotor aircraft. These vehicles provide extremely
challenging controller design problems; however, breaking
the system down into passive components (i.e., treating
inertial and attitude control separately) allows us to propose
the use of simple yet effective PD controllers. We also
showed and verified that yaw can be controlled independently
of the desired inertial position. Furthermore, we can use a
basic lead compensator to account for non-ideal lag effects
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Fig. 8. Test flight which satisfies sector stability.
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Fig. 9. Corresponding tracking error for test flight.
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Fig. 10. Corresponding Euler angles for test flight.



9

0 20 40 60 80 100
3.5

4

4.5

5

5.5

time(s)

[T
c1

, T
c2

, T
c3

, T
c4

]T
 (

N
)

 

 
T

c1
(t)

T
c2

(t)

T
c3

(t)

T
c4

(t)

Fig. 11. Corresponding control thrust commandsTc for test flight.

due to thrust. By limiting the command range for pitch
and roll we can naturally address actuator saturation issues.
System stability can then be verified over a fairly large
range of operational conditions by means of Corollary 2.
Unfortunately, for higher frequency set-point contentkζ will
not satisfy Corollary 2 – however, the quad-rotor aircraft
remains stable in simulation. This emphasizes that Corol-
lary 2 may only be necessary for stability and points towards
further investigation of recent mixed passivity and small gain
stability results [23], [24].

REFERENCES

[1] P. Castillo, A. Dzul, and R. Lozano, “Real-time stabilization and
tracking of a four-rotor mini rotorcraft,”Control Systems Technology,
IEEE Transactions on, vol. 12, no. 4, pp. 510–516, 2004.

[2] A. Teel, “Global stabilization and restricted trackingfor multiple
integrators with bounded controls,”Systems & Control Letters, vol. 18,
no. 3, pp. 165–171, 1992.

[3] ——, “A nonlinear small gain theorem for the analysis of control
systemswith saturation,”Automatic Control, IEEE Transactions on,
vol. 41, no. 9, pp. 1256–1270, 1996.

[4] A. Tayebi and S. McGilvray, “Attitude stabilization of aVTOL
quadrotor aircraft,”Control Systems Technology, IEEE Transactions
on, vol. 14, no. 3, pp. 562–571, 2006.

[5] T. Hamel and R. Mahony, “Image based visual servo control for a class
of aerial robotic systems,”Automatica, vol. 43, no. 11, pp. 1975–1983,
2007.

[6] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin,
“Quadrotor helicopter flight dynamics and control: Theory and exper-
iment,” Collection of Technical Papers - AIAA Guidance, Navigation,
and Control Conference 2007, vol. 2, pp. 1670 – 1689, 2007.

[7] J. Willems, “The Analysis of Feedback Systems, volume 62 of
Research Monographs,” 1971.

[8] G. Zames, “On the input-output stability of time-varying nonlinear
feedback systems. i. conditions derived using concepts of loop gain,
conicity and positivity,”IEEE Transactions on Automatic Control, vol.
AC-11, no. 2, pp. 228 – 238, 1966.

[9] D. Hill and P. Moylan, “The stability of nonlinear dissipative
systems,” IEEE Transactions on Automatic Control, vol. AC-
21, no. 5, pp. 708 – 11, 1976/10/. [Online]. Available: http:
//dx.doi.org/10.1109/TAC.1976.1101352

[10] C. A. Desoer and M. Vidyasagar,Feedback Systems: Input-Output
Properties. Orlando, FL, USA: Academic Press, Inc., 1975.

[11] A. van der Schaft,L2-Gain and Passivity in Nonlinear Control.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1999.

[12] N. Kottenstette and P. J. Antsaklis, “Stable digital control networks
for continuous passive plants subject to delays and data dropouts,”
2007 46th IEEE Conference on Decision and Control (CDC), vol. to
appear, pp. 1 – 8, 2007.

[13] P. Tsiotras, “Further passivity results for the attitude control problem,”
Automatic Control, IEEE Transactions on, vol. 43, no. 11, pp. 1597–
1600, 1998.

[14] F. Lizarralde and J. Wen, “Attitude control without angular velocity
measurement: a passivityapproach,”Automatic Control, IEEE Trans-
actions on, vol. 41, no. 3, pp. 468–472, 1996.

[15] J. Diebel, “Representing Attitude: Euler Angles, UnitQuaternions, and
Rotation Vectors,” Technical report, Stanford University, California,
USA, Tech. Rep., 2006.

[16] L. Mangiacasale,Flight Mechanics of a [mu]-airplane: With a Matlab
Simulink Helper. Edizioni Libreria CLUP, 1998.

[17] C. Johnson, “Positive definite matrices,”Amer. Math. Monthly, vol. 77,
no. 3, pp. 259–264, 1970.

[18] B. Wie, H. Weiss, and A. Arapostathis, “Quaternion feedback regulator
for spacecraft eigenaxis rotations,”Journal of Guidance, Control,
and Dynamics, vol. 12, no. 3, pp. 375 – 380, 1989, quaternion
Feedback Regulator;Spacecraft Eigenaxis Rotations;Euler’s Eigenaxis
Rotation;Quaternion Feedback Stability Analysis;.

[19] J. Wen and K. Kreutz-Delgado, “The attitude control problem,”
Automatic Control, IEEE Transactions on, vol. 36, no. 10, pp. 1148–
1162, 1991.

[20] O. Egeland and J. Godhavn, “Passivity-based adaptive attitude control
of a rigid spacecraft,”Automatic Control, IEEE Transactions on,
vol. 39, no. 4, pp. 842–846, 1994.

[21] O. Fjellstad and T. Fossen, “Position and attitude tracking of AUV’s:
a quaternion feedbackapproach,”Oceanic Engineering, IEEE Journal
of, vol. 19, no. 4, pp. 512–518, 1994.

[22] B. Costic, D. Dawson, M. De Queiroz, and V. Kapila, “Quaternion-
based adaptive attitude tracking controller without velocity measure-
ments,”Journal of Guidance, Control, and Dynamics, vol. 24, no. 6,
pp. 1214–1222, 2000.

[23] W. Griggs, B. Anderson, and A. Lanzon, “A mixed small gain
and passivity theorem in the frequency domain,”Systems & Control
Letters, vol. 56, no. 9-10, pp. 596–602, 2007.

[24] W. Griggs, B. Anderson, A. Lanzon, and R. M.C., “Interconnections
of nonlinear systems with ”mixed” small gain and passivity properties
and associated input-output stability results,”Systems & Control
Letters, vol. to appear, pp. 1–17, 2009.


