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Abstract— This paper presents a formal method to design

fre

a digital inertial control system for quad-rotor aircraft. In
E Cont.

Yy

particular, it formalizes how to use approximate passive models . § -
in order to justify the initial design of passive controllers. Fun- ™
damental limits are discussed with this approach — in particular,
how it relates to the control of systems consisting of cascades Fig. 1. Proposed quad-rotor control system.

of three or more integrators in which input actuator saturation

is present. Ultimately, two linear proportional derivative (PD)

passive controllers are proposed to be combined with a non-

linear saturation element. It is also shown that yaw control can  ~gntain fairly detailed models which guide their overalheo

be performed independently of the inertial controller, providing . .
a great deal of maneuverability for quad-rotor aircraft. A trol design. Most of the Lyapunov control proposals tygical

corollary, based on the sector stability theorem provided by are fairly computationally expensive and it is not clear how
Zames and later generalized for the multiple-input-output case robust they are to model uncertainties. In particular, &ll o
by Willems, provides the allowable range ofk for the linear  the above papers appear to neglect a significant time lag
negative feedback controllerk/ in which the dynamic system  characteristic related to the motor thrust command and the

H, : z1 — y is inside the sector[ai, b1], in which —c0 < a4, : .
0 < b1 < oo, and b1 > ay. This corollary provides a formal corresponding thrust which results due to the acceleration

method to verify stability, both in simulation and in operation ~ the air column. With [1] as an exception, almost all other
for a given family of inertial set-points given to the quad- model descriptions neglect the limited control thrust doe t
rotor inertial controller. The controller is shown to perform  motor saturation. More significant all model descriptions i
exceptionally well when simulated with a detailed model of the previous litterature neglect digital platform implemeita
STARMAC, which includes blade flapping dynamics. effects such as sampling delay, quantization, etc. In aaer
address these effects we propose that Corollary 2 provides a
I. INTRODUCTION formal manner toverify that the sector stability condition
is satisfied for a given family of inertial position inputs

Quadrotor helicopters are agile aircraft which are liftedynich can easily be verified through both simulation and
and propelled by four rotors. Unlike traditional helicaste figg testing.

they do not require a tail-rotor to control yaw and can use
four smaller fixed-pitch rotors. Smaller rotors allow thes%

. . . .. R
vehicles to achieve higher velocities before blade flappin

ff in to intr in ility and limi rforncan . . . .
effects beg. to toduqe stability and t. pertorr . attitude is described by Euler anglesThe attitude controller
However, without an attitude control system it is difficuit i T Y .
. . design is initially justified by assuming that the controlle
not impossible for a human to successfully fly and maneuver d dvnamics are passive. Next. we further assume that the
such a vehicle. Thus, most research has focused on sman’ & P ' :

unmanned aerial vehicles in which advanced embedd “aS“'“”g at'Fitude controller is ’_fast"enough that we cda.mse.
control systems could be developed to control these aircra e loop with a second PD inertial controller (the inertial

: . osition is denoted)). These initial assumptions allow us
In [1] a Lyapunov-like control approach is used to develop . .
. . . . : " 0 propose a control system which will guarantee an overall
non-linear inertial controller which relies on robust sliab

. o :
results involving control elements with nested saturatio%.2 stable (or bounded) system. However, this initial design

blocks [2], [3]. [4] shows that a simple model-independenY‘”" not work due to the following limitations: First, there

quaternion-based proportional derivative (PD) contrgbier- Lsesillfilr?nlzﬁzgt E?nbtﬁtrv.j,’;en-rg?; thirsuzt C(;r:;r:t‘? n%i:?g ;[Es
forms quite well in controlling attitude as compared to 9 f 9 . ' 9 bp y ol
acceleration of the air columns above their respectiversoto

other more involved non-linear controllers. In [5], image . o
. . . ﬁ] In order to compensate for this lag we add an additional
based visual servo control algorithms are presented whi Ld compensator to minimize this effect (denoted as Lead
exploit passivity-like properties of the dynamic model inCom ioni 1). Second, the rotors can only apply a fixed
order to derive Lyapunov control algorithms which rely onr N g.of '[h?l.JSt .(denoted,(T_) in which 7 é’eng?e); the
backstepping techniques. All the above papers, and othefe'd . ¢ ¢ .
corresponding thrust command vector) due to motor driver

OContract/grant sponsor (number): NSF (NSF-CCF-0820088) voltage limits. It can be inferred from [1] that the relati;jnip
Contract/grant sponsor (number): Air Force (FA9550-063132). between roll ), pitch ), and thrusfl” to the corresponding

As depicted in Fig. 1 we propose to use two PD con-
ollers (denoted as PD Cont. in Fig. 1). The inner-most
%op controller is a 'fast’ PD attitude controller in which



desired inertial position can be approximated as a cascafte discrete-time systemgl}*). Similarly, we will denote
of four integrators subject to input actuator saturatid]. [ by H. the extended space of functions ( 7 — V) by
shows that a saturated actuator input makes it impossiklgroducing the truncation operator:
to implement a linear control law (such as using two PD

N ()_{x(t), t<T,

0,t>T

controllers) in order to globally stabilize a system which

consists of cascades of three or more integrators. However,

by choosing to limit the linear control output by usingso, continuous time, and
appropriately designed saturation blocks there does exist

linear control law such that global stability can be achieve x(i), i <T,
[2, Theorem 2.2]. This fundamental limitation essentially 0,i>T
requires us to naturally limit the range of attitude comnsand . . I
toqour inner-loop PD {:ontroller in tgerms of pitch and roII1E0r discrete time. The extended spab satisfies the fol-

to the interval[—7, T] using the saturation function which lowing:
is denoted aw.() in Fig. 1. In simulations, the control of

our quad-rotor aircraft worked quite well until the velgeit
reached a point in which significant rotor flapping effect ; : m
began to destabilize the system. We chose to limit tk?ec:)r continuous time systems.s; ), and
maximum velocities by adding a position rate change limiter 9 =1 T

(depicted as 'Rate Limiter’ in Fig. 1) to the desired indrtia lurl3 = uT(ul(i) < o0; VI €T )
position set-point (denoted &s). The rate change limiter 0

includes an additional second-order pre-filter applied;to for discrete time system@s?).

in order to minimize overshoot. A similar filter is applied to Definition 1: A dynamic systemH : H. — H. is L3'
the yaw set-point), as well. Other non-ideal effects — non-stable if

passive attitude coordinates (Euler angl@s quantization, u€ Ly = Hue Ly ©)
single-precision floating point math errors, and sample-ra
delay can be addressed by using Corollary /éoify that gystem  and the value dfu at time ¢ will be denoted as
the sector stability condition is satisfied over a large fami Hu(t) = y(t).

of inertial position inputs. L _ __ Definition 2: A dynamic systemH : H, — H. is I}’
Section Il introduces a few definitions regarding passiVitygia e if

boundedness, and corollaries regarding stability. Sedtio

provides an appropriate model to describe the quad-rotor

dynamics as it relates to statements regarding the desitfhwhich Hu = y corresponds to the dynamic output of

of a controller for the quad-rotor. Section IV provides ahe system, and the value éfu at discrete time will be

description of our control implementation and correspogdi denoted asfu(i) = y(i).

stability arguments which lead us to an overall feasibldhe inner product over the intervl, T'] for continuous time

control design. Section V provides a detailed discussion d$ denoted as follows:

a detailed simulation of our control system used to control T .

a detailed model of the STARMAC quad-rotor helicopter (y, u)r :/ y (t)u(t)dt

which includes highly non-linear blade-flapping effect$. [6 0

Section VI presents our conclusions and points to futur

research directions.

xT(z) =

T
llur|3 = / u' (Hu(t)dt < oo; VT € T (©)]
0

in which Hu = y corresponds to the dynamic output of the

uely = Huely. (6)

imilarly the inner product over the discrete time interval
0,1,...,7 — 1} is denoted as follows:

T—1
T/ .
Il. PASSIVITY AND SECTORSTABILITY (yuyr =Yy (D)uli).
0

In order to discuss the (boundedness) or stability progerti o ) _ _ )
of the quad-rotor with our proposed control system wéor 5|mpI|C|ty_0f discussion we note the following equiva-
recall the following nomenclature, definitions and preser€C€ for our inner-product space:

Cor.ollary 2 'in order tovgrify stability. Let T.be the 'set (Hu)p,ur) = {(Hu)p,u) = (Hu,ur) = (Hu,u)r.

of times of interest in whicl” = R* for continuous-time
signals and7 = Z* for discrete-time signals. Le¥ be a

linear space&R™ and denote a%{ the space of all functions
u: 7 — V which satisfy the following:

Definition 3: Assuming thatH«(0) = y(0) = 0, then a
dynamic systenH : H. — H. is (strictly) inside the sector
[a,b], b>0, a<b, e>0if

o0
fulf = [ T Outeri < oo @ Yyrl - @+ by, w)r + abllurl <0 (< —elurl?) ()
Definition 4: Assuming thatH«(0) = y(0) = 0, then a
dynamic systemH : H. — H. is (strictly) interior conic
with centerc € R and radius, ¢ > 0 if

[(Hu = cu)p[| < rllurl] (< (r+ €)flurl]) (8)

for continuous-time systemd.5"), and

a3 = uT(i)uli) < oo, )
0



Corollary 1: A dynamic systemH : H. — H. is u, _+ e Y
(strictly) interior conic with centet € R and radius:, ¢ > 0 Hyre\ =y, ——»
if and only if H is (strictly) inside the sectofa,b] with -
a=c—randb=c+r (c= “7“‘,7”:(’_7“).

Remark 1:Corollary 1 follows directly from [7, Theo-
rem 2.8] and originally developed for the single-inputjmuit ¥,
case in [8]. - H,:e,—y,

Property 1. Assume the following dynamic systenis :
uw — y, Hy : uy — y; are inside their respective sectorsgig 2. Bounded systenf : [u], u]]T
[a,b], [a1,b1], andk > 0 is a constant then:

(i) I can be said to be insidg, 1], [¢,1] VO < e <1, or
strictly inside[0,1 + €] VO < e < 1.
(i) kH is inside[ka, kb]
(i) Sum Rule: (H + Hy) is inside[a + a1, b + b1].
Remark 2: The first two properties are obvious, and fol- ©(t) = f(z(t),u(t), z(0) ==z, t>0
low the properties listed for the single-input-output case y(t) = h(z,u(t))
stated in [8, Section 4.2]. The Sum Rule is not at all obvioufc,

. : or the continuous-time case, or
when using the sector constraint, however as shown for the

= [y, u]".

Remark 3:In a slightly less general manner as was done
in [9], let us assume that we can describe our systérm
terms of the following state-space equations:

single-input-output case in [8] we can establish (&t H; ) z(i+1) = f(x(i),u(d)), 2(0) =x,,i>0

If interior conic with c_ent_e%(b tht+a+ al)_ and radius y(i) = h(z(i), u(i))

5(b+ b1 —a — a1) which is equivalent to being inside the ) . . )
sector[a + ay, b+ by] (due to Corollary 1). for the discrete-time case. Then if there existstarage

function V(z) : R® — R > 0, Vo # 0 andV(0) = 0
in which there exists & > 0, a« < b and:
1) V(z) < r(u,y), and V(z) is continuously differ-
(Hu— %(b +ayu)z || + [[(Fu — %(b1 +an)u)r| Eggzgteéugjﬁ;]:cssgade the sectoffa,b] for the
due to the triangle inequality. 2) V(z(i + 1)) = V(x(i)) < r(u,y), Vi € T, thenH is
inside the sectofa, b] for the discrete-time case.
The following Theorem serves as the basis for proposing the

I((H + Hi)u - %((b +a)+ (b +a1))u)r| <

< 1(b —a)||ur|| + l(b1 —ay)||ur|| linear PD controllers depicted in Fig. 1. It is a weaker form
-2 2 o - - -

1 of the passivity theorem [10] which considers when the input
< 5(b +b —a—a)|url- ug # 0. Parts of the theorem have appeared in [11]-[14], we

generalize it slightly by adding! to the structure.
The second to last inequality results when we recall that Theorem 1:Assume that the combined systdih: u; —
H 1y is interior conic with centet;) = %ﬂ"“ and radius y1, us = 0 depicted in Fig. 2 ha® < k < oo and consists

ray = b<1>;ﬂr<1>. of t_WO dyna_mic systemgl; : u; — y; and Hs : us — o
Definition 5: If we assume thaffu(0) = 0, then if H is ~ Which are either:
inside the sector: i) respectively inside the sectda,b:1], a1 = 0,b; < o0

(H, is strictly output passive) and inside the sector
[0, 00] (Ho Is passive) or

ii) respectively inside the sectda,b;], a1 = 0,b; = o©
(H, is passive) and inside the sectlr, o] (Hs is

i) [0,00] it is @ passive (positive) system
i) [0,b], b < oo, it is strictly output passive
i) [e,00], € > 0 or strictly inside the sectof0, o] it is
~ strictly input passive _ strictly input passive),
V) [a,b], a>0, b<ooitis strictly input-output passive e 7 . 4, — 4, is strictly output passive and bounded

V) [a,b], —co <a, b <ooitis aboundedif’-stable for (;m staple for the discrete time case, by stable for the
discrete time, ol.3*-stable for continuous time) system. -gntinuous time case).

Let us denote the state of a systemas R”. Let the supply Proof: First we recall the property that the combined
rater(u, y) have the following form: systemkH, is inside the sectofkay,kb:] and thate, =
. 1 . ab . uy — yo therefore
r(u,y) =y (u(t) — @rn)’ (t)y(t) — arn” (t)ug)) i) 1
2
for the continuous time case or (i, en)r 2 Tm'“yl)TuQ
1
N . 1 N ab N > il 2
() =y (@ul) = sy @y(0) = T (u) ) 2 e yr + g lw)rle
(a+0) (a+Db) 1
(10) o)z > -l
kby

for the discrete time case.



in which the final (strictly output passive) inequality e.
results sinceH, is passive. —T,e

z

ii) ///// ’///////
(y1,e1)r >0 _ /, ',/////// /{//:’/ﬁ”///
(y1,ui)r > (Y2, y1)7 M=Kl /////%/%////// ,%////%///
(y1,ur)r > as|(y1)rl3 ‘ M., =-K,T,
in which the final (strictly output passive) inequality —T,e

results sincef is strictly input passive.

[ ]

Remark 4:Theorem 1-i provides the basis for construct-
ing asymptotic stabilizing controllers for systems whianc
be described as a cascade of two passive systEms=
H, H,. The first half of the systen#/; is rendered strictly
output passive by closing the inner-loop in a manner which
satisfies Theorem 1-ii, then the outer-loop is closed with th ey
output of H,.
Although, Theorem 1 provides a sound and intuitive basis to ep
construct stable attitude control systems, it does nowalis
to provide a formal way to verify the effects of cascading &g, 3. UAV with depiction of inertial and body frames.
'fast’ attitude controller with a slower PD inertial conlier.
The following corollary provides a way to verify stability
when passivity constraints of the closed loop system can negordinates relative to the body frame such as the angular
meet the previously mentioned constraints. In particular wyvelocity w as follows
are concerned with the case whéh is inside the sector
[a1,00] in which —co < a1 < 0. wr = R (n)w.

Corollary 2: Assume that the combined dynamic syste
H : [u],ul]” — [yf,yd]" depicted in Fig. 2 consists of
two dynamic systemdd; : u; — y; and Hy : us — ys C': vy

"he standard equations of motion are as follows:

which are respectively inside the sectai, b;] and strictly . T

- ’ . =fr= -T 2 11
inside the sectoj0, 1+¢], for all e > 0. ThenH is bounded mr fr=mgep — TR (n)e (11)
(L5 stable for the continuous time caselr stable for the lo=-wxlw+T (12)
discrete time case) if: n=J(nw. (13)

0<k< 7i’ if a, <0 Which results in a cascade structure, where the inertiakforc
ai (f1) depends on the orientation as described by the Euler
anglen. (13) relates the frame angular velocityto the rate
change of the Euler anglg which depends on the frame
1 _ control torquel'™ = [y,,7,,7:]". Each control torque is
P k <oo, if a; >0. applied about each corresponding frame axis and positive
Remark 5:CoroI]Iary 1 follows directly from [7, Corol- torque follows the right hand rule. This cascade structure
lary 4.3.3, case 3] for the multi-input-output case and [8s an overall non-passive structure which has many passive
Theorem 2a, case 2] for the single-input-output case. elements. The overall approach in designing a controller fo
this system will be to take advantage of the passive elements
to design a ‘fast’ passive attitude controller. The closed-
loop dynamics of the attitude controller will be fast enough
Let Z = {en,er,ep} (North-East-Down) denote the to ignore in order to implement a ‘slower passive inertial
inertial frame, andA4 = {e,, e,, e, } denote a frame rigidly position controller which will command the desired attitud
attached to the aircraft as depicted in Fig. 3. Ledenote in order to reach a desired inertial position relative to the
inertial position,n denote the vector of Euler angles =  origin of the inertial frame ™ = [X,Y, Z]7). In the inertial
[qb, 0, z/)]T in which ¢ is the roll,  is the pitch and frame, X is the relative distance from the origin along the
¥ is the yaw. R(n) € S0(3) is the orthogonal rotation eg axis,Y is the relative distance from the origin along the
matrix (RTR = I) which describes the orientation of theey axis, andZ is the relative distance from the origin along
airframe in whichR(n) describes the rotation matrix from theep axis. Note thatZ < 0, Z < 0 corresponds to the UAV
the inertial frame to the body frame as is the convention usexbove the inertial origin and flying upward.
in [15], [16]. The rotation matrix allows coordinates rélat Using the shorthand notatiay, = cosx ands, = sinzx,
to the inertial frame such as inertial angular velocity to  the rotation matrixR(n) is related to the Euler angles as

O0<k<oo, ifar=0

I1l. QUAD-ROTORMODEL



follows [15, Section 5.6.2]: a corresponding motor thrust commafd Since passivity

is not affected by commanding a desired yaw and yaw rate
(14) 1, 1) we will allow the user to command a desired yaw while

maintaining a desired inertial position (e.g, in order ttate

the view of an on-board camera). Therefore we choose to
The matrix.J(n) is the inverse of the Euler angle rates matrixkeep yaw as a free variable to control and use a small-angle

CoCyp CoSqy —S8p
R(n) = [5450Cy — CopSypy 56505y + CopCy  CoS4
CpSOCy T SpSyy  ChpSeSyy — SpCyp  CCo.

[Ela5(n)]~! [15, Section 5.6.4] such that assumption to relate attitude to inertial force applied Hy t
1 singtanf cos¢tant rotors. 0 Sy Cy
J(n) = 0 CQS ¢ —sin ¢ . (15) fIC ~ |0 + _Clll 8111 ¢ . (19)
0 sm((;; % -T 1 0 0 0

In order to determine the range fgrin which J(n) > 0 we
recall

Remark 6: [17, Remark 1] Any matrixA € R™*" is
positive definite if and only if the symmetric part df (B =

Therefore a desired inertial control commantf, =
[frea, frey, f1c=), Will be used to determine a desired inertial
set point as follows:

ir(]gw AT)) is positive definite. {(psﬂ _ [sw —cw] l;ﬁ;;} | (20)
. . Oset Cy Sy #
Theorem 2: [17, Theorem 5] IfA € R™*"™ is symmetric, “
then A is positive definite if and only if A;| > 0 for i = Finally, there is a non-ideal lag between motor thrust
1,...,ninwhich|-| denotes the determinant ard consists commandT; and the actual thrust applied by each rotor.
of the “intersection” of the first rows and columns ofi. Ty(s)
Using the above two tests we can numerically verify that: Toi(s) = TSZ+ T (21)
J(n) >0, ¢,0¢ [_%W, %W], Y € [—m, 7). (16) in which 7 ~ .1 seconds represents the thrust lag to each

rotor and can not be neglected in designing the controller.
Therefore the relationship betwedin) : w; — 17 is passive
for the range ofy given by (16). Determining passivity
properties relatingvy — 7 is a much more challenging ]
task. However, in simulations whetie;| < 0.5, and the A Attitude Control System
pitch and roll are conservatively limited within the range o Our overall goal is to design a ’fast’ attitude control
(-7, §] the sector bounds are nepr.004, cc] — which is  system. There are numerous ways to approach this problem,
slightly active when compared to a passive system whiclyhich has been extensively studied throughout the years.
would be confined to the sectdd, oc] [8]. Other attitude Many have taken a Lyapunov (and/or) passivity based ap-
parametrization such as the modified Rodrigues parametgyi®ach for controlling attitude [1], [4], [14], [18]-[22We
possess a passive relationship between angular velodity anill follow the passivity-based approach to control attiéu
attitude which we plan to investigate in the future [13]. by converting the mapping : I' — w from a passive system
Completing our discussion on the UAV dynamics we notgwhich we shall recall) to a strictly output passive system
that the relationship between inertial acceleration, mdnt which is also inside sectdp), 1]. By confining H : T’ — w
thrusts, and the Euler angles is to the [0, 1] sectorH,,,, : kye1 — w we can close the loop
on attitude usingny, which does not consist of a passive

IV. CONTROL IMPLEMENTATION

0 CpSeCy + S¢Sy : . . .
. _ mapping H,w — 7. Simulations show thatH,w — n is
- 0 ¢y c=-T - 17 ! n i
o mg e Ji 64’595;% socu| (A7) confined to the[—.004, oo] sector for a fairly large range

of n and 7, which unfortunately is not sufficient to find a
in which f;. denotes the inertial control forc&, = Y}, 7;  gaink, to satisfy the sector constraints in whiéh, = H.,
is the total thrust applied by each rotdy, i € {1,2,3,4}. andk,Hs., = H; in [7, Corollary 4.3.3] (this is the multiple
Ignoring blade flapping effects, the control torquésand input-output version of [8, Theorem 2a]). In fact, the westke
total thrustT' have the following relationship: ‘combined’ constraints which can be placed ¢éf and
H, is that H, must be strictly input passive and; must

Tz g —0 0 5 0 ? essentially be passive. A more interesting case is wHen

Ty | — x Ig 7K I(() 2 (18) s strictly inside the sectof0,1 + €], ¢ > 0 (for example

gf _1 t 1t _1 t 1t ?3 H, = I is strictly inside the sectof0), 1 + ¢] for all ¢ > 0).
4

When H;, is strictly inside the sectof0, 1 + €] for ¢ > 0,
in which ¢ is the distance from the center of gravity forthen boundedness is guaranteed for &hywhich is inside
each rotor of the UAV along the andy body frame axis the sectorf{{-, oc.

and K; captures the relationship between rotor velocity and Theorem 3:Any rigid body with inertia matrixl = 17 >
corresponding torques applied about thaxis. As long as 0, I = 0 and dynamics satisfying the Euler-Lagrange
dK; # 0, the matrix is invertible and can be used to map @&quation (12) (in whichu, I' € R3) is a lossless passive

desired thrust commaritl and control torque commaridto  systemH : I' — w.




=

7|, Ts+1 T T I
Na e, S i | diag ] c _ . [ 1 ]
! | d [
I, [LS-HJ o) mgl'rs+1j
B - r
Fig. 5. Relationship between desired inertial control éoff;.) and control
torqueT'. to actual inertial forcef; and torquel.
n n
J J(n)
H, :w—n

Fig. 4. Proposed attitude control system.

Proof: The total angular energy stored in the UAV is
the kinetic energy

1
S(w) = inlw >0,w#0

The rate change of kinetic energy has the following form Fig. 6. Proposed inertial control system.

S(w) =w'Tw. (22)

We note thatwux can be represented as a skew symmetrigectora, oo] andk,, satisfies the bounds given in Corollary 2
matrix in terms ofw™ = [wy, wa,ws]T: such as whem; < 0, 0 < k, < —1.

0 —w w Remark 8:1t can be shown that many bounded systems

3 2 T cascaded with an integrator can be bounded by the sector
wX = | ws 0 —wi|, (wx) =-wx . . : :
o w 0 [a,o0] in which —co < a < 0. Typically we find that
—w2 1

la| < 1 which allows for a reasonable value féy. Also,
Likewise, C'(w) = w x I is also skew symmetric: the integrator makes it possible fgr= 1, at steady state.

Cw)"+ Cw) =T"((wx)"+wx)I =TT0I =0.
Substituting (12) into (22) in terms df'(w) results in
S(w) =w'I(-I71C(w)w + ')

B. Inertial Control System

In discussing stability for the inertial control system we
will denote the system which includes the gravity compen-

=w C(ww+w'T sation asH ycomyp : kv, €y, — vr in Which

=w'l. 0
Therefore withS(w) > 0, Yw # 0, and S(w) = w'T, fre = kyen, — | 0
then the UAV angular kinematics describe a lossless passive mg

systemH : ' — w. .
) . . . It should be obvious for the case whefi. = f; that
Fig. 4 depicts our attitude control system. The foIIowmgngmp . kuje, — vr is passive. Which justifies the

corollary justifies its initial structure. following corollar
Corollary 3: The proposed closed-loop attitude control g i Y- N
systemH.p., : 14 — w, ky, k, > 0 depicted in Fig. 4 Corollary 5: The proposed closed—loop meryal _control
o R : systemHg ¢ : (4 — v, ky,, > 0 depicted in Fig. 6

is bounded ifH,, : w — n and H,,. : I'c — w are passive. . . : )
Remark 7:Corollary 3 is a direct result of Theorem 1. As'® bounded .'f the grawty—compensatgd Systg‘fgwmp ’
kp, €y, — vr is passive, sincd : v; — ( is passive.

previously discussed there are two limitations to the abovig“ v when & . . ded with

assumptions. First, the use of Euler angles does not resalt i . inaty, Wnen tgcomp : fiv, €0, — vr 1S Cascaded with an

passive mapping fak,, : w — 7. Second, the desired control integrator in which

torquesI’, # I' as previously discussed and illustrated in T

Fig. 5 include a lead compensator in order to recover as g:/ vrdt,

much passivity as possible due to the lag in thrust from the 0

motors. we denote this cascaded systemHg.omp f Dy, €y, — C

The next corollary justifies the attitude control design; foand state the following corollary.

which we can verify the satisfactaion of desired conditions Corollary 6: The proposed closed-loop inertial control

for a large family of desired attitude set poinjs. systemHg ¢ : (4 — wvr, ky, > 0 depicted in Fig. 6 is
Corollary 4: The proposed closed-loop attitude controbounded if the cascaded systdﬁ,mmpf D ky ey, — C

systemH,, : nq — w, k,, > 0 depicted in Fig. 4 is bounded are inside the sectdu, co] andk, satisfies the bounds given

if the cascaded systefi;,,H,, : k,e, — n are inside the in Corollary 2 such as whea; < 0, 0 < k¢ < —2.
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Fig. 7. Simulink block to verify the sector bounds. g 0

‘ S\ N/ B/
LV RNV Y
V. SIMULATION AND VERIFICATION \/ \\/ \\/ \J \\/
A. Verifying Sector Bounds From Simulation -tor

The sector relations from the previously given corollaries e : : : :
allow verification of the sector bounds in a simulation 0 20 O e 80 100
environment. Definition 3 gives the required equation in
terms of the inputr and outputy = Hx and sector limits
[a, b].

Fig. 8. Test flight which satisfies sector stability.

lyzll3 = (a +0){y, 2)7 + abllz7||3 < 0

To find bounds fora given input signalk: and output signal
y, consider the following:

a+b

. 1
s {2~ ) + el <0

= —(y.2)r +alur3 <0

<y7 x>T

= -—co<a< 2
e+ llzrl3

(23)

error (m)

Fig. 7 shows a Simulink implementation of this concept.
Running sums are kept fdjrr||3 and (y, z)7 over time. In
order to verify a theoretical bound, we must then find inputs
which characterize the behavior of the system with respec
to parameters that affect those bounds.

The following set of figures illustrates a nominal test 25, 20 20 60 80 100
flight in which yaw is varied from—= to =, furthermore fime(s)
under these flight conditions sector stability is satisfikd.
particulark: = 1.5, k, = 11.5,

Fig. 9. Corresponding tracking error for test flight.

o 1
H¢ :keee — (s |n5|de[m,oo] and

H), :kpe, —nis inside[ﬁ,oo].
Fig. 8 shows the inertial positiot with respect to time for
the test flight. Figures 9,10, and 11 depict the correspandin
tracking error, Euler angles, and control thrust comm@nd

VI. CONCLUSIONS

We have shown a way to design effective control systems
for quad-rotor aircraft. These vehicles provide extremely
challenging controller design problems; however, bregkin
the system down into passive components (i.e., treating
inertial and attitude control separately) allows us to psE
the use of simple yet effective PD controllers. We also
showed and verified that yaw can be controlled independentlyg. 10. Corresponding Euler angles for test flight.
of the desired inertial position. Furthermore, we can use a
basic lead compensator to account for non-ideal lag effects

n (radians)




55 T T T T

T
[Tcl' TCZ’ TCS' TC4] N
I
n
T
i

35 i i i i
0 100

Fig. 11. Corresponding control thrust commanidsfor test flight.

[13]

[14]

[15]

[16]
[17]

(18]

[29]

[20]

due to thrust. By limiting the command range for pitchpy)
and roll we can naturally address actuator saturation $ssue

System stability can then be verified over a fairly larg

22]

range of operational conditions by means of Corollary 2.

Unfortunately, for higher frequency set-point contéptwill

not satisfy Corollary 2 — however, the quad-rotor aircra

el

remains stable in simulation. This emphasizes that Corol-

lary 2 may only be necessary for stability and points towards

further investigation of recent mixed passivity and smalhg

stability results [23], [24].
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