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Abstract. The adoption of blockchain based distributed ledgers is grow-
ing fast due to their ability to provide reliability, integrity, and auditabil-
ity without trusted entities. One of the key capabilities of these emerging
platforms is the ability to create self-enforcing smart contracts. However,
the development of smart contracts has proven to be error-prone in prac-
tice, and as a result, contracts deployed on public platforms are often
riddled with security vulnerabilities. This issue is exacerbated by the de-
sign of these platforms, which forbids updating contract code and rolling
back malicious transactions. In light of this, it is crucial to ensure that a
smart contract is secure before deploying it and trusting it with signifi-
cant amounts of cryptocurrency. To this end, we introduce the VeriSolid
framework for the formal verification of contracts that are specified us-
ing a transition-system based model with rigorous operational semantics.
Our model-based approach allows developers to reason about and ver-
ify contract behavior at a high level of abstraction. VeriSolid allows the
generation of Solidity code from the verified models, which enables the
correct-by-design development of smart contracts.
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1 Introduction

The adoption of blockchain based platforms is rising rapidly. Their popularity
is explained by their ability to maintain a distributed public ledger, providing
reliability, integrity, and auditability without a trusted entity. Early blockchain
platforms, e.g., Bitcoin, focused solely on creating cryptocurrencies and payment
systems. However, more recent platforms, e.g., Ethereum, also act as distributed
computing platforms [50,52] and enable the creation of smart contracts, i.e., soft-
ware code that runs on the platform and automatically executes and enforces the
terms of a contract [12]. Since smart contracts can perform any computation4,
they allow the development of decentralized applications, whose execution is
safeguarded by the security properties of the underlying platform. Due to their
unique advantages, blockchain based platforms are envisioned to have a wide
range of applications, ranging from financial to the Internet-of-Things [11].

However, the trustworthiness of the platform guarantees only that a smart
contract is executed correctly, not that the code of the contract is correct. In
fact, a large number of contracts deployed in practice suffer from software vul-
nerabilities, which are often introduced due to the semantic gap between the as-
sumptions that contract writers make about the underlying execution semantics
and the actual semantics of smart contracts [29]. A recent automated analysis of
19,336 contracts deployed on the public Ethereum blockchain found that 8,333
contracts suffered from at least one security issue [29]. While not all of these is-
sues lead to security vulnerabilities, many of them enable stealing digital assets,
such as cryptocurrencies. Smart-contract vulnerabilities have resulted in serious
security incidents, such as the “DAO attack,” in which $50 million worth of
cryptocurrency was stolen [16], and the 2017 hack of the multisignature Parity
Wallet library [36], which lost $280 million worth of cryptocurrency.

The risk posed by smart-contract vulnerabilities is exacerbated by the typical
design of blockchain based platforms, which does not allow the code of a contract
to be updated (e.g., to fix a vulnerability) or a malicious transaction to be
reverted. Developers may circumvent the immutability of code by separating
the “backend” code of a contract into a library contract that is referenced and
used by a “frontend” contract, and updating the backend code by deploying a
new instance of the library and updating the reference held by the frontend.
However, the mutability of contract terms introduces security and trust issues
(e.g., there might be no guarantee that a mutable contract will enforce any
of its original terms). In extreme circumstances, it is also possible to revert a
transaction by performing a hard fork of the blockchain. However, a hard fork
requires consensus among the stakeholders of the entire platform, undermines
the trustworthiness of the entire platform, and may introduce security issues
(e.g., replay attacks between the original and forked chains).

In light of this, it is crucial to ensure that a smart contract is secure before
deploying it and trusting it with significant amounts of cryptocurrency. Three

4 While the virtual machine executing a contract may be Turing-complete, the amount
of computation that it can perform is actually limited in practice.
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main approaches have been considered for securing smart contracts, including se-
cure programming practices and patterns (e.g., Checks–Effects–Interactions pat-
tern [47]), automated vulnerability-discovery tools (e.g., Oyente [29,49]), and
formal verification of correctness (e.g., [23,19]). Following secure programming
practices and using common patterns can decrease the occurrence of vulnera-
bilities. However, their effectiveness is limited for multiple reasons. First, they
rely on a programmer following and implementing them, which is error prone
due to human nature. Second, they can prevent a set of typical vulnerabilities,
but they are not effective against vulnerabilities that are atypical or belong
to types which have not been identified yet. Third, they cannot provide for-
mal security and safety guarantees. Similarly, automated vulnerability-discovery
tools consider generic properties that usually do not capture contract-specific
requirements and thus, are effective in detecting typical errors but ineffective in
detecting atypical vulnerabilities. These tools typically require security proper-
ties and patterns to be specified at a low level (usually bytecode) by security
experts. Additionally, automated vulnerability-discovery tools are not precise;
they often produce false positives.

On the contrary, formal verification tools are based on formal operational
semantics and provide strong verification guarantees. They enable the formal
specification and verification of properties and can detect both typical and atyp-
ical vulnerabilities that could lead to the violation of some security property.
However, these tools are harder to automate.

Our approach falls in the category of formal verification tools, but it also pro-
vides an end-to-end design framework, which combined with a code generator,
allows the correctness-by-design development of Ethereum smart contracts. We
focus on providing usable tools for helping developers to eliminate errors early
at design time by raising the abstraction level and employing graphical repre-
sentations. Our approach does not produce false positives for safety properties
and deadlock-freedom.

In principle, a contract vulnerability is a programming error that enables
an attacker to use a contract in a way that was not intended by the developer.
To detect vulnerabilities that do not fall into common types, developers must
specify the intended behavior of a contract. Our framework enables develop-
ers to specify intended behavior in the form of liveness, deadlock-freedom, and
safety properties, which capture important security concerns and vulnerabilities.
One of the key advantages of our model-based verification approach is that it
allows developers to specify desired properties with respect to high-level models
instead of, e.g., bytecode. Our tool can then automatically verify whether the
behavior of the contract satisfies these properties. If a contract does not satisfy
some of these properties, our tool notifies the developers, explaining the execu-
tion sequence that leads to the property violation. The sequence can help the
developer to identify and correct the design errors that lead to the erroneous
behavior. Since the verification output provides guarantees to the developer re-
garding the actual execution semantics of the contract, it helps eliminating the
semantic gap. Additionally, our verification and code generation approach fits
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smart contracts well because contract code cannot be updated after deployment.
Thus, code generation needs to be performed only once before deployment.

Contributions We build on the FSolidM [32,33] framework, which provides a
graphical editor for specifying Ethereum smart contracts as transitions systems
and a Solidity code generator.5 We present the VeriSolid framework, which
introduces formal verification capabilities, thereby providing an approach for
correct-by-design development of smart contracts. Our contributions are:

– We extend the syntax of FSolidM models (Definition 1), provide formal
operational semantics (FSolidM has no formal operational semantics) for our
model (Section 3.3) and for supported Solidity statements (Appendix A.3),
and extend the Solidity code generator (Appendix E).

– We design and implement developer-friendly natural-language like templates
for specifying safety and liveness properties (Section 3.4).

– The developer input of VeriSolid is a transition system, in which each transi-
tion action is specified using Solidity code. We provide an automatic transfor-
mation from the initial system into an augmented transition system, which
extends the initial system with the control flow of the Solidity action of
each transition (Section 4). We prove that the initial and augmented transi-
tion systems are observationally equivalent (Section 4.1); thus, the verified
properties of the augmented model are also guaranteed in the initial model.

– We use an overapproximation approach for the meaningful and efficient veri-
fication of smart-contract models (Section 5). We integrate verification tools
(i.e., nuXmv and BIP) and present verification results.

2 VeriSolid: Design and Verification WorkFlow

VeriSolid is an open-source6 and web-based framework that is built on top of
WebGME [30] and FSolidM [32,33]. VeriSolid allows the collaborative develop-
ment of Ethereum contracts with built-in version control, which enables branch-
ing, merging, and history viewing. Figure 1 shows the steps of the VeriSolid
design flow. Mandatory steps are represented by solid arrows, while optional
steps are represented by dashed arrows. In step 1 , the developer input is given,
which consists of:
– A contract specification containing 1) a graphically specified transition sys-

tem and 2) variable declarations, actions, and guards specified in Solidity.
– A list of properties to be verified, which can be expressed using predefined

natural-language like templates.
Figure 2 shows the web-based graphical editor of VeriSolid.

The verification loop starts at the next step. Optionally, step 2 is auto-
matically executed if the verification of the specified properties requires the
generation of an augmented contract model7. Next, in step 3 , the Behavior-

5 Solidity is the high-level language for developing Ethereum contracts. Solidity code
can be compiled into bytecode, which can be executed on the Ethereum platform.

6 https://github.com/anmavrid/smart-contracts
7 We give the definition of an augmented smart contract in Section 4.

https://github.com/anmavrid/smart-contracts
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Fig. 1. Design and verification workflow.

Fig. 2. WebGME based graphical editor.

Interaction-Priority (BIP) model of the contract (augmented or not) is automat-
ically generated. Similarly, in step 4 , the specified properties are automatically
translated to Computational Tree Logic (CTL). The model can then be verified
for deadlock freedom or other properties using tools from the BIP tool-chain [6]
or nuXmv [9] (step 5 ). If the required properties are not satisfied by the model
(depending on the output of the verification tools), the specification can be
refined by the developer (step 6 ) and analyzed anew. Finally, when the devel-
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opers are satisfied with the design, i.e., all specified properties are satisfied, the
equivalent Solidity code of the contract is automatically generated in step 7 .
The following sections describe the steps from Figure 1 in detail. Due to space
limitations, we present the Solidity code generation (step 7 ) in Appendix E.

3 Developer Input: Transition Systems and Properties

3.1 Smart Contracts as Transition Systems

To illustrate how to represent smart contracts as transition systems, we use the
Blind Auction example from prior work [32], which is based on an example from
the Solidity documentation [44].

In a blind auction, each bidder first makes a deposit and submits a blinded
bid, which is a hash of its actual bid, and then reveals its actual bid after all
bidders have committed to their bids. After revealing, each bid is considered valid
if it is higher than the accompanying deposit, and the bidder with the highest
valid bid is declared winner. A blind auction contract has four main states:
1. AcceptingBlindedBids: bidders submit blinded bids and make deposits;
2. RevealingBids: bidders reveal their actual bids by submitting them to the

contract, and the contract checks for each bid that its hash is equal to the
blinded bid and that it is less than or equal to the deposit made earlier;

3. Finished: winning bidder (i.e., the bidder with the highest valid bid) with-
draws the difference between her deposit and her bid; other bidders withdraw
their entire deposits;

4. Canceled: all bidders withdraw their deposits (without declaring a winner).

Fig. 3. Blind auction example as a transition system.

This example illustrates that smart contracts have states (e.g., Finished).
Further, contracts provide functions, which allow other entities (e.g., users or
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contracts) to invoke actions and change the states of the contracts. Hence, we can
represent a smart contract naturally as a transition system [45], which comprises
a set of states and a set of transitions between those states. Invoking a transition
forces the contract to execute the action of the transition if the guard condition
of the transition is satisfied. Since such states and transitions have intuitive
meanings for developers, representing contracts as transition systems provides
an adequate level of abstraction for reasoning about their behavior.

Figure 3 shows the blind auction example in the form of a transition system.
For ease of presentation, we abbreviate AcceptingBlindedBids, RevealingBids,
Finished, and Canceled to ABB, RB, F, and C, respectively. The initial state of the
transition system is ABB. To differentiate between transition names and guards,
we use square brackets for the latter. Each transition (e.g., close, withdraw)
corresponds to an action that a user may perform during the auction. For ex-
ample, a bidding user may execute transition reveal in state RB to reveal its
blinded bid. As another example, a user may execute transition finish in state
RB, which ends the revealing phase and declares the winner, if the guard condition
now >= creationTime + 10 days is true. A user can submit a blinded bid using
transition bid, close the bidding phase using transition close, and withdraw her
deposit (minus her bid if she won) using transitions unbid and withdraw. Finally,
the user who created the auction may cancel it using transitions cancelABB and
cancelRB. For clarity of presentation, we omitted from Figure 3 the specific ac-
tions that the transitions take (e.g., transition bid executes—among others—the
following statement: pendingReturns[msg.sender] += msg.value;).

3.2 Formal Definition of a Smart Contract

We formally define a contract as a transition system. To do that, we consider
a subset of Solidity statements, which are described in detail in Appendix A.1.
We chose this subset of Solidity statements because it includes all the essential
control structures: loops, selection, and return statements. Thus, it is a Turing-
complete subset, and can be extended in a straightforward manner to capture all
other Solidity statements. Our Solidity code notation is summarized in Table 1.

Table 1. Summary of Notation for Solidity Code

Symbol Meaning

T set of Solidity types
I set of valid Solidity identifiers
D set of Solidity event and custom-type definitions
E set of Solidity expressions
C set of Solidity expressions without side effects
S set of supported Solidity statements
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Definition 1. A transition-system initial smart contract is a tuple (D,S, SF ,
s0, a0, aF , V, T ), where
– D ⊂ D is a set of custom event and type definitions;
– S ⊂ I is a finite set of states;
– SF ⊂ S is a set of final states;
– s0 ∈ S, a0 ∈ S are the initial state and action;
– aF ∈ S is the fallback action;
– V ⊂ I× T contract variables (i.e., variable names and types);
– T ⊂ I× S × 2I×T ×C× (T ∪ ∅)× S× S is a transition relation, where each

transition ∈ T includes:
• transition name tname ∈ I;
• source state tfrom ∈ S;
• parameter variables (i.e., arguments) tinput ⊆ I× T;
• transition guard gt ∈ C;
• return type toutput ∈ (T ∪ ∅);
• action at ∈ S;
• destination state tto ∈ S.

The initial action a0 represents the constructor of the smart contract. A con-
tract can have at most one constructor. In the case that the initial action a0 is
empty (i.e., there is no constructor), a0 may be omitted from the transition sys-
tem. A constructor is graphically represented in VeriSolid as an incoming arrow
to the initial state. The fallback action aF represents the fallback function of the
contract. Similar to the constructor, a contract can have at most one fallback
function. Solidity fallback functions are further discussed in Appendix C.1.

Lack of the Re-entrancy Vulnerability VeriSolid allows specifying contracts
such that the re-entrancy vulnerability is prevented by design. In particular, after
a transition begins but before the execution of the transition action, the contract
changes its state to a temporary one (see Appendix E). This prevents re-entrancy
since none of the contract functions8 can be called in this state. One might
question this design decision since re-entrancy is not always harmful. However,
we consider that it can pose significant challenges for providing security. First,
supporting re-entrancy substantially increases the complexity of verification. Our
framework allows the efficient verification—within seconds—of a broad range of
properties, which is essential for iterative development. Second, re-entrancy often
leads to vulnerabilities since it significantly complicates contract behavior. We
believe that prohibiting re-entrancy is a small price to pay for security.

3.3 Smart-Contract Operational Semantics

We define the operational semantics of our transition-system based smart con-
tracts in the form of Structural Operational Semantics (SOS) rules [41]. We let
Ψ denote the state of the ledger, which includes account balances, values of state

8 Our framework implements transitions as functions, see Appendix E.
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variables in all contracts, number and timestamp of the last block, etc. During
the execution of a transition, the execution state σ = {Ψ,M} also includes the
memory and stack state M . To handle return statements and exceptions, we also
introduce an execution status, which is E when an exception has been raised,
R[v] when a return statement has been executed with value v (i.e., return v),
and N otherwise. Finally, we let Eval(σ,Exp)→ 〈(σ̂, x), v〉 signify that the eval-
uation of a Solidity expression Exp in execution state σ yields value v and—as
a side effect—changes the execution state to σ̂ and the execution status to x.9

A transition is triggered by providing a transition (i.e., function) name ∈ I
and a list of parameter values v1, v2, . . .. The normal execution of a transition
without returning any value, which takes the ledger from state Ψ to Ψ ′ and the
contract from state s ∈ S to s′ ∈ S, is captured by the TRANSITION rule:

t ∈ T, name = tname, s = tfrom

M = Params(t, v1, v2, . . .), σ = (Ψ,M)
Eval(σ, gt)→ 〈(σ̂, N), true〉
〈(σ̂, N), at〉 → 〈(σ̂′, N), ·〉
σ̂′ = (Ψ ′,M ′), s′ = tto

TRANSITION 〈(Ψ, s),name (v1, v2, . . .)〉 → 〈(Ψ ′, s′, ·)〉

This rule is applied if there exists a transition t whose name tname is name and
whose source state tfrom is the current contract state s (first line). The execution
state σ is initialized by taking the parameter values Params(t, v1, v2, . . .) and
the current ledger state Ψ (second line). If the guard condition gt evaluates
Eval(σ, gt) in the current state σ to true (third line), then the action statement at
of the transition is executed (fourth line), which results in an updated execution
state σ̂′ (see statement rules in Appendix A.3). Finally, if the resulting execution
status is normal N (i.e., no exception was thrown), then the updated ledger
state Ψ ′ and updated contract state s′ (fifth line) are made permanent.

We also define SOS rules for all cases of erroneous transition execution (e.g.,
exception is raised during guard evaluation, transition is reverted, etc.) and
for returning values. Due to space limitations, we include these rules in Ap-
pendix A.2. We also define SOS rules for supported statements in Appendix A.3.

3.4 Safety, Liveness, and Deadlock Freedom

A VeriSolid model is automatically verified for deadlock freedom. A developer
may additionally verify safety and liveness properties. To facilitate the specifica-
tion of properties, VeriSolid offers a set of predefined natural-language like tem-
plates, which correspond to properties in CTL. Alternatively, properties can be
specified directly in CTL. Let us go through some of these predefined templates.
Due to space limitations, the full template list, as well as the CTL property
correspondence is provided in Appendix B.

9 Note that the correctness of our transformations does not depend on the exact
semantics of Eval.
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uint amount = pendingReturns[msg.sender ];
if (amount > 0) {

if (msg.sender != highestBidder)
msg.sender.transfer(amount );

else
msg.sender.transfer(amount - highestBid );

pendingReturns[msg.sender] = 0;
}

Fig. 4. Action of transition withdraw in Blind Auction, specified using Solidity.

〈Transitions ∪ Statements〉 cannot happen after
〈Transitions ∪ Statements〉.

The above template expresses a safety property type. Transitions is a sub-
set of the transitions of the model (i.e., Transitions ⊆ T ). A statement from
Statements is a specific inner statement from the action of a specific transition
(i.e., Statements ⊆ T × S). For instance, we can specify the following safety
properties for the Blind Auction example:
– bid cannot happen after close.
– cancelABB; cancelRB cannot happen after finish,

where cancelABB; cancelRB means cancelABB ∪ cancelRB.

If 〈Transitions ∪ Statements〉 happens, 〈Transitions ∪ Statements〉 can
happen only after 〈Transitions ∪ Statements〉 happens.

The above template expresses a safety property type. A typical vulnerability
is that currency withdrawal functions, e.g., transfer, allow an attacker to with-
draw currency again before updating her balance (similar to “The DAO” attack).
To check this vulnerability type for the Blind Auction example, we can specify
the following property. The statements in the action of transition withdraw are
shown in Figure 4.
– if withdraw.msg.sender.transfer(amount); happens,

withdraw.msg.sender.transfer(amount); can happen only after
withdraw.pendingReturns[msg.sender]=0; happens.

As shown in the example above, a statement is written in the following form:
Transition.Statement to refer to a statement of a specific transition. If there
are multiple identical statements in the same transition, then all of them are
checked for the same property. To verify properties with statements, we need to
transform the input model into an augmented model, as presented in Section 4.

〈Transitions ∪ Statements〉 will eventually happen after
〈Transitions ∪ Statements〉.

Finally, the above template expresses a liveness property type. For instance,
with this template we can write the following liveness property for the Blind
Auction example to check the Denial-of-Service vulnerability (Appendix C.2):
– withdraw.pendingReturns[msg.sender]=0; will eventually happen after

withdraw.msg.sender.transfer(amount);.
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4 Augmented Transition System Transformation

To verify a model with Solidity actions, we transform it to a functionally equiv-
alent model that can be input into our verification tools. We perform two trans-
formations: First, we replace the initial action a0 and the fallback action aF with
transitions. Second, we replace transitions that have complex statements as ac-
tions with a series of transitions that have only simple statements (i.e., variable
declaration and expression statements). After these two transformations, the
entire behavior of the contract is captured using only transitions. The transfor-
mation algorithms are discussed in detail in Appendices D.1 and D.2. The input
of the transformation is a smart contract defined as a transition system (see
Definition 1). The output of the transformation is an augmented smart contract :

Definition 2. An augmented contract is a tuple (D,S, SF , s0, V, T ), where
– D ⊂ D is a set of custom event and type definitions;
– S ⊂ I is a finite set of states;
– SF ⊂ S is a set of final states;
– s0 ∈ S, is the initial state;
– V ⊂ I× T contract variables (i.e., variable names and types);
– T ⊂ I× S × 2I×T ×C× (T ∪ ∅)× S× S is a transition relation (i.e., transi-

tion name, source state, parameter variables, guard, return type, action, and
destination state).

Fig. 5. Augmented model of transition withdraw.

Figure 5 shows the augmented withdraw transition of the Blind Auction
model. We present the complete augmented model in Appendix F. The action
of the original withdraw transition is shown by Figure 4. Notice the added state
withdraw, which avoids re-entrancy by design, as explained in Section 3.2.
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4.1 Observational Equivalence

We study sufficient conditions for augmented models to be behaviorally equiv-
alent to initial models. To do that, we use observational equivalence [34] by
considering non-observable β−transitions. We denote by SI and SE the set of
states of the smart contract transition system and its augmented derivative, re-
spectively. We show that R = {(q, r) ∈ SI × SE} is a weak bi-simulation by
considering as observable transitions A, those that affect the ledger state, while
the remaining transitions B are considered non-observable transitions. Accord-
ing to this definition, the set of transitions in the smart contract system, which
represent the execution semantics of a Solidity named function or the fallback,
are all observable. On the other hand, the augmented system represents each
Solidity function using paths of multiple transitions. We assume that final tran-
sition of each such path is an α transition, while the rest are β transitions. Our
weak bi-simulation is based on the fact the effect of each α ∈ A on the ledger
state is equal for the states of SI and SE . Therefore, if σI = σE at the initial
state of α, then σ′I = σ′E at the resulting state.

A weak simulation over I and E is a relation R ⊆ SI×SE such that we have:

Property 1 For all (q, r) ∈ R and for each α ∈ A, such that q
α→ q′, there is r′

such that r
β?αβ?→ r′ where (q′, r′) ∈ R

For each observable transition α of a state in SI , it should be proved that
(i) a path that consists of α and other non-observable transitions exists in
all its equivalent states in SE , and (ii) the resulting states are equivalent.

Property 2 For all (q, r) ∈ R and α ∈ A, such that r
α→ r′, there is q′ such

that q
α→ q′ where (q′, r′) ∈ R.

For each observable outgoing transition in a state in SE , it should be proved
that (i) there is an outgoing observable transition in all its equivalent states
in SI , and (ii) the resulting states are equivalent.

Property 3 For all (q, r) ∈ R and β ∈ B such that r
β→ r′, (q, r′) ∈ R

For each non observable transition, it should be proved that the the resulting
state is equivalent with all the states that are equivalent with the initial state.

Theorem 1. For each initial smart contract I and its corresponding augmented
smart contract E, it holds that I ∼ E.

The proof of Theorem 1 is presented in the Appendix D.3.

5 Verification Process

Our verification approach checks whether contract behavior satisfies properties
that are required by the developer. To check this, we must take into account the
effect of data and time. However, smart contracts use environmental input as
control data, e.g., in guards. Such input data can be infinite, leading to infinitely
many possible contract states. Exploring every such state is highly inefficient [13]
and hence, appropriate data and time abstractions must be employed.
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We apply data abstraction to ignore variables that depend on (e.g., are up-
dated by) environmental input. Thus, an overapproximation of the contract be-
havior is caused by the fact that transition guards with such variables are not
evaluated; instead, both their values are assumed possible and state space ex-
ploration includes execution traces with and without each guarded transition. In
essence, we analyze a more abstract model of the contract, with a set of reach-
able states and traces that is a superset of the set of states (respectively, traces)
of the actual contract. As an example, let us consider the function in Figure 6.

void fn(int x) {
if (x < 0) {

... (1)
}
if (x > 0) {

... (2)
}

}

Fig. 6. Code example for overapproximation.

An overapproximation of the function’s execution includes traces where both
lines (1) and (2) are visited, even though they cannot both be satisfied by the
same values of x. Note that abstraction is not necessary for variables that are
independent of environment input (e.g. iteration counters of known range). These
are updated in the model as they are calculated by contract statements.

We also apply abstraction to time variables (e.g. the now variable in the Blind
Auction) using a slightly different approach. Although we need to know which
transitions get invalidated as time increases, we do not represent the time spent
in each state, as this time can be arbitrarily high. Therefore, for a time-guarded
transition in the model, say from a state sx, one of the following applies:

– if the guard is of type t ≤ tmax, checking that a time variable does not exceed
a threshold, a loop transition is added to sx, with an action t = tmax + 1
that invalidates the guard. A deadlock may be found in traces where this
invalidating loop is executed (e.g., if no other transitions are offered in sx).

– if the guard is of type t > tmin, checking that a time variable exceeds a
threshold, an action t=tmin+1 is added to the guarded transition. This sets
the time to the earliest point that next state can be reached (e.g., useful for
checking bounded liveness properties.)

This overapproximation has the following implications.

Safety properties: Safety properties that are fulfilled in the abstract model
are also guaranteed in the actual system. Each safety property checks the non-
reachability of a set of erroneous states. If these states are unreachable in the
abstract model, they will be unreachable in the concrete model, which contains
a subset of the abstract model’s states. This property type is useful for checking
vulnerabilities in currency withdrawal functions (e.g., the “DAO attack”).
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Liveness properties: Liveness properties that are violated in the abstract
model are also violated in the actual system. Each liveness property checks that a
set of states are reachable. If they are found unreachable (i.e., liveness violation)
in the abstract model, they will also be unreachable in the concrete model. This
property type is useful for “Denial-of-Service” vulnerabilities (Appendix C.2).

Deadlock freedom: States without enabled outgoing transitions are identi-
fied as deadlock states. If no deadlock states are reachable in the abstract model,
they will not be reachable in the actual system.

5.1 VeriSolid-to-BIP Mapping

Since both VeriSolid and BIP model contract behavior as transition systems, the
transformation is a simple mapping between the transitions, states, guards, and
actions of VeriSolid to the transitions, states, guards, and actions of BIP (see
Appendix C.3 for background on BIP). Because this is an one-to-one mapping,
we do not provide a proof. Our translation algorithm performs a single-pass
syntax-directed parsing of the user’s VeriSolid input and collects values that are
appended to the attributes list of the templates. Specifically, the following values
are collected:

– variables v ∈ V , where type(v) is the data type of v and name(v) is the
variable name (i.e., identifier);

– states s ∈ S;
– transitions t ∈ T , where tname is the transition (and corresponding port)

name, tfrom and tto are the outgoing and incoming states, at and gt are
invocations to functions that implement the associated actions and guards.

atom type Contract()

∀v ∈ V : data type(v) name(v)

∀t ∈ T : export port synPort tname
()

places s0, . . . , s|S|−1

initial to s0

∀t ∈ T : on tname
from tfrom to tto

provided (gt) do {at}
end

Fig. 7. BIP code generation template.

Figure 7 shows the BIP code template. We use fixed-width font for the
generated output, and italic font for elements that are replaced with input.
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Table 2. Analyzed properties and verification results for the case study models.

Case Study Properties Type Result

BlindAuction
(initial)
states: 54

(i) bid cannot happen after close:
AG

(
close → AG¬bid

) Safety Verified

(ii) cancelABB or cancelRB cannot happen
after finish:

AG
(
finish → AG¬

(
cancelRB ∨ cancelABB

)) Safety Verified

(iii) withdraw can happen only after
finish:

A
[
¬withdraw W finish

] Safety Verified

(iv) finish can happen only after close:
A
[
¬finish W close

] Safety Verified

BlindAuction
(augmented)
states: 161

(v) 23 cannot happen after 18:
AG

(
18 → AG¬23

) Safety Verified

(vi) if 21 happens, 21 can happen only
after 24:

AG
(
21 → AX A

[
¬21 W

(
24

) ]) Safety Verified

DAO attack
states: 9

if call happens, call can happen only
after subtract:

AG
(
call → AX A

[
¬call W subtract

]) Safety Verified

King of Ether 1
states: 10

7 will eventually happen after 4:
AG

(
4 → AF 7

) Liveness Violated

King of Ether 2
states: 10

8 will eventually happen after fallback:
AG

(
fallback → AF 8

) Liveness Violated

5.2 Verification Results

Table 2 summarizes the properties and verification results. For ease of pre-
sentation, when properties include statements, we replace statements with the
augmented-transition numbers that we have added to Figures 9, 11, and 12 in
Appendices F.1 and G.2. The number of states represents the reachable state
space as evaluated by nuXmv.

Blind Auction We analyzed both the initial and augmented models of the
Blind Auction contract. On the initial model, we checked four safety properties
(see Properties (i)–(iv) in Table 2). On the augmented model, which allows
for more fine-grained analysis, we checked two additional safety properties. All
properties were verified to hold. The models were found to be deadlock-free and
their state space was evaluated to 54 and 161 states, respectively. The augmented
model and generated code can be found in Appendix F.

The DAO Attack We modeled a simplified version of the DAO contract. Atzei
et al. [2] discuss two different vulnerabilities exploited on DAO and present
different attack scenarios. Our verified safety property (Table 2) excludes the
possibility of both attacks. The augmented model can be found in Appendix G.1.
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King of the Ether Throne For checking Denial-of-Service vulnerabilities,
we created models of two versions of the King of the Ether contract [2], which
are provided in Appendix G.2. On “King of Ether 1,” we checked a liveness
property stating that crowning (transition 7) will happen at some time after the
compensation calculation (transition 4). The property is violated by the following
counterexample: fallback → 4 → 5 . A second liveness property, which states that
the crowning will happen at some time after fallback fails in “King of Ether 2.”
A counterexample of the property violation is the following: fallback → 4 . Note
that usually many counterexamples may exist for the same violation.

Resource Allocation We have additionally verified a larger smart contract
that acts as the core of a blockchain-based platform for transactive energy sys-
tems. The reachable state space, as evaluated by nuXmv, is 3, 487. Properties
were verified or shown to be violated within seconds. Due to space limitations,
we present the verification results in Appendix G.3.

6 Related Work

Here, we present a brief overview of related work. We provide a more detailed
discussion in Appendix H.

Motivated by the large number of smart-contract vulnerabilities in practice,
researchers have investigated and established taxonomies for common types of
contract vulnerabilities [2,29]. To find vulnerabilities in existing contracts, both
verification and vulnerability discovery are considered in the literature [40]. In
comparison, the main advantage of our model-based approach is that it allows
developers to specify desired properties with respect to a high-level model instead
of, e.g., EVM bytecode, and also provides verification results and counterexam-
ples in a developer-friendly, easy to understand, high-level form. Further, our
approach allows verifying whether a contract satisfies all desired security prop-
erties instead of detecting certain types of vulnerabilities; hence, it can detect
atypical vulnerabilities.

Hirai performs a formal verification of a smart contract used by the Ethereum
Name Service [22] and defines the complete instruction set of the Ethereum Vir-
tual Machine (EVM) in Lem, a language that can be compiled for interactive
theorem provers, which enables proving certain safety properties for existing
contracts [23]. Bhargavan et al. outline a framework for verifying the safety
and correctness of Ethereum contracts based on translating Solidity and EVM
bytecode contracts into F ∗ [8]. Tsankov et al. introduce a security analyzer for
Ethereum contracts, called Securify, which symbolically encodes the depen-
dence graph of a contract in stratified Datalog [25] and then uses off-the-shelf
solvers to check the satisfaction of properties [49]. Atzei et al. prove the well-
formedness properties of the Bitcoin blockchain have also been proven using a
formal model [3]. Techniques from runtime verification are used to detect and
recover from violations at runtime [15,14].
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Luu et al. provide a tool called Oyente, which can analyze contracts and de-
tect certain typical security vulnerabilities [29]. Building on Oyente, Albert et
al. introduce the EthIR framework, which can produce a rule-based representa-
tion of bytecode, enabling the application of existing analysis to infer properties
of the EVM codee [1]. Nikolic et al. present the MAIAN tool for detecting three
types of vulnerable contracts, called prodigal, suicidal and greedy [37]. Fröwis
and Böhme define a heuristic indicator of control flow immutability to quantify
the prevalence of contractual loopholes based on modifying the control flow of
Ethereum contracts [18]. Brent et al. introduce a security analysis framework
for Ethereum contracts, called Vandal, which converts EVM bytecode to se-
mantic relations, which are then analyzed to detect vulnerabilities described in
the Soufflé language [10]. Mueller presents Mythril, a security analysis tool
for Ethereum smart contracts with a symbolic execution backend [35]. Stortz
introduces Rattle, a static analysis framework for EVM bytecode [48].

Researchers also focus on providing formal operational semantics for EVM
bytecode and Solidity language [21,19,20,53,26]. Common design patterns in
Ethereum smart contracts are also identified and studied by multiple research ef-
forts [5,51]. Finally, to facilitate development, researchers have also introduced a
functional smart-contract language [39], an approach for semi-automated trans-
lation of human-readable contract representations into computational equiva-
lents [17], a logic-based smart-contract model [24].

7 Conclusion

We presented an end-to-end framework that allows the generation of correct-
by-design contracts by performing a set of equivalent transformations. First, we
generate an augmented transition system from an initial transition system, based
on the operational semantics of supported Solidity statements (Appendix A.3).
We have proven that the two transition systems are observationally equivalent
(Section 4.1). Second, we generate the BIP transition system from the augmented
transition system through a direct one-to-one mapping. Third, we generate the
NuSMV transition system from the BIP system (shown to be observationally
equivalent in [38]). Finally, we generate functionally equivalent Solidity code,
based on the operational semantics of the transition system (Appendix A.2).

To the best of our knowledge, VeriSolid is the first framework to promote
a model-based, correctness-by-design approach for blockchain-based smart con-
tracts. Properties established at any step of the VeriSolid design flow are pre-
served in the resulting smart contracts, guaranteeing their correctness. VeriSolid
fully automates the process of verification and code generation, while enhanc-
ing usability by providing easy-to-use graphical editors for the specification of
transition systems and natural-like language templates for the specification of
formal properties. By performing verification early at design time, we provide
a cost-effective approach; fixing bugs later in the development process can be
very expensive. Our verification approach can detect typical vulnerabilities, but
it may also detect any violation of required properties. Since our tool applies
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verification at a high-level, it can provide meaningful feedback to the developer
when a property is not satisfied, which would be much harder to do at byte-
code level. Future work includes extending the approach to model and generate
correct-by-design systems of interacting smart contracts.
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A Formalisms

A.1 Supported Solidity Subset

Here, we define the subset of Solidity that VeriSolid supports. First, let us in-
troduce the following notation:

– Let T denote the set of Solidity types;
– let I denote the set of valid Solidity identifiers;
– let D denote the set of Solidity event and custom type definitions;
– let E denote the set of Solidity expressions;
– let C denote the set of Solidity expressions without side effects (i.e., expres-

sion whose evaluation does not change storage, memory, balances, etc.);
– let S denote the set of supported Solidity statements.

We define the set of supported event (〈event〉) and custom type (〈struct〉)
definitions D as follows:

〈event〉 ::= event @identifier (
(
@type @identifier

(, @type @identifier) ∗
)
? );

〈struct〉 ::= struct @identifier { (@type @identifier ;) ∗ }

We let E denote the set of Solidity expressions. We let C denote the following
subset of Solidity expressions, which do not have any side effects:

〈pure〉 ::=| 〈variable〉
| @constant

| ( 〈pure〉 )
| 〈unary〉 〈pure〉
| 〈pure〉 〈operator〉 〈pure〉

〈variable〉 ::=| @identifier

| 〈variable〉 . @identifier

| 〈variable〉 [ 〈pure〉 ]

〈operator〉 ::= == | != | < | > | >= | <=
| + | * | - | / | % | && | ||

〈unary〉 ::= ! | + | -

VeriSolid supports the following types of statements:
– variable declarations (e.g., int32 value = 0; and address from = msg.sender;),
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– expressions (e.g., amount = balance[msg.sender];

or msg.sender.transfer(amount);),
– event statements (e.g., emit Deposit(amount, msg.sender);),
– return statements (e.g., return; and return amount;),
– if and if ... else selection statements (including if ... else if ... and so on),
– for and while loop statements,
– compound statements (i.e., { statement1 statement2 ... }).

We define the formal grammar of the subset of supported Solidity statements S
as follows:

〈statement〉 ::=

| 〈declaration〉 ;
| @expression ;

| emit @identifier(
(
@expression

(, @expression) ∗
)
?);

| return (@pure)? ;

| if ( @expression ) 〈statement〉
(else 〈statement〉)?

| for ( 〈declaration〉 ; @expression ;

@expression ) 〈statement〉
| while ( @expression) 〈statement〉
| { (〈statement〉) ∗ }

〈declaration〉 ::= @type @identifier (= @expression)?

where @expression ∈ E is a primary Solidity expression, which may include
function calls, transfers, etc., while @pure ∈ C is a Solidity expression without
side effects.

A.2 Operational Semantics of the Transition System

We let Ψ denote the state of the ledger, which includes account balances, values of
state variables in all contracts, number and timestamp of the last block, etc. Dur-
ing the execution of a transition, the execution state σ = {Ψ,M} also includes
the memory and stack state M . To handle return statements and exceptions, we
also introduce an execution status, which is equal to E when an exception has
been raised, R[v] when a return statement has been executed with value v (i.e.,
return v), and N otherwise. Finally, we let Eval(σ,Exp) → 〈(σ̂, x), v〉 signify
that the evaluation of a Solidity expression Exp in execution state σ yields value
v and—as a side effect—changes the execution state to σ̂ and the execution
status to x.

A transition is triggered by providing a transition (i.e., function) name ∈ I
and a list of parameter values v1, v2, . . .. The normal execution of a transition
without returning any value, which takes the ledger from state Ψ to Ψ ′ and the
contract from state s ∈ S to s′ ∈ S, is captured by the TRANSITION rule:
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t ∈ T, name = tname, s = tfrom

M = Params(t, v1, v2, . . .), σ = (Ψ,M)
Eval(σ, gt)→ 〈(σ̂, N), true〉
〈(σ̂, N), at〉 → 〈(σ̂′, N), ·〉
σ̂′ = (Ψ ′,M ′), s′ = tto

TRANSITION 〈(Ψ, s),name (v1, v2, . . .)〉 → 〈(Ψ ′, s′, ·)〉
This rule is applied if there exists a transition t whose name tname is name and

whose source state tfrom is the current contract state s (first line). The execution
state σ is initialized by taking the parameter values Params(t, v1, v2, . . .) and
the current ledger state Ψ (second line). If the guard condition gt evaluates
Eval(σ, gt) in the current state σ to true without any exceptions (third line),
then the action statement at of the transition is executed (fourth line), which
results in an updated execution state σ̂′ (see statement rules in Appendix A.3).
Finally, if the execution status resulting from the action is normal N (i.e., no
exception was thrown), then the updated ledger state Ψ ′ and updated contract
state s′ (fifth line) are made permanent.

The normal execution of a transition that returns a value is captured by the
TRANSITION-RET rule:

t ∈ T, name = tname, s = tfrom

M = Params(t, v1, v2, . . .), σ = (Ψ,M)
Eval(σ, gt)→ 〈(σ̂, N), true〉
〈(σ̂, N), at〉 → 〈(σ̂′, R[v]), ·〉
σ̂′ = (Ψ ′,M ′), s′ = tto

TRANSITION-RET 〈(Ψ, s),name (v1, v2, . . .)〉 → 〈(Ψ ′, s′, v)〉
This rule is applied if the transition action at finishes with a return v state-

ment, resulting in execution status R[v].

If the transition t by name tname = name exists, but its source state tfrom is
not s, then the transition is not executed, which is captured by the TRANSITION-
WRO rule:

t ∈ T, name = tname, s 6= tfrom
TRANSITION-WRO 〈(Ψ, s),name (v1, v2, . . .)〉 → 〈(Ψ, s, ·)〉

Similarly, if the guard condition gt of the transition evaluates Eval(σ, gt) to
false, then the transition is reverted, , which is captured by the TRANSITION-
GRD rule:

t ∈ T, name = tname, s = tfrom

M = Params(t, v1, v2, . . .), σ = (Ψ,M)
Eval(σ, gt)→ 〈(σ̂, N), false〉

TRANSITION-GRD 〈(Ψ, s),name (v1, v2, . . .)〉 → 〈(Ψ, s, ·)〉
If an exception is raised during the evaluation Eval(σ, gt) of the guard condi-

tion gt (i.e., if the execution status becomes E), then the transition is reverted,
which is captured by the TRANSITION-EXC1 rule:

t ∈ T, name = tname, s = tfrom

M = Params(t, v1, v2, . . .), σ = (Ψ,M)
Eval(σ, gt)→ 〈(σ̂, E), x〉

TRANSITION-EXC1 〈(Ψ, s),name (v1, v2, . . .)〉 → 〈(Ψ, s, ·)〉
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Similarly, if an exception is raised during the execution of the transition ac-
tion at, then the transition is reverted, which is captured by the TRANSITION-
EXC2 rule:

t ∈ T, name = tname, s = tfrom

M = Params(t, v1, v2, . . .), σ = (Ψ,M)
Eval(σ, gt)→ 〈(σ̂, N), true〉
〈(σ̂, N), at〉 → 〈(σ̂′, E), ·〉

TRANSITION-EXC2 〈(Ψ, s),name (v1, v2, . . .)〉 → 〈(Ψ, s, ·)〉
On the other hand, if there exists no transition by the name name, then the

fallback action aF is executed, which is captured by the TRANSITION-FAL
rule:

∀t ∈ T : name 6= tname

σ = (Ψ, ∅)
〈(σ̂, N), aF 〉 → 〈(σ̂′, x), ·〉, x 6= E

σ̂′ = (Ψ ′, y)
TRANSITION-FAL 〈(Ψ, s),name (v1, v2, . . .)〉 → 〈(Ψ ′, s, ·)〉

Finally, if an exception is raised during the execution of the fallback action
aF , then the transition is reverted, which is captured by the TRANSITION-
EXC3 rule:

∀t ∈ T : name 6= tname

σ = (Ψ, ∅)
〈(σ̂, N), aF 〉 → 〈(σ̂′, E), ·〉

TRANSITION-EXC3 〈(Ψ, s),name (v1, v2, . . .)〉 → 〈(Ψ, s, ·)〉

A.3 Operational Semantics of Supported Solidity Statements

We build on the small-step operational semantics for Solidity defined in [26],
which enables us to reason about one computational step at a time. We have
extended the semantics of [26] to support exceptions and return values.

We present the semantics of each supported Solidity statement as one or more
rules. Each rule takes an execution state σ, an execution status ∈ {N,E,R[v]},
and a statement Stmt ∈ S, and maps them to a new execution state, a new exe-
cution status, and a statement that remains to be executed (or · if no statements
are left to be executed).

We start with basic rules that apply to every statement. If an exception
has been raised or if a return statement has been executed, then no further
statements should be executed, which is captured by the SKIP-EXC and SKIP-
RET rules:

SKIP-EXC 〈(σ,E),Stmt〉 → 〈(σ,E), ·〉

SKIP-RET 〈(σ,R[v]),Stmt〉 → 〈(σ,R[v]), ·〉
A return statement changes the execution status to R[·], skipping all re-

maining statements, which is captured by the RETURN rule:

RETURN 〈(σ,N), return;〉 → 〈(σ,R[·]), ·〉
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To return a value v, a return Exp statement changes the execution status
to R[v], which is captured by the RETURN-VAL rule:

Eval(σ,Exp)→ 〈(σ′, N), v〉
RETURN-VAL 〈(σ,N), return Exp;〉 → 〈(σ′, R[v]), ·〉

If an exception is raised during the evaluation of Eval(σ,Exp), then execution
status is changed to E, which is captured by the RETURN-EXC rule:

Eval(σ,Exp)→ 〈(σ′, E), v〉
RETURN-EXC 〈(σ,N), return Exp;〉 → 〈(σ′, E), ·〉

A compound statement (i.e., a list of statements enclosed in braces { and })
is executed by executing inner statements one after another, which is captured
by the COMPOUND rule:

〈(σ,N),Stmt1〉 → 〈(σ1, x1), ·〉
〈(σ1, x1),Stmt2〉 → 〈(σ2, x2), ·〉

. . .
〈(σn−1, xn−1),Stmtn〉 → 〈(σ′, x), ·〉

COMPOUND 〈(σ,N), {Stmt1 Stmt2 . . . Stmtn}〉 → 〈(σ′, x), ·〉

Loop Statements A while loop statement evaluates its condition Exp and if
its false, skips the execution of the body statement Stmt, which is captured by
the WHILE1 rule:

Eval(σ,Exp)→ 〈(σ′, N), false〉
WHILE1 〈(σ,N), while(Exp) Stmt〉 → 〈(σ′, N), ·〉

Similarly, if the evaluation of the loop condition Exp results is an exception,
then execution of the body statement Stmt is skipped, which is captured by the
WHILE-EXC rule:

Eval(σ,Exp)→ 〈(σ′, E), x〉
WHILE-EXC 〈(σ,N), while(Exp) Stmt〉 → 〈(σ′, E), ·〉

On the other hand, if the loop condition Exp is true, then the body statement
Stmt is executed, which is captured by the WHILE2 rule:

Eval(σ,Exp)→ 〈(σ̂, N), true〉
〈(σ̂, N),Stmt〉 → 〈(σ̂′, x), ·〉

WHILE2 〈(σ,N), while(Exp) Stmt〉 → 〈(σ̂′, x), while(Exp) Stmt〉
A for loop statement can be reduced to a while loop, which is captured by

the FOR rule:
〈(σ,N),StmtI〉 → 〈(σ′, x), ·〉

FOR 〈(σ,N), for(StmtI;ExpC;StmtA) StmtB〉
→ 〈(σ′, x), while(ExpC) {StmtB StmtA}〉

Selection Statements An if statement is captured by the IF1, IF2, and
IF-EXC rules:

Eval(σ,Exp)→ 〈(σ̂, N), true〉
〈(σ̂, N),Stmt〉 → 〈(σ̂′, x), ·〉

IF1 〈(σ,N), if(Exp) Stmt〉 → 〈(σ̂′, x), ·〉
Eval(σ,Exp)→ 〈(σ̂, N), false〉

IF2 〈(σ,N), if(Exp) Stmt〉 → 〈(σ̂, N), ·〉
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Eval(σ,Exp)→ 〈(σ̂, E), x〉
IF-EXC 〈(σ,N), if(Exp) Stmt〉 → 〈(σ,E), ·〉

Similarly, an if . . . else statement is captured by three rules, IFELSE1,
IFELSE2, and IFELSE-EXC:

Eval(σ,Exp)→ 〈(σ̂, N), true〉
〈(σ̂, N),Stmt1〉 → 〈(σ̂′, x), ·〉

IFELSE1 〈(σ,N), if(Exp)Stmt1 else Stmt2〉 → 〈(σ̂′, x), ·〉
Eval(σ,Exp)→ 〈(σ̂, N), false〉
〈(σ̂, N),Stmt2〉 → 〈(σ̂′, x), ·〉

IFELSE2 〈(σ,N), if(Exp)Stmt1 else Stmt2〉 → 〈(σ̂′, x), ·〉
Eval(σ,Exp)→ 〈(σ̂, E), x〉

IFELSE-EXC 〈(σ,N), if(Exp) Stmt1 else Stmt2〉 → 〈(σ,E), ·〉

Miscellaneous Statements An expression statement is captured by the EX-
PRESSION rule:

Eval(σ,Exp)→ 〈(σ′, x), v〉
EXPRESSION 〈(σ,N),Exp;〉 → 〈(σ′, x), ·〉

A variable declaration statement is captured by the VARIABLE or VARIABLE-
ASG rule:

Decl(σ,Type,Name)→ 〈(σ′, x)〉
VARIABLE 〈(σ,N),Type Name;〉 → 〈(σ′, x), ·〉

Eval(σ,Exp)→ 〈(σ′, x), v〉
VARIABLE-ASG 〈(σ,N),Type Name = Exp;〉

→ 〈(σ′, x), { Type Name; Name = v; }〉
where Decl(σ,Type,Name) introduces a variable into the namespace (and ex-
tends memory when necessary for memory-type variables).

An event statement is captured by the EVENT and EVENT-EXC rules:
Eval(σ,Exp1)→ 〈(σ1, N), v1〉

. . .
Eval(σn−1,Expn)→ 〈(σn, N), vn〉

Log(σn, (name, v1, . . . , vn))→ (σ′, N)
EVENT 〈(σ,N), emit name (Exp1, . . . ,Expn);〉 → 〈(σ′, x), ·〉

Eval(σ,Exp1)→ 〈(σ1, x1), v1〉
. . .

Eval(σn−1,Expn)→ 〈(σn, xn), vn〉
Log(σn, (name, v1, . . . , vn))→ (σ′, y)
x1 = E ∨ . . . ∨ xn = E ∨ y = E

EVENT-EXC 〈(σ,N), emit name (Exp1, . . . ,Expn);〉 → 〈(σ′, x), ·〉
where Log records the specified values on the blockchain.

B Templates and CTL for Property Specification

B.1 Background on CTL

For the specification of properties, we use Computation Tree Logic (CTL). We
only provide a brief overview, referring the reader to the classic textbook [4] for
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a complete and formal presentation. CTL formulas specify properties of execu-
tion trees generated by transitions systems. The formulas are built from atomic
predicates that represent transitions and statements of the transition system,
using several operators, such as EX, AX, EF, AF, EG, AG (unary) and E[· U ·], A[· U ·],
E[· W ·], A[· W ·] (binary). Each operator consists of a quantifier on the branches
of the tree and a temporal modality, which together define when in the exe-
cution the operand sub-formulas must hold. The intuition behind the letters is
the following: the branch quantifiers are A (for “All”) and E (for “Exists”); the
temporal modalities are X (for “neXt”), F (for “some time in the Future”), G (for
“Globally”), U (for “Until”) and W (for “Weak until”). A property is satisfied if
it holds in the initial state of the transition systems. For instance, the formula
A[p W q] specifies that in all execution branches the predicate p must hold up to
the first state (not including this latter), where the predicate q holds. Since we
used the weak until operator W, if q never holds, p must hold forever. As soon as
q holds in one state of an execution branch, p does not need to hold anymore,
even if q does not hold. On the contrary, the formula AG A[p W q] specifies that
the subformula A[p W q] must hold in all branches at all times. Thus, p must hold
whenever q does not hold, i.e., AG A[p W q] = AG (p ∨ q).

B.2 Templates and Corresponding CTL formulas

Tables 3 and 4 contain the full list of our natural language-like templates and
their corresponding CTL formulas. We use p, q, and r for simplicity, to denote
the transition and statement sets, i.e., 〈Transitions ∪ Statements〉.

Table 3. Safety property templates

Template CTL formula

p can never happen after q AG(q → AG (¬p))
p can happen only after q A[¬ p W q]

if p happens, q can happen only after r happens AG(p → AX A [¬ q W r])
p can never happen AG( ¬p)

p can never happen before q A[¬ p | AG( ¬q) W q]

Table 4. Liveness property templates

Template CTL formula

p will eventually happen after q AG (q → AF (p))
p will eventually happen AF( p)
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C Background

C.1 Solidity Function Calls

Nested function calls in Solidity are the reason behind several identified vulner-
abilities. We briefly describe how a smart contract can call a function of another
contract or delegate execution. More information can be found in the Solid-
ity documentation [46]. Firstly, a contract can call functions defined in another
contract:

– addressOfContract.call(data): Low-level call, for which the name and ar-
guments of the invoked function must be specified in data according to the
Ethereum ABI. The call method returns Boolean true if the execution was
successful (or if there is no contract at the specified address) and false if it
failed (e.g., if the invoked function threw an exception).

– contract.function(arg1, arg2, ...): High-level call10, which may return a
value as output on success. If the invoked method fails (or does not exist),
an exception is raised in the caller, which means that all changes made by
the caller are reverted, and the exception is automatically propagated up in
the call hierarchy.

If the function specified for call does not exist, then the fallback function
of the callee is invoked. The fallback function does not have a name11 and argu-
ments, and it cannot return anything. A contract can have at most one fallback
function, and no function is executed if a fallback is not found (note that this
does not constitute a failure). The fallback function is also invoked if ether12 is
sent to the contract using one of the two methods:

– addressOfContract.send(amount): Sends the specified amount of currency
to the contract, invoking its fallback function (if there exists one). If send

fails (e.g., if the fallback function throws an exception), then it returns
Boolean false; otherwise, it returns true.

– addressOfContract.transfer(amount): Similar to send, but raises an ex-
ception on failure, which is handled similar to a high-level function call fail-
ure.

Finally, a contract can also “delegate” execution to another contract using ad-
dressOfContract.delegatecall(data). Delegation is similar to a low-level call,
but there is a fundamental difference: in this case, the function specified by data
is executed in the context of the caller (e.g., the function will see the contract
variables of the caller, not the callee). In other words, contracts may “borrow
code” from other contracts using delegatecall, which enables the creation of
libraries.

10 Note that contract is a reference to a Solidity contract that is available at compile
time, while addressOfContract is just a 160-bit address value.

11 For ease of presentation, we will refer to the fallback function using the name “fall-
back” in our models.

12 Ether is the cryptocurrency provided by the Ethereum blockchain.
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C.2 Examples of Common Solidity Vulnerabilities

Here, we discuss three examples of common types of vulnerabilities in Solidity
smart contracts [43,2].

Re-Entrancy When a contract calls a function in another contract, the caller
is blocked until the call returns. This allows the callee, who may be malicious, to
take advantage of the intermediate state in which the caller is, e.g., by invoking
a function in the caller. Re-entrancy is one of the most common culprits behind
vulnerabilities, and it was also exploited in the infamous “The DAO” attack [16].
In Section 3.2, we discuss how the model behind VeriSolid prevents re-entrancy.

“Denial of Service” [2] If a function involves sending ether using transfer or
making a high-level function call to another contract, then the recipient contract
can “block” the execution of this function by always throwing an exception. Such
vulnerabilities can be detected with VeriSolid using a type of liveness properties
(see Section 3.4), as we do for “King of Ether 2” (see Section 5.2).

Deadlocks A contract may end up in a “deadlock” state (either accidentally
or through adversarial action), in which it is no longer possible to withdraw or
transfer currency from the contract. This means that the currency stored in the
contract is practically lost, similar to what happened to the Parity multisignature
wallet contracts [36]. VeriSolid can verify if a contract model is deadlock-free,
without requiring the developer to specify any property (Section 5).

C.3 Modeling and Verification with BIP and nuXmv

We recall the necessary concepts of the Behavior-Interaction-Priority (BIP) com-
ponent framework [6]. BIP has been used for constructing several correct-by-
design systems, such as robotic systems and satellite on-board software [42,31,7].
Systems are modeled in BIP by superposing three layers: Behavior, Interaction,
and Priority. The behavior layer consists of a set of components represented
by transition systems. Each component transition is labeled by a port, which
specifies the transition’s unique name. Ports form the interface of a component
and are used for interaction with other components. Additionally, each transi-
tion may be associated with a set of guards and a set of actions. A guard is a
predicate on variables that must be true to allow the execution of the associ-
ated transition. An action is a computation triggered by the execution of the
associated transition. Component interaction is described in the interaction and
priority layers. We omit the explanation of these two layers, which are not used
in this paper.

In order to check behavioral correctness of a system under design, formal
verification is essential. While alternative approaches, such as simulation and
testing, rely on the selection of appropriate test input for an adequate coverage
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of the program’s control flow, formal verification (e.g., by model checking) guar-
antees full coverage of execution paths for all possible inputs. Thus, it provides a
rigorous way to assert (or deny) that a system model meets a set of properties.

In VeriSolid, we verify deadlock-freedom using the state space exploration
analysis provided by BIP. This analysis checks deadlock by default, as it is an
essential correctness property. For the verification of safety and liveness proper-
ties, we use the BIP-to-NuSMV tool13 to translate our BIP models into NuSMV,
the input language of the nuXmv symbolic model checker [9]. The developer must
give as input the properties to be verified directly as temporal logic formulas or
by using natural language templates provided by our tool. The template in-
put is used to generate (Computation Tree Logic) CTL specifications which are
checked by the nuXmv tool. If a property is violated, the user gets a counterex-
ample transition sequence that exemplifies the violation. Counterexamples help
the user to locate the error back to the input model and identify its cause. The
correctness of the BIP-to-NuSMV transformation based on bi-simulation was
proved by Noureddine et al. [38].

D Augmentation Algorithms and Equivalence Proof

D.1 Conformance Transformation

First, we introduce Algorithm 1 for replacing the fallback and initial actions,
which model the fallback function and constructor of a Solidity contract, with
functionally equivalent transitions. Since the fallback function may be called in
any state, the algorithm adds to each state a transition that does not change the
state and whose action is the fallback action. Then, the algorithm adds a new
initial state and a transition from the new to the original initial state, whose
action is the initial action.

Algorithm 1 Conformance(D,S, SF , s0, a0, aF , V, T )

Input: model (D,S, SF , s0, a0, aF , V, T )
Result: model (D,S, SF , s0, V, T )

1 for state s ∈ S do
2 add transition from s to s with action aF

3 end for
4 add state sI
5 add transition from sI to s0 with action aI

6 change initial state s0 := sI

D.2 Augmentation Transformation

Next, we introduce algorithms for translating a model with compound, selection,
loop, etc. statements into a model with only variable declaration and expression

13 http://risd.epfl.ch/bip2nusmv

http://risd.epfl.ch/bip2nusmv
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statements. We first describe Algorithm 2, which translates a single transition
with an arbitrary statement into a set of states and internal transitions with
only variable declaration, expression, and return statements. Then, we describe
Algorithm 3, which translates an entire model with the help of Algorithm 2. Our
augmentation algorithms are based on the small-step operational semantics of
our supported Solidity Statements provided in Appendix A.3.

Algorithm 2, called AugmentStatement, takes as input a Solidity statement,
an origin, destination, and return state, and it creates a set of states and tran-
sitions that implement the input statement using only variable declaration, ex-
pression, and return statements as actions. Note that before invoking this al-
gorithm, Algorithm 3 removes the original transition between the origin and
destination states; hence, this algorithm creates all transitions (and states) from
scratch. If the statement is a variable declaration, event, or expression statement,
then the algorithm simply creates a transition from the origin to the destina-
tion state without any guards and having the statement as an action. If the
statement is a return statement, then it creates a transition from the origin to
the return state. Note that the return state is preserved by all recursive calls
to AugmentStatement, and it is initialized with the destination of the original
transition by Algorithm 3.

If the statement is a compound, selection, or loop statement, Algorithm 2
creates a set of states and transitions. For a compound statement (i.e., list of
statements), the algorithm creates a set of new states, each of which corre-
sponds to the execution stage after an inner statement (except for the last one),
and it invokes itself (i.e., AugmentStatement) for each inner statement. For a
selection statement with an else (i.e., false) branch, it creates two states, which
correspond to the true and false branches. Then, it creates transitions to these
states with the branch condition and its negation as guards, and invokes itself
for both the true and false body statements. If the selection statement does not
have an else branch, then the false branch is replaced by a simple transition
to the destination state with the negation of the condition as a guard. Finally,
given a for loop statement, it creates three states, which model three stages
of the loop execution: after initialization, after each time the loop condition is
evaluated to true, and after each execution of the body. Then, it invokes itself
with the initialization statement, creates transitions with the loop condition and
its negation (leading to the second state or the destination state), and then com-
pletes the loop by invoking itself for the body and afterthought statements. For
a while loop statement, it needs to create only one new state since there is no
initialization or afterthought statement.

Algorithm 3, called AugmentModel, takes as input a model that can have any
set of supported statements as actions, and it translates the model into one that
has only variable declaration, expression, and return statements. It does so by
iterating over the transitions and replacing each transition with a set of states
and transitions using Algorithm 2. Furthermore, it also augments the transition
to consider the possibility that the transition is reverted due to an exception
(e.g., failure of a high-level function call or transfer). More specifically, for each
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Algorithm 2 AugmentStatement(a, so, sd, sr)

Input: statement a, origin state so, destination state sd, return state sr
1 if a is variable declaration statement ∨ a is event statement ∨ a is expression

statement then
2 add transition from so to sd with action a
3 else if a is return statement then
4 add transition from so to sr with action a
5 else if a is compound statement {a1; a2; . . . ; aN} then
6 for i = 1, 2, . . . , N − 1 do
7 add state si
8 end for
9 AugmentStatement(a1, so, s1, sr)

10 for i = 2, 3, . . . , N − 1 do
11 AugmentStatement(ai, si−1, si, sr)
12 end for
13 AugmentStatement(aN , sN−1, sd, sr)
14 else if a is selection statement if (c) aT else aF then
15 add state sT
16 add transition from so to sT with guard c
17 AugmentStatement(aT , sT , sd, sr)
18 add state sF
19 add transition from so to sF with guard !(c)
20 AugmentStatement(aF , sF , sd, sr)
21 else if a is selection statement if (c) aT then
22 add state sT
23 add transition from so to sT with guard c
24 AugmentStatement(aT , sT , sd, sr)
25 add transition from so to sd with guard !(c)
26 else if a is loop statement for (aI; c; aA) aB then
27 add states sI , sC , sB
28 AugmentStatement(aI , so, sI , sr)
29 add transition from sI to sd with guard !(c)
30 add transition from sI to sC with guard c
31 AugmentStatement(aB , sC , sB , sr)
32 AugmentStatement(aA, sB , sI , sr)
33 else if a is loop statement while (c) aB then
34 add state sL
35 add transition from so to sd with guard !(c)
36 add transition from so to sL with guard c
37 AugmentStatement(aB , sL, so, sr)
38 end if
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Algorithm 3 AugmentModel(D,S, SF , s0, V, T )

Input: model (D,S, SF , s0, V, T )
Result: model (D,S, SF , s0, V, T )

1 for transition t ∈ T do
2 remove transition t
3 add state sgrd
4 add transition from tfrom to sgrd with guard gt
5 if action at cannot raise exception then
6 AugmentStatement(at, sgrd, t

to, tto)
7 else
8 add transition from sgrd to tfrom with guard “revert”
9 add state srvrt

10 add transition from sgrd to srvrt with guard “!revert”
11 AugmentStatement(at, srvrt, t

to, tto)
12 end if
13 end for

original transition, it first removes the transition, then adds a state sgrd and a
transition from the origin to sgrd with the original guard. If the action contains
a statement that can result in an exception, the algorithm also adds a state
srvrt, a transition from state sgrd to state srvrt, and a transition from state sgrd
to the origin state. During verification, our tool considers the possibility of the
entire transition being reverted using this branch. Finally, the algorithm invokes
AugmentStatement with the original action and original destination.

D.3 Observational Equivalence Proof

Below we provide the proof of Theorem 1.

Proof. We are going to prove that all three conditions hold for some pair (q, r),
for which certain criteria hold.

Before that, let us repeat a set of preliminary assumptions for the states and
transitions in both systems. From the transformation algorithm, it holds that
for each state q, there is exactly one corresponding state c(q) ∈ SE , at which
there can be invoked exactly the same functions as at q.

The execution semantics of a function says that α may be reverted , or that
it may be executed normally (finished). There are αfin, αrev ∈ A transitions
for representing each of these cases. For each such α in the transitions of q,
there is a set of outgoing paths Pa at c(q), where both α and Pa represent the
same execution semantics, only that paths consist of distinct transitions for each
Solidity code statement in α (branching in paths is caused due to if and while
constructs). Each Pa can be represented by the regular expression βcallβ?α,
where βcall is the function call, each β-transition is an arbitrary code statement,
and α is either αrev or αfin.

Fig. D.3 shows a state q ∈ SI (bottom) with two transitions αrev and
αfin and its corresponding r = c(q) ∈ SE (top) with the outgoing Pαrev and
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Pαfin . We will prove the relationship R denoted by the dotted lines, i.e., that
(q, r), (q, r1), (q, r2), (q, 3), (q′, r′) ∈ R for each such α ∈ A. In other words, if
r is correspondent to q, then it is equivalent with q and all the other ri that
are reachable in the path, are also equivalent with q, except for r′, which is
equivalent with q′. If we prove this for one 〈q, r, α〉 tuple, then it holds for all of
them.

Fig. 8. Abstract representation of states in the smart contract (bottom) and the aug-
mented system (top) (R is shown with dotted lines).

First, let us prove that (q, r) ∈ R. For each αfin ∈ A, such that q
αfin−−−→ q′

there is a Pαfin , such that r
P
αfin−−−−→ r′ and Pαfin = β ∗ αfin, where β ∈ B and

αfin ∈ A. Moreover, q′ and r′ are corresponding states just like q and r, thus,
if (q, r) ∈ R is proved, so is (q′, r′) ∈ R. As with each αfin ∈ A, also for each

αrev ∈ A there is a Pαrev , such that r
Pαrev−−−−→ r, where β ∈ B and αrev ∈ A.

Moreover, the final states being q and r are now being proved equivalent. So,
far we have proved Property 1 for (q, r). Property 2 does not apply since there
are no transitions of A starting from r. For Property 3, we have to prove that
(q, r1) ∈ R, since r1 is the only state that is reachable from r through transitions
of B. We will prove (q, r1) ∈ R at a later step. Since the three Properties hold,
(q, r) ∈ R has been proved. Note that since (q, r) ∈ R, it follows that (q′, r′) ∈ R.

Let us prove now that (q, r1) ∈ R. For each αfin ∈ A, such that q
αfin−−−→ q′

there is a Pαfin , such that r1
P
αfin−−−−→ r′ and Pαfin = β ∗ αfin, where β ∈ B and

αfin ∈ A. Moreover, it has been proved that (q′, r′) ∈ R. Similarly, for each

αrev ∈ A there is a Pαrev , such that r1
Pαrev−−−−→ r, where β ∈ B, αrev ∈ A and the

final states q and r are equivalent. Property 2 does not apply. For Property 3, we
have to prove that (q, r2) ∈ R and (q, r3) ∈ R, since r2 and r3 are the only states
that are reachable from r1 through transitions of B. We will prove (q, r2) ∈ R
and (q, r3) ∈ R at a later step. Since the three Properties hold, (q, r1) ∈ R has
been proved.

Let us prove that (q, r2) ∈ R and that (q, r3) ∈ R. For each αfin ∈ A, such

that q
αfin−−−→ q′ there is a αfin, such that r3

P
αfin−−−−→ r′ and Pαfinα

fin, where β ∈ B
and αfin ∈ A. Moreover, it has been proved that (q′, r′) ∈ R. Similarly, for each
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αrev ∈ A there is a P revα , such that r2
αrev−−−→ r, where β ∈ B, αrev ∈ A and

the final states q and r are equivalent. Property 2 holds since for each αfin ∈ A
and αrev ∈ A, such that r3

αfin−−−→ r′ and r2
αrev−−−→ r, there is an αfin ∈ A (resp.

αrev ∈ A) such that q
αfin−−−→ q′ (resp. q

αfin−−−→ q) and it has been proved that
(q′, r′) ∈ R (resp. (q, r) ∈ R). Property 3 does not apply, since there are no
states that are reachable from r2 or r3 through transitions of B. Since the three
Properties hold, (q, r2) ∈ R and (q, r3) ∈ R have been proved.

E Solidity Code Generation

The VeriSolid code generator is an extension of the FSolidM code generator [32].
The code generation takes as input the initial transition system modeled by the
developer. To generate Solidity code, it follows directly the operational semantics
of the transition system defined in Appendix A.2. We first provide an overview of
the key differences between the two generators, and then present the VeriSolid
code generator. We refer the reader to [32] for a detailed presentation of the
FSolidM code generator.

Compared to FSolidM, the VeriSolid generator contains the following main
differences:

– At the beginning of each transition, the value of the state variable state is
set to InTransition (if the transition has a non-empty action).

– A constructor is generated from the initial action a0.

– A fallback function is generated from the fallback action aF .

– To maintain functional equivalence between the model and the generated
code, FSolidM code-generator plugins (see [32]) are not supported.

The input of the VeriSolid code generator is a smart contract that is defined
(see Definition 1) as a transition system (D,S, SF , s0, a0, aF , V, T ). In addition,
the developer specifies the name of the contract. Further, for each transition
t ∈ T , the developer specifies tpayable, which is true if the function implementing
transition t should be payable and false otherwise.

For each contract variable or input variables (i.e., function argument) v ∈
I × T, we let name(v) ∈ I and type(v) ∈ T denote the name and type of the
variable, respectively. We use fixed-width font for generated code, and we use
and italic font for elements that are replaced with input or specified later.
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Contract ::= contract name {
StatesDefinition

VariablesDefinition

Constructor

Fallback

Transition(t1)

. . .

Transition(t|T |)

}

where {t1, . . . , tT } is the set of transitions T .

StatesDefinition ::= enum States {
InTransition, s0, . . . ,s|S|−1

}
States private state;

where {s0, . . . , s|S|−1} is the set of states S.

VariablesDefinition ::= D

type(v1) name(v1);

. . .

type(v|V |) name(v|V |);

uint private creationTime = now;

where D is the set of custom event and type definitions, and {v1, . . . , v|V |} is
the set of contract variables V .

Constructor ::= constructor () public {
Action(a0, States.s0)

state = States.s0;

}

where s0 and a0 are the initial state and action, respectively.
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Fallback ::= function () payable public {
State memory currentState = state;

Action(aF , currentState)

state = currentState;

}

where aF is the fallback action.

Transition(t) ::= function tname(type(i1) name(i1),

. . . , type
(
i|tinput|

)
name

(
i|tinput|

)
)

public Payable(t) Returns(t) {

require(state == States.tfrom);

require (gt);

Action(at, States.t
to)

state = States.tto;

}

where tname is the name of transition t,
{
i1, . . . , i|tinput|

}
is the set of parameter

variables (i.e., arguments) tinput, gt and at are the guard and action, and tfrom

and tto are the source and destination states.
If tpayable is true, then Payable(t) ::= payable; otherwise, Payable(t) is empty.

If return type is toutput = ∅, then Returns(t) is empty. Otherwise, it is Returns(t) ::=
returns (toutput)

If a = ∅ (i.e., empty action statement), then Action(a, s) is empty. Otherwise,

Action(a, s) ::= state = States.InTransition;

SafeAction(a, s)

Finally, SafeAction(a, s) simply means a, but replacing any

return expression;

or
return;

statement with a
{ state = s; return expression; }

or
{ state = s; return; }

compound statement in a. Note that this applies to all inner statements within
a (body statements within selection statements, loop statements, etc.).
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F Blind Auction

F.1 Complete Augmented Model

Figure 9 presents the complete augmented model of the Blind Auction Contract.

Fig. 9. Augmented model of the Blind Auction.

F.2 Solidity Code

Below we present the Solidity code generated from VeriSolid.

contract BlindAuction{
// States definition
enum States {

InTransition ,
ABB ,
RB,
F,
C

}
States private state = States.ABB;

// Variables definition
struct Bid {

bytes32 blindedBid;
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uint deposit;
}
mapping(address => Bid[]) private bids;
mapping(address => uint) private pendingReturns;
address private highestBidder;
uint private highestBid;
uint private creationTime = now;

// Transitions

// Transition bid
function bid (bytes32 blindedBid) public payable
{

require(state == States.ABB);
//State change
state = States.InTransition;
// Actions
bids[msg.sender ].push(Bid({

blindedBid: blindedBid ,
deposit: msg.value

}));
pendingReturns[msg.sender] += msg.value;
//State change
states = States.ABB;

}

// Transition close
function close () public
{

require(state == States.ABB);
// Guards
require(now >= creationTime + 5 days);
//State change
state = States.RB;

}

// Transition reveal
function reveal(uint[] values , bytes32 [] secrets) public
{

require(state == States.RB);
// Guards
require(values.length == secrets.length );
//State change
state = States.InTransition;
// Actions
for (uint i = 0; i < values.length &&

i < bids[msg.sender ]. length; i++) {
var bid = bids[msg.sender ][i];
var (value , secret) = (values[i], secrets[i]);
if (bid.blindedBid == keccak256(value , secret) &&

bid.deposit >= value &&
value > highestBid) {

highestBid = value;
highestBidder = msg.sender;

}
}
//State change
state = States.RB;

}

// Transition finish
function finish () public
{

require(state == States.RB);
// Guards
require(now >= creationTime + 10 days);
//State change
state = States.F;
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}

// Transition cancelABB
function cancelABB () public
{

require(state == States.ABB);
//State change
state = States.C;

}

// Transition cancelRB
function cancelRB () public
{

require(state == States.RB);
//State change
state = States.C;

}

// Transition withdraw
function withdraw () public
{

require(state == States.F);
//State change
state = States.InTransition;
// Actions
uint amount = pendingReturns[msg.sender ];
if (amount > 0) {

if (msg.sender != highestBidder)
msg.sender.transfer(amount );

else
msg.sender.transfer(amount - highestBid );

pendingReturns[msg.sender] = 0;
}
//State change
state = States.F;

}

// Transition unbid
function unbid () public
{

require(state == States.C);
//State change
state = States.InTransition;
// Actions
uint amount = pendingReturns[msg.sender ];
if (amount > 0) {

msg.sender.transfer(amount );
pendingReturns[msg.sender] = 0;

}
//State change
state = States.C;

}
}
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G Further Example Models

G.1 DAO Model

The DAO contracts implemented a crowd-funding platform, which raised ap-
proximately $150 million before being attacked in June 2016. Here, we present
a simplified version of the DAO contract, which allows participants to donate

ether to fund contracts, while contracts can then withdraw their funds. The
augmented model of the contract is presented in Figure 10.

By verifying the safety property presented in Table 1, we can guarantee that
none of the two attacks presented in [2] can be successful on our contract. Both
of these attacks are possible if the contract sends the amount of ether before
decreasing the credit and in the meantime an attacker makes another function
call, e.g., to withdraw. Although the former is true for our transition system,
i.e., transition 6 happens after transition 5, by-design our contract changes state
when the withdraw function is called. In particular, our contract goes from the
Initial state to the withdraw state and thus, after executing transition 5, the
attacker cannot make another function call. In other words, 6 will always happen
right after the execution of 5.

Fig. 10. Simplified model of the DAO contract.

G.2 The King Of the Ether Throne Models

The “King of the Ether Throne” is a game where players compete for acquir-
ing the title of the King. If someone wishes to be the king, he must pay an
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amount of ether (which increases monotonically) to the current king. In Fig-
ures 11 and 12, we present the models of two versions of the King of the Ether
Throne contract [3].

The denial of service vulnerability can be exploited in these contracts. To see
why, consider an attacker Mallory, whose fallback just throws an exception.
The adversary sends the right amount of ether, so that Mallory becomes the new
king. Now, nobody else can get her crown, since every time the King of the Either
Throne contract (either of the two versions) tries to send the compensation to
Mallory, her fallback throws an exception, preventing the coronation to succeed.
In particular, “King of Ether 1” uses call which is going to return false, while
“King of Ether 2” uses transfer that is going to be reverted. We were able to
check that our models have this denial of service vulnerability by model checking
the liveness properties presented in Table 1.

Fig. 11. King of Ether 1.

G.3 Resource Allocation Contract

TRANSAX is a blockchain-based platform for trading energy futures [28]. The
core of this platform is a smart contract that allows energy producers and con-
sumers to post offers for selling and buying energy. Since optimally matching
selling offers with buying offers can be very expensive computationally, the con-
tract relies on external solvers to compute and submit solutions to the matching
problem, which are then checked by the contract.
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Fig. 12. King of Ether 2.

We defined a set of safety properties for this contract (Table 5 presents a
subset of these properties). We were able to find a bug in the action of the
finalize transition:

// action of finalize transition
if (solutions.length > 0) {

Solution storage solution = solutions[bestSolution ];
for (uint64 i = 0; i < solution.numTrades; i++) {

Trade memory trade = solution.trades[i];
emit TradeFinalized(trade.sellingOfferID ,
trade.buyingOfferID , trade.power , trade.price );

}
solutions.length = 0;
offers.length = 0;

}
// offers.length = 0; SHOULD HAVE BEEN HERE
cycle += 1;

This bug was immediately detected as a violation of our first safety property
shown in Table 5.
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Table 5. Analyzed properties and verification results for the Resource Allocation case
study.

Case Study Properties Type Result

Resource
Allocation
states: 3487

(i) if close happens, postSellingOffer

or postBuyingOffer can happen only af-
ter finalize.offers.length=0

Safety Violated

(ii) register.prosumers[msg.sender]=

prosumerID cannot happen after setup Safety Verified
(iii) register cannot happen after setup Safety Verified
(iv) if finalize happens createSolution

or addTrade can happen only after close
Safety Verified

H Extended Related Work

Vulnerability Types: Motivated by the large number of smart-contract vul-
nerabilities, multiple research efforts investigate and establish taxonomies of
common security vulnerabilities. Atzei et al. provide a comprehensive taxon-
omy of Ethereum smart-contract vulnerabilities, which identifies twelve common
types [2]. They show for nine of these types how an adversary can steal assets
or inflict damage by exploiting a vulnerability. In another effort, Luu et al. dis-
cuss four vulnerability types—which are also identified in [2]—and they propose
various techniques for mitigating them [29].

Verification and Vulnerability Discovery Both verification and vulnera-
bility discovery are considered in the literature for identifying smart-contract
vulnerabilities. The main advantage of our model-based approach is that it al-
lows developers to specify desired properties with respect to a high-level model
instead of, e.g., EVM bytecode, and also provides verification results and coun-
terexamples in a developer-friendly, easy to understand, high-level form. Further,
our approach allows verifying whether a contract satisfies all desired security
properties instead of detecting certain types of vulnerabilities; hence, it can de-
tect atypical vulnerabilities. Parizi et al. provide a survey and comparison of
existing tools for automatic security testing of smart contracts [40].

For example, Hirai performs a formal verification of a smart contract that is
used by the Ethereum Name Service [22]. However, this verification proves only
one particular property and it involves relatively large amount of manual anal-
ysis. In later work, Hirai defines the complete instruction set of the Ethereum
Virtual Machine (EVM) in Lem, a language that can be compiled for interac-
tive theorem provers [23]. Using this definition, certain safety properties can be
proven for existing contracts. Atzei et al. propose a formal model of Bitcoin
transactions, which enables formal reasoning, and they prove well-formedness
properties of the Bitcoin blockchain [3]. Bhargavan et al. outline a framework
for verifying the safety and correctness of Ethereum contracts [8]. The frame-
work is built on tools for translating Solidity and EVM bytecode contracts into
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F ∗, a functional programming language aimed at program verification. Using
the F ∗ representations, the framework can verify the correctness of the Solidity-
to-bytecode compilation and detect certain vulnerable patterns. Tsankov et al.
introduce a security analyzer for Ethereum contracts, called Securify [49]. To
analyze a contract, Securify first symbolically encodes the dependence graph
of the contract in stratified Datalog [25], and then it uses off-the-shelf Datalog
solvers to check the satisfaction of properties, which can be described in a DSL.

Ellul and Pace use techniques from runtime verification to build the Con-
tractLarva tool, which enables extending contracts to detect violations at run-
time and to offer monetary reparations in response to a violation [15]. Colombo
et al. also argue that dynamic analysis can be used not only to detect errors but
also to recover from them, and they discuss how to extend the ContractLarva
tool to this end [14].

Luu et al. provide a tool called Oyente, which can analyze smart contracts
and detect certain typical security vulnerabilities [29]. They also recommend
changes to the execution semantics of Ethereum, which would eliminate vulnera-
bilities of the four types that are discussed in their paper. However, these changes
would need to be adopted by all Ethereum clients. Building on Oyente, Albert
et al. introduce the EthIR framework for analyzing Ethereum bytecode [1].
EthIR can produce a rule-based representation of bytecode, which enables the
application of existing analysis to infer properties of the EVM code. Nikolic et al.
present the MAIAN tool for detecting three types of vulnerable contracts, called
prodigal, suicidal and greedy [37]. MAIAN allows detecting trace vulnerabilities
(i.e., vulnerabilities across a sequence of invocations of a contract) by analyzing
smart contract bytecode. According to their findings, more than 30 thousand
smart contracts deployed on the public Ethereum blockchain suffer from at least
one vulnerability. Fröwis and Böhme define a heuristic indicator of control flow
immutability to quantify the prevalence of contractual loopholes based on mod-
ifying the control flow of Ethereum contracts [18]. Based on an evaluation of
all the contracts deployed on Ethereum, they find that two out of five contracts
require trust in at least one third party. Brent et al. introduce a security analysis
framework for Ethereum smart contracts, called Vandal, which converts EVM
bytecode to semantic relations, which are then analyzed to detect vulnerabilities,
which can be described in the Soufflé language [10]. Mueller presents Mythril,
a security analysis tool for Ethereum smart contracts with a symbolic execu-
tion backend, which can be used to detect vulnerabilities [35]. Stortz introduces
Rattle, a static analysis framework for EVM bytecode that can recover control
flow graph, lift it into SSA / infinite register form, and optimize it, facilitating
further analyses [48].

Formal Operational Semantics There are a number of research efforts that
focus on defining formal operational semantics for the EVM bytecode and the
Solidity language. Hildenbrandt et al. [21] formally define the semantics of EVM
instructions in the K-framework [27] and validate them. In the same category
falls the work of Grischchenko et al. [19,20], which presents a set of small-step
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semantics for the EVM bytecode. They formalized a large subset of their de-
fined semantics in the F* proof assistant and validated them against the official
Ethereum test suite. Additionally, they formally define security properties for
smart contracts, such as call integrity and atomicity. Both research efforts were
able to find ambiguities in the official EVM specification [52].

Yang and Hang [53] define big-step operational semantics for a large subset
of the Solidity language. The work by Jiao et al. [26] defines small-step oper-
ational semantics for a subset of the Solidity language. Additionally, this work
implements and validates the proposed semantics in the K-framework [27]. In
our paper, we built on the small-step semantics defined in [26], which enables us
to reason about one computational step at a time. We extended their Solidity
statement semantics to support exceptions and return values.

Design Patterns and Development Bartoletti and Pompianu identify nine
common design patterns in Ethereum smart contracts [5]. By studying the us-
age of patterns in publicly deployed contracts, they find that the most common
one is a security pattern, called “authorization,” which is found in 61% of all
contracts. They also provide a taxonomy of Bitcoin and Ethereum contracts, di-
viding them into five categories based on their application domain, finding that
the most common Ethereum contracts are financial and notary. Wöhrer and
Zdun also study common design patterns in Ethereum smart contracts, based
on Multivocal Literature Research [51]. They provide a taxonomy consisting of 18
patterns, and study which patterns appear commonly and how these patterns
map to Solidity coding practices. O’Connnor introduces a typed, combinator-
based, functional language, called Simplicity, for smart contracts [39]. Simplic-
ity is not Turing complete, which may limit its applicability, but also makes
it amenable to static analysis. Frantz and Nowostawski propose an approach
for semi-automated translation of human-readable contract representations into
computational equivalents [17]. They also identify smart contract components
that correspond to real-world institutions and propose a mapping; however, they
do not provide formal guarantees or security assurances for the generated code.
Hu and Zhong propose a logic-based smart contract model, called Logic-SC,
based on semantics and syntax of Active-U-Datalog with temporal extensions;
however, they do not consider security properties [24].
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