Distributed real-time and embedded (DRE) systems executing mixed criticality task sets are increasingly being deployed in mobile and embedded cloud computing platforms, including space applications. These DRE systems must not only operate over a range of temporal and spatial scales, but also require stringent assurances for secure interactions between the system's tasks without violating their individual timing constraints. To address these challenges, this paper describes a novel distributed operating system focusing on the scheduler design to support the mixed criticality task sets. Empirical results from experiments involving a case study of a cluster of satellites emulated in a laboratory testbed validate our claims.
|